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Vorwort

Durch die flächendeckende Einführung von Bachelor-Studiengängen an Hochschulen im
deutschen Sprachraum sind, im Vergleich zu den früheren Diplom-Studiengängen, für viele
Fächer gekürzte Stundenzahlen festgeschrieben worden. Häufig ist zu beobachten, dass
die Inhalte der ursprünglichen Lehrveranstaltungen ohne substantielle Kürzungen in die
Curricula der Bachelor-Studiengänge übernommen werden. Auch die in der Physikausbildung
in Ingenieurstudiengängen tätigen Hochschullehrer tun sich oft schwer damit, Inhalte zu
opfern. Es führt aber kein Weg daran vorbei! So interessant z. B. das Standardmodell der
Elementarteilchen auch ist – dieses Thema kann in einer auf wenige Stunden beschränkten
Grundlagenvorlesung zur Physik für Studierende der Ingenieurwissenschaften nicht annähernd
seriös behandelt werden. Dennoch findet man entsprechende Kapitel in vielen Lehrbüchern, die
für Ingenieurstudiengänge gedacht sind. Physik für Ingenieure – Bachelor Basics stellt einen
Gegenentwurf zu diesen Büchern dar. Der Leser erhält mit vergleichsweise wenig Aufwand
einen guten Einblick in die wichtigsten physikalischen Phänomene.

Da die Physikvorlesungen üblicherweise in den ersten Semestern angesiedelt sind, stellt der
fehlende Vorlauf in Mathematik häufig ein Problem dar. Natürlich lässt sich dieses Problem
nicht vermeiden – um es wenigstens zu entschärfen, wird die benötigte Mathematik im
Anhang sehr kompakt skizziert. Dort findet der Leser auch eine einführende Darstellung
der Fehlerrechnung. Der Arbeitsplan zur Ermittlung von Messergebnissen sollte bei der
Ausarbeitung von Laborprotokollen hilfreich sein.

Den Lösungsweg ausgewählter Aufgaben finden Sie auf www.BerndBaumann.de und www.
europa-lehrmittel.de/58577.html. Vorgegebenen Lösungswegen zu folgen reicht allerdings
nicht aus. Um zu einem Verständnis zu gelangen, ist es notwendig, dass sich der Leser um das
selbstständige Erzielen der Lösungen ernsthaft bemüht.

Fehlerhinweise, Anregungen und Kommentare sind stets willkommen.

Hamburg, im Sommer 2016 Bernd Baumann

info@BerndBaumann.de
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1 Mechanik
1.1 Kinematik
1.1.1 Bewegung entlang einer

Geraden

Die Kinematik hat die mathematische Be-
schreibung der Bewegung materieller Körper
im Raum zum Inhalt. In der Kinematik werden
keine Aussagen über das Zustandekommen
von Bewegungen gemacht. Dies ist Gegen-
stand der Dynamik (vgl. Abschnitt 1.2).

Häufig ist es gerechtfertigt, die Ausdehnung
der Körper zu vernachlässigen (Modellvorstel-
lung des Massenpunkts)1). Vorteil: Rotation
und Verformung der Körper brauchen nicht
berücksichtigt zu werden.

Erfolgt die Bewegung entlang einer Geraden
im Raum, so genügt es, zu jedem Zeitpunkt
t die jeweilige Ortskoordinate x anzugeben.
Trägt man x über t auf, erhält man das Weg-
Zeit-Diagramm der Bewegung (Abb. 1.1).

t

x

f(t)

Abb. 1.1: Weg-Zeit-Diagramm

Offenbar ist x eine Funktion der Zeit:

x = f (t),

in Kurzform schreibt man x(t).

Die mittlere Geschwindigkeit im Zeitinter-
vall ∆t := t2 − t1 ist definiert durch

v̄ :=
∆x
∆t
.

Die im Zeitintervall ∆t zurückgelegte Weg-
strecke∆x := x(t2)−x(t1) heißtVerschiebung
(Abb. 1.2).

t

x

x(t2)

x(t1)

t1 t2

Abb. 1.2: Zeitintervall und Verschiebung. Man
beachte, dass die Verschiebung für x(t2) < x(t1)
negativ ist.

Da sich die Geschwindigkeit eines Körpers
i. Allg. ständig ändert, führt man die Momen-
tangeschwindigkeit ein2):

v :=
dx
dt
= Ûx(t).

Erläuterung: Hohe Geschwindigkeit bedeu-
tet anschaulich, dass sich der Aufenthaltsort

1) Modelle sind in der Physik von zentraler Bedeutung. Was man in der Physik unter einem Modell versteht, ist in
Anhang A erläutert.

2) Ein Punkt über dem Formelzeichen bedeutet ‚Ableitung nach der Zeit‘. Der Begriff ‚Ableitung‘ wird in Anhang
B.3 kurz erläutert.
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(die Koordinate) schnell ändert. Im Weg-Zeit-
Diagramm ist das dort der Fall, wo die Funk-
tion steil ansteigt. Der Anstieg ist durch die
Ableitung von x nach der Zