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1 Mechanik

1.1 Kinematik

1.1.1 Bewegung entlang einer
Geraden

Die Kinematik hat die mathematische Be-
schreibung der Bewegung materieller Korper
im Raum zum Inhalt. In der Kinematik werden
keine Aussagen iiber das Zustandekommen
von Bewegungen gemacht. Dies ist Gegen-
stand der Dynamik (vgl. Abschnitt 1.2).

Héufig ist es gerechtfertigt, die Ausdehnung
der Korper zu vernachldssigen (Modellvorstel-
lung des Massenpunkts)". Vorteil: Rotation
und Verformung der Kérper brauchen nicht
beriicksichtigt zu werden.

Erfolgt die Bewegung entlang einer Geraden
im Raum, so geniigt es, zu jedem Zeitpunkt
t die jeweilige Ortskoordinate x anzugeben.
Trédgt man x iiber r auf, erhilt man das Weg-
Zeit-Diagramm der Bewegung (Abb. 1.1).

<A

fin)

|

Abb. 1.1: Weg-Zeit-Diagramm

Offenbar ist x eine Funktion der Zeit:

x = f(t),
in Kurzform schreibt man x(¢).

Die mittlere Geschwindigkeit im Zeitinter-
vall At :=t, — t; ist definiert durch

_ Ax
D= ==
At
Die im Zeitintervall Ar zuriickgelegte Weg-

strecke Ax := x(t)—x(t1) heiit Verschiebung
(AbbD. 1.2).

xA
x(t5) -
X(t]) /
L 5] ;7

Abb. 1.2: Zeitintervall und Verschiebung. Man
beachte, dass die Verschiebung fiir x(¢y) < x(#1)
negativ ist.

Da sich die Geschwindigkeit eines Korpers
i. Allg. stindig dndert, fiihrt man die Momen-

tangeschwindigkeit ein?:
dx
= — =X(7).
b= x(1)

Erlduterung: Hohe Geschwindigkeit bedeu-
tet anschaulich, dass sich der Aufenthaltsort

D' Modelle sind in der Physik von zentraler Bedeutung. Was man in der Physik unter einem Modell versteht, ist in

Anhang A erléutert.

2 Ein Punkt iiber dem Formelzeichen bedeutet , Ableitung nach der Zeit*. Der Begriff , Ableitung* wird in Anhang

B.3 kurz erldutert.
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(die Koordinate) schnell @ndert. Im Weg-Zeit-
Diagramm ist das dort der Fall, wo die Funk-
tion steil ansteigt. Der Anstieg ist durch die
Ableitung von x nach der Zeit ¢ gegeben.

Wenn v(t) = vy = const, spricht man von einer
gleichformigen Bewegung, andernfalls von
einer ungleichformigen Bewegung.

Genauso wie die Koordinate, kann man
die Geschwindigkeit iiber der Zeit auf-
tragen (Geschwindigkeits-Zeit-Diagramm,
Abb. 1.3).

oA

-y

Abb. 1.3: Geschwindigkeits-Zeit-Diagramm

Insbesondere in der Dynamik zeigt sich, dass
die zeitliche Anderung der Geschwindigkeit
von grofler Wichtigkeit ist. Analog zur mittle-
ren Geschwindigkeit wird daher die mittlere
Beschleunigung

_ Av
a.=—
At

(Av :=v(t) — v(t;)) und zur Momentan-
geschwindigkeit die Momentanbeschleuni-
gung eingefiihrt:

= 0(1).

a=2
Tdt
Wegen v(t) = % gilt
d (dx
a=—|—
dt \ dt

D vgl. Abschnitt B.3 im Anhang

T drr

Bekanntlich ist die Umkehrung der Differen-
ziation die unbestimmte Integration!). Daher
erhilt man v(¢) aus a(t), indem man die Be-
schleunigung iiber die Zeit integriert:

v(t) = / a(t)dt.

Ebenso erhilt man x(¢) durch Integration iiber
v(t), also

x(t) = / v(t)ds.

Symbolisch kann man schreiben
x(H)=v(t) = a(?).

Dabei steht — fiir die Ableitung nach der Zeit
und — fiir die Integration iiber die Zeit. Bei
jeder unbestimmten Integration tritt eine Inte-
grationskonstante auf. Diese muss aus einer
Anfangsbedingung bestimmt werden.

Bewegungen mit a(t) = ayp = const heilen
gleichformig beschleunigt, alle anderen un-
gleichformig beschleunigt. Beispielsweise
fallen in der Néhe der Erdoberfliche alle Ge-
genstdnde mit der konstanten Beschleunigung
g = 9,81 m/s? (Erdbeschleunigung), sofern
die Wirkung des Luftwiderstands vernachlis-
sigt werden kann.

Fiir gleichformig beschleunigte Bewegungen
erhélt man durch integrieren und unter Aus-
nutzung der Anfangsbedingungen v(t) = v
(Anfangsgeschwindigkeit) und x(zp) = xo (Teil-
chenkoordinate zur Anfangszeit #)

v(1) = ag(t — 1) + vo,
1
x(t) = Sao(t = t0)* + vo(t — fo) + Xo.
Aufgaben
1.1.1-1 Das Weg-Zeit-Diagramm einer Bewe-

gung habe die Form eines Trapezes. Zeichnen
Sie das Geschwindigkeits-Zeit-Diagramm!
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1.1.1-2 Fiir einen fallenden Gegenstand gilt
niherungsweise x(¢) = bt*> mit b = 5m/s>.

a) Bestimmen Sie seinen Ort fiirt =1s,25,5s
und die Momentangeschwindigkeit zur Zeit
t=S5s.

b) Wie groB ist die mittlere Geschwindigkeit
in den ersten fiinf Sekunden?

¢) Berechnen Sie die momentane Beschleuni-
gung zur Zeitt = 5.

Losung: v = 50m/s, 0 = 25m/s,a = a =

10m/s?

1.1.1-3 Ein Teilchen befindet sich zur Zeit ¢ =:
o =2 s am Ort x(#p) = 0,1 m. Es bewegt sich
mit v(z) = vycos(wt),vp = 2m/s,w = 4s .
Gesucht: a(t) und x(¢) fiir t =: ¢; = 10s.

Losung: —5,96 m/s?, —2,21 cm

1.1.1-4 Leiten Sie den allgemeinen Ausdruck
fiir v(r) und x(¢) bei der gleichformig beschleu-
nigten Bewegung her!

1.1.1-5 Ein Auto bremst mit einer Verzoge-
rung von 6,5 m/s> und legt bis zum Stillstand
45 m zuriick. Wie grof3 sind Bremszeit und
Anfangsgeschwindigkeit?

Losung: 3,72s,24,2m/s

1.1.1-6 Eine Rakete beschleunige in der Start-
phase gemiB a = cf mit ¢ = 3 m/s>. Geben Sie
ihre Geschwindigkeit und die zuriickgelegte
Wegstrecke 5 s nach dem Start an.

Losung: 37,5m/s,62,5m

1.1.1-7 Die Geschwindigkeit eines Korpers,
der durch ein viskoses Medium fallt, ist
v(t) = vr.(1 — e~ P"). Welche Strecke legt eine
Stahlkugel in Glycerin in der Zeit t = 1/P zu-
riick, wenn sie anfinglich ruhte (v, =7cm/s,
P=1401/s)?

Losung: 0,184 mm

D vgl. Abschnitt B.1 im Anhang

1.1.2 Bewegung im Raum

Zur eindeutigen Bestimmung der Lage eines
Massenpunkts im Raum sind statt einer Koor-
dinate drei anzugeben. Diese fasst man zweck-
miBigerweise in einem Vektor!) zusammen
(Ortsvektor). Bewegt sich der Massenpunkt
durch den Raum, so l4sst sich seine Bahnkurve
beschreiben, indem man zu jedem Zeitpunkt
t den Ortsvektor 7(¢) angibt. Die Bahnkurve
(Trajektorie), zunichst fiir die Bewegung in
der Ebene, hat also die Form

{

\—/

Abb. 1.4: Spiralformige Bewegung. Die Bahnkur-
si t

ve kann z. B. in der Form 7(r) = at sin(wr) mit
cos(wr)

a, w = const angegeben werden.

Die Geschwindigkeit ist ebenfalls durch einen
Vektor zu beschreiben, den Vektor der Mo-
mentangeschwindigkeit:

Dieser Vektor liegt zu jedem Zeitpunkt tan-
gential an der Bahnkurve (vgl. Abb. 1.5).
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NG
<l

O
Abb. 1.5: Vektor der Momentangeschwindigkeit

Analog zur geradlinigen Bewegung definiert
man den Vektor der Momentanbeschleuni-

gung:
. dv . |0y
a.=— =0= .
dt Oy

Fiir den Beschleunigungsvektor erweist sich
die folgende Zerlegung in Komponenten als
zweckmiBig (Abb. 1.6):

= = =
a=a|+ay.

Dabei heifit @ Tangential- oder Bahnbe-
schleunigung und @, heift Zentripetal- oder
Normalbeschleunigung.

q
N
N v
a —
a

Abb. 1.6: Zerlegung des Beschleunigungsvek-
tors in Komponenten parallel und senkrecht zum
Geschwindigkeitsvektor

Geschwindigkeitsdnderungen (d. h. Beschleu-
nigungen) setzen sich aus zwei Anteilen zu-
sammen: Anderung des Betrages von U (dem
entspricht @) und Anderung der Richtung von
v (dem entspricht @, ).

Eine wichtige spezielle Bewegungsform in
der Ebene ist die gleichformig beschleunigte
Bewegung, definiert durch @ = dy = const. So-
lange man Luftwiderstand, Tragflicheneffekte
(dynamischer Auftrieb) etc. vernachléssigen

kann, entsprechen Wurf- und Geschossbahnen
einer gleichformig beschleunigten Bewegung

mit
- 0
ap =
-9

wenn ein Koordinatensystem mit nach oben
weisender y-Achse gewihlt wird.

>

Geschwindigkeitsvektor und Bahnkurve der
gleichformig beschleunigten Bewegung wer-
den durch

(1) = do(t — 1) + Vo,

N 1. N >

F(t) = an(t —10)% + To(t — t0) + Ty
beschrieben.

Eine weitere wichtige Bewegungsform ist die
Kreisbewegung. In Abbildung 1.7 sind zwei
Punkte P; und P, auf einer rotierenden Schei-
be dargestellt.

— |

%
\

\

Abb. 1.7: Kreisbewegung

Offenbar legen sie in gleichen Zeiten verschie-
dene Strecken zuriick. Der je Zeiteinheit iiber-
strichene Winkel ¢ (Drehwinkel) ist aber fiir
beide Punkte gleich. Wéhlt man ein Koordi-
natensystem, dessen Ursprung im Zentrum
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der Drehung liegt, so hat der Betrag des Orts-
vektors eines beliebig ausgewihlten Punktes
einen konstanten Wert: |F| =: R = const?. Die
Bahnkurve hat die Form

o [ Rcose(t)
r= .
R sin (1)

Ableiten nach der Zeit ergibt die Geschwin-
digkeit

b = Rwés.
Hierbei wurde die momentane Winkelge-
schwindigkeit

w(t) := (1)

und der Einheitsvektor? in Richtung von &

N (—singa)
ey =
cos ¢

eingefiihrt. w gibt an, welchen Winkel der
Ortsvektor pro Zeiteinheit iiberstreicht.

Man iiberzeugt sich leicht, dass die Bahn-
geschwindigkeit, das ist der Betrag des Ge-
schwindigkeitsvektors, mit w geméaf

v(t) = Rw(t)

zusammenhingt. Das heif3t: je weiter der be-
trachtete Punkt von der Drehachse entfernt ist,
umso schneller bewegt er sich.

Differenzieren des Geschwindigkeitsvektors
nach der Zeit liefert den Beschleunigungsvek-
tor

a = Raey — szé},
wobei die momentane Winkelbeschleuni-
gung

a(t) ;= w(t)

und der radial nach aulen weisende Einheits-
vektor

N (cosgp)
ey 1= .
sin ¢

eingefiihrt wurden. Der erste Term in der For-
mel fiir d entspricht der Tangentialbeschleuni-
gung, der zweite demzufolge der Zentripetal-
beschleunigung.

Die mittlere Winkelgeschwindigkeit im Zei-
tintervall At := 1, — t

_ Ay
w:i=—,
At

und die mittlere Winkelbeschleunigung

_ Aw
@ = —
At

sind in gewohnter Weise definiert.

Bei der gleichformigen Kreisbewegung
(w =: wg = const) ist der Zusammenhang zwi-
schen Zeit und Drehwinkel durch

@(t) = wolt — 1) + ¢o

gegeben. Die Anzahl der Umldufe pro Zeitein-
heit heiflit Drehzahl oder Drehfrequenz. Fiir
sie gilt

1 wQ

F=7 =5
([f] =s"" =: Hertz (Hz)). Dabei ist T die Pe-
riode der Kreisbewegung, d. h. die Zeitdauer
fiir einen vollstéindigen Umlauf.

Auch fiir die gleichférmig beschleunigte
Kreisbewegung gelten Formeln analog zu
denen der geradlinigen Bewegung. Die Ma-
thematik ist in beiden Fillen die gleiche — nur
die Formelsymbole und deren physikalische
Bedeutung sind unterschiedlich:

w(t) = ao(t — 10) + wo
(1) = ot ~ o) + olt = 1o) + g0,

Erfolgt die Bewegung nicht in einer Ebene,
sondern im Raum, so ist die Hinzunahme einer

D' R und ¢ heiBen Polarkoordinaten (vgl. Abschnitt B.5 im Anhang)

2) vgl. Abschnitt B.1 im Anhang
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weiteren Koordinate notwendig. Die Bahnkur-
ve (Trajektorie) hat die Form:

x(1)
F(t) = y() |
z(1)

Abb. 1.8: Spiralférmige Bewegung. Bahnkurve:

R cos(wt)

R sin(wt)
bt

beiden Komponenten entsprechen einer gleichfor-
migen Kreisbewegung.

F(t) = mit R, b, w = const. Die ersten

Auch v und a miissen um eine Komponente
erweitert werden.

Kreisbewegungen konnen im Raum um unter-
schiedliche Achsen erfolgen. Daher beschreibt
man die Winkelgeschwindigkeit durch einem
Vektor, dessen Betrag mit ¢(¢) und dessen
Richtung mit der Richtung der Drehachse
iibereinstimmt. Aus dem Ortsvektor 7 und
dem Vektor der Winkelgeschwindigkeit &
lasst sich der Geschwindigkeitsvektor mithilfe
des Kreuzprodukts" berechnen:

=

- -
V=wXTr.

D" vgl. Abschnitt B.1 im Anhang

Konsequenterweise beschreibt man auch die
Winkelbeschleunigung durch einen Vektor.
Dieser ist durch

. do

T

definiert (Vektor der Winkelbeschleuni-
gung).

Aufgaben

1.1.2-1 Ein Teilchen bewegt sich mit der Be-

schleunigung m/s”. Es befindet sich zur

Zeitt=t9=0am Ort x=4m und y =3 m.
Seine Geschwindigkeit ist im gleichen Zeit-

2
punkt durch ( 9) m/s gegeben. Berechnen

Sie
a) seine Geschwindigkeit zur Zeit t =2 s!
b) seinen Ort zur Zeit t =4 s,

10) (44)
m/s, m
-3 -9

1.1.2-2 Die Fallgeschwindigkeit mittelgrofer
Regentropfen betrigt bei Windstille ca. 8 m/s.
Welche Geschwindigkeit hat ein Zug, an des-
sen Wagenfenstern die Tropfen Spuren hin-
terlassen, die um 70° von der Senkrechten
abweichen?

Losung: 79 km/h

1.1.2-3 Vom Dach eines 12m hohen Hau-
ses wird ein Stein steil nach oben geworfen.
Dieser fillt 6,4 s nach dem Abwurf in 32m
Entfernung auf den Erdboden. Mit welcher
Anfangsgeschwindigkeit und unter welchem
Winkel wurde er abgeschleudert?

Losung: 29,94 m/s, 80,4°

Losung:

1.1.2-4 Ein Korper wird mit der Anfangsge-
schwindigkeit 35 m/s unter einem Winkel von
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60° abgeschleudert. Bestimmen Sie die Wurf-
weite, Wurfhohe und Flugdauer!

Losung: 108,1 m, 46,8 m, 6,18 s

1.1.2-5 Mit welcher Geschwindigkeit bewegt
sich ein Punkt auf der Erdoberfliche

a) am Aquator

b) in Hamburg

relativ zum Sternenhimmel? (Erdumfang
ca. 40000 km, Hamburg liegt auf ca. 54°
nordliche Breite, Bahnbewegung der Erde etc.
vernachldssigen)

Losung: ca. 1667 km/h, 980 km/h

1.1.2-6 Bei einer Fluggeschwindigkeit von
420 km/h legt die Nabe der Luftschraube wih-
rend jeder Umdrehung die Strecke 3,6 m zu-
riick. Welche Drehzahl hat die Luftschraube?

Losung: 32,4 Hz

1.1.2-7 Ein Elektromotor mit der Drehzahl
4000 min~! 14uft innerhalb von 8s bis zum
Stillstand aus. Wie viele Umdrehungen fiihrt
er dabei aus?

Losung: 266,7

1.1.2-8 Ein Teilchen bewege sich auf ei-
ner Kreisbahn gemiB ¢ = at’> + bt (a =
3rad/s% b = 2rad/s). Berechnen Sie die Win-
kelgeschwindigkeit und die Winkelbeschleu-
nigung zur Zeit t = 4s!

Losung: 26rad/s, 6rad/s?

1.1.2-9 Ein Elektromotor fiihrt innerhalb der
ersten 10 s nach dem Anlassen 280 Umdrehun-
gen aus, wobei die Drehbewegung 5 s gleich-
formig beschleunigt und danach gleichférmig
ist. Welche Drehzahl hat der Motor erreicht?

Losung: 37,3Hz

1.1.2-10 Bestimmen Sie den Beschleunigungs-
vektor eines Teilchens, das sich auf der durch

_ | Asin(wr)

F(t) = ( b3

beschriebenen Bahnkurve

bewegt zur Zeit; = 10s (A=10cm, w =2s"!

und b = 0,01 m/s>).

—0,3652
’ ) m/s?

Losung: ( 0.6000

1.2 Dynamik

1.2.1 Newtonsche Axiome

Wie bereits erwihnt, befasst sich die Kinema-
tik mit der mathematischen Beschreibung von
Bewegungsvorgingen. Die Dynamik ist die
Lehre vom Zusammenhang zwischen Bewe-
gung und deren Ursache, der Kraft. Zu den
zentralen Begriffen Teilchenort, Geschwindig-
keit und Beschleunigung kommen die Begrifte
Kraft und Masse hinzu.

Den Widerstand eines Korpers gegen Bewe-
gungsinderung (d. h. gegen Beschleunigung)
nennt man Tragheit. Das Mab fiir die Trégheit
heiflit Masse. Eine experimentelle Anordnung
zur Bestimmung der Masse ist in Abb. 1.9 dar-
gestellt. Auszumessende und Referenzmasse
werden durch eine Feder beschleunigt.

Je trager ein Korper ist, umso mehr wird er ver-
suchen, seine Anfangsgeschwindigkeit v =0
beizubehalten. Die Masse eines Korpers ergibt
sich aus

0o
m:=my—.
v

Dabei ist myg eine Referenzmasse (Kilogramm-
prototyp) und vg deren Geschwindigkeit. v
ist die Geschwindigkeit des Korpers, dessen
Masse bestimmt werden soll. (Einem Korper,
der mit groBer Geschwindigkeit weg gestoflen
wird, wird nach der obigen Formel offenbar
eine kleine Masse zugeschrieben.)

Diese etwas ungewohnliche Art, die Masse
einzufiihren, hat den Vorteil, dass der Zusam-
menhang mit der Trigheit sehr deutlich wird
und auBlerdem nur Grofen verwendet werden,
die vorher definiert worden sind.



16

1 Mechanik

o
-

Referenz-
masse

— 7 v

@ e

Abb. 1.9: Zur Definition der trigen Masse. Eine Feder wird zwischen einem Referenzkorper und dem
Korper, dessen Masse zu bestimmen ist, gestaucht. Beide Korper werden gleichzeitig losgelassen. Dies
kann so eingerichtet werden, dass sie sich in genau entgegengesetzte Richtungen auseinander bewegen.

Reibungseftekte miissen vernachldssigbar klein sein.

Korper gleicher Masse nehmen bei unter-
schiedlicher stofflicher Zusammensetzung ver-
schiedene Volumina ein. Um diesen Sachver-
halt quantitativ zu erfassen, fithrt man die
Dichte ein. Im einfachsten Fall der homogen"
aufgebauten Korper ist die Dichte das Verhélt-
nis aus Masse und Volumen

m
pi= v

Newton? hatte die Vorstellung, dass sich alle
Erscheinungen der Mechanik (zumindest im
Prinzip) aus wenigen Axiomen> ableiten las-
sen sollten. Die drei Newtonschen Axiome
lauten:

1. Axiom (Trigheitsgesetz?) Jeder Korper
verharrt in einem Zustand der Ruhe oder
gleichfoérmig geradlinigen Bewegung, wenn
er nicht durch einwirkende Krifte gezwungen
wird, seinen Zustand zu dndern.

Bis Galilei glaubte man, dass alle Gegenstin-
de zur Ruhe kommen, wenn keine dufleren
Krifte wirken®. Durch Galilei verindert sich
der Standpunkt grundsitzlich: bewegte Kor-
per kommen aufgrund der immer vorhandenen
Reibungskrifte zur Ruhe.

D" homogen: iiberall gleich beschaffen

2 Sir Isaac Newton, 1643-1727
3)

4
5

geht auf Galileo Galilei, 1564 - 1642, zuriick
Atristoteles, 384 —322 v. Chr.
9 vgl. Anhang B.4

2. Newtonsches Axiom (Dynamisches
Grundgesetz, Aktionsgesetz) Das Dynami-
sche Grundgesetz

"

kann als Definitionsgleichung fiir die physi-
kalische Grofle Kraft aufgefasst werden. m
und a sind zuvor definiert worden. Somit lasst
sich iliber die Messung der Beschleunigung
schlieBen, welche resultierende Kraft auf einen
Korper wirkt ([17” 1= lf—zm =: Newton (N)).

Viel bedeutender ist das Dynamische
Grundgesetz in einer anderen Funktion
(Hauptaufgabe der Mechanik): Beachtet
man, dass die Beschleunigung als erste Ab-
leitung des Geschwindigkeitsvektors nach der
Zeit definiert ist, so ist klar, dass (¥*) als Dif-
ferenzialgleichung® aufgefasst werden kann.
Wenn die auf einen Korper wirkende Kraft
als Funktion von 7, 0, ¢ und evtl. weiterer Va-
riablen gegeben ist und Anfangsbedingungen
der Art F(tg) = ro, (fp) = vp vorliegen, so lie-
fert die Losung der Differenzialgleichung v(r)
und 7(¢), d. h. die Bahnkurve des Korpers. Die
Bewegung von Korpern lisst sich also mit
mathematischen Mitteln aus den wirkenden
Kriften bestimmen! Im Zusammenhang mit

Axiom: Grundsatz, der ohne Beweis als wahr angenommen wird.
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diesem Problemkreis wird (**) auch Bewe-
gungsgleichung genannt.

(Hinweis: (**) ldsst sich umstellen zu d = F /m.
Gemal dem im Abschnitt Kinematik Gesag-
ten erhilt man 7(¢) durch zweifaches Integrie-
ren. Wozu braucht man also das Dynamische
Grundgesetz? Das Verfahren mit der Integrati-
on funktioniert nur, wenn die Beschleunigung
als Funktion der Zeit bekannt ist. Dies ist aber
hiufig nicht der Fall.)

Das Dynamische Grundgesetz ist die wichtigs-
te Formel der Physik!

Newton hat das Dynamische Grundgesetz in
einer allgemeiner giiltigen Form angegeben:

- dp
Fres = d_I;
mit
p:=mb (Impuls).

Diese Formel ist auch dann giiltig, wenn sich
die Masse im Laufe der Bewegung éndert, z. B.
beim Start einer Rakete (Treibstoffausstof3).

3. Axiom (Wechselwirkungsgesetz) Ubt ein
Korper 1 auf einen anderen Korper 2 eine
Kraft F, 12 aus, so wirkt eine gleich grofle, aber
entgegen gerichtete Kraft von Korper 2 auf
Korper 1, also

Fip =-F;.

Aufgaben

Hinweis: Auf Korper in der Néihe der Erd-
oberfliche wirkt die Gewichtskraft mg, die
senkrecht nach unten in Richtung Erdmittel-
punkt wirkt (vgl. Abschnitt 1.3.2).

1.2.1-1 Welche Kraft wirkt im Halteseil eines
Aufzugs von 1500 kg Masse beim Anfahren
nach oben/unten, wenn die Beschleunigung in
beiden Fillen 1,5 m/s? betrigt?

Losung: ca. 17,0kN, 12,5kN

1.2.1-2 Eine Person trédgt ein 10kg schwe-
res Postpaket an einer Schnur (Reiffestigkeit
150N) und betritt einen Aufzug. Welche Be-
schleunigung darf beim Anfahren des Aufzugs
nicht iberschritten werden, damit die Schnur
nicht reift?

Losung: 5,19 m/ §2

1.2.1-3 Auf einen Kdrper wirke eine konstante
Kraft ﬁo. Geben Sie die allgemeine Losung der
zugehorigen Bewegungsgleichung an (nicht
rechnen, nachdenken!).

1.2.1-4 Die resultierende Kraft auf einen Kor-
per der Masse m sei F = F—kt (Fy, k Konstan-
ten, ¢ Zeit). Geben Sie die Teilchenposition als
Funktion der Zeit an!

k
2——t3+l)0t+)C0

Fo
Lo. Sx(t) = —t
osung: x(t) o =
1.2.1-5 Auf einen gedffneten Fallschirm, der
mit der Geschwindigkeit v fillt, wirkt eine
Kraft cv? entgegen der Bewegungsrichtung.
Wie grof3 ist die konstante Endgeschwindigkeit

eines Fallschirmspringers?

Losung: \Jmg/c

1.2.1-6 Ein Auto (m = 1000 kg) fahrt mit kon-
stanter Geschwindigkeit (vp = 120 km/h) auf
einer ebenen Strafe. Welche Strecke legt es in-
nerhalb von 20 s zuriick, wenn der Motor plotz-
lich ausgekuppelt wird? Welche Geschwindig-
keit hat es 20 s nach dem Auskuppeln?

(Man nehme an, dass der Luftwiderstand und
alle Reibungskrifte ndherungsweise durch den
Ansatz Fr = —cv? mit ¢ = 0,8 kg/m beschreib-
bar seien!).

Losung: 21,7m/s, 534 m

1.2.1-7 Ein Mann (Masse 75 kg) und ein Kind
(Masse 25 kg) befinden sich auf einem zuge-
frorenen See. Sie ziehen an den Enden eines
Seils. In welchem Verhiltnis stehen die Be-
schleunigungen von Mann und Kind?

Losung: 1:3
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1.2.2 Dynamik starrer Kérper

Hiufig konnen ausgedehnte Korper niherungs-
weise als starr (d. h. nicht verformbar) ange-
sehen werden (Modellvorstellung des star-
ren Korpers). Die Bewegung starrer Korper
ldsst sich als Uberlagerung einer Translati-
onsbewegung (der Korper nimmt zu allen
Zeiten zur Anfangslage parallele Lagen ein)
des Schwerpunktes! und einer Rotationsbe-
wegung um den Schwerpunkt auffassen. Bei
der Behandlung der Bewegungsgesetze spie-
len Kreisbewegungen eine wichtige Rolle, da
alle Bestandteile eines rotierenden Korpers
auf Kreisbahnen umlaufen. Das Dynamische
Grundgesetz kann in eine Form gebracht wer-
den, die zur Behandlung von Kreisbewegun-
gen besonders geeignet ist.

Versucht man einen drehbar gelagerten Korper
in Rotation zu versetzen, so stellt man fest, dass
die erzielte Wirkung (die Winkelbeschleuni-
gung) nicht nur von der aufgewindeten Kraft,
sondern genauso stark vom Abstand Drehach-
se — Wirkungslinie (dem Hebelarm) der Kraft
abhéngt (Abb. 1.10).

Drehachse

Abb. 1.10: Drehmoment einer Kraft F mit An-
griffspunkt A

Das Produkt aus diesen beiden Einflussfakto-
ren nennt man Drehmoment

M =bF

oder vektoriell

M:=FxF.

Im Folgenden wird ein Massenpunkt betrach-
tet, der sich unter der Wirkung einer Kraft auf
einer Kreisbahn vom Radius r bewegt. Die
Kraft F wird analog zur Beschleunigung in
zwei Komponenten zerlegt (vgl. Abb. 1.11).

Abb. 1.11: Kraftzerlegung bei der Kreisbewe-
gung

Die Zentripetalkraft F " wirkt zum Drehzen-
trum hin und ist fiir die Richtungsinderung
des Geschwindigkeitsvektors v verantwortlich.
Offenbar gilt (vgl. Kinematik der Kreisbewe-
gung):

F,=ma, = —mrw?.
Ebenso

Fy=ma| =mra
und daher

M=rF)= mria.

Dieser Formel ist zu entnehmen, dass die Win-
kelbeschleunigung umso kleiner ausfillt, je
weiter die Masse von der Drehachse entfernt
ist. Die Trigheit eines Korpers hdngt bei Dreh-
bewegungen also nicht nur von der Masse,
sondern auch von deren Abstand zur Drehach-
se ab.

D' Der Schwerpunkt oder Massenmittelpunkt eines Korpers lisst sich experimentell ermitteln, indem man den
Korper nacheinander an mindestens zwei verschiedenen Punkten an einem Faden aufhéngt. Denkt man sich den
Faden jeweils nach unten verldngert, so ergibt der Schnittpunkt der Verlangerungslinien die Lage des Schwerpunkts.
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Betrachtet man einen starren Korper, der
aus mehreren nidherungsweise punktférmigen
Massen zusammengesetzt ist (vgl. Abb. 1.12),
so gilt die obige Uberlegung fiir jede der Mas-
sen.

D

Abb. 1.12: Starrer Korper, der aus punktformigen
Massen zusammengesetzt ist

Da diese alle mit der selben Winkelgeschwin-
digkeit w rotieren, gilt

Mes = Ja,

wobei J Massentrigheitsmoment genannt
wird und durch

J = Z mir?

alle Teilchen
gegeben ist.

Bei kontinuierlichen Massenverteilungen tritt
in der obigen Formel anstelle der Summe ein
Integral (vgl. Abb. 1.13):

/ r? dm.

Volumen

J =

Wichtig ist, dass das Massentriagheitsmoment
keine feste Eigenschaft des rotierenden Kor-
pers ist, sondern immer nur in Bezug auf eine
bestimmte Drehachse angegeben werden kann.
Fiir einfache Korper sind Trigheitsmomente
beziiglich verschiedener Achsen tabelliert (vgl.
Tabelle 1.1).

Tabelle 1.1: Massentrigheitsmomente beziiglich einiger Symmetrieachsen einfacher Korper. Die For-
meln fiir Vollzylinder und Vollkugel sind als Spezialfille enthalten. Auch das Trigheitsmoment eines
langen, diinnen Stabes beziiglich einer Schwerpunktachse senkrecht zur Stabachse ldsst sich leicht

ablesen.
Quader Hohlzylinder Hohlkugel
ll_zm(a2 +b%) %m(R2 +r2) fiir A %mﬁz : :Z
im(R2 +r 4 %lz) fiir A,
b Adl
t N &

PN

-
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Abb. 1.13: Starrer Korper bei kontinuierlicher
Massenverteilung

Fiir andere Achsen kann das Triagheitsmoment
hdufig mithilfe des Steinerschen Satzes be-
rechnet werden: Das Trigheitsmoment eines
Korpers der Masse m beziiglich einer Achse
A sei Jp. Das Triagheitsmoment des Korpers
beziiglich der Achse, die durch den Korper-
schwerpunkt S und parallel zu A verlauft, sei
Js (vgl. Abb. 1.14). Haben die beiden Achsen
den Abstand a voneinander, so gilt

Ja=Js + ma? .

Abb. 1.14: Zwei zueinander parallele Rotationsa-
chen im Abstand a. Eine der beiden Achsen geht
durch den Schwerpunkt des Korpers.

Betrachtet man Tabelle 1.2, so stellt man fest,
dass zu jedem Ausdruck in der linken Spalte
ein dhnlicher Ausdruck in der rechten Spalte
gehort — die Formeln fiir translatorische Bewe-
gungen und fiir Rotationsbewegungen weisen
eine groBe formale Ahnlichkeit auf.

Zum Beispiel lautet das Dynamische Grund-
gesetz der Drehbewegung in vektorieller Form

M5 = Ja.

Als Gegenstiick zum Impuls wird der Drehim-
puls eingefiihrt:

L:=J&

Tabelle 1.2: Translations- und Rotationsgrofien. Der Punkt bedeutet wie iiblich die Ableitung nach der

Zeit.
Translationsgrofie Rotationsgrofe
Ortskoordinate X Drehwinkel @
Geschwindigkeit v=2Xx Winkelgeschwindigkeit w=¢
Beschleunigung a=v Winkelbeschleunigung =
Masse m Massentriagheitsmoment J
Impuls p=mv Drehimpuls L=Jw
Kraft F=ma=p Drehmoment M=Ja=L
Arbeit dW = Fdx Arbeit dW =Mdy
kinetische Energie Eyin = %mv2 Rotationsenergie Erot = %sz
Leistung P=Fv Leistung P=Mw




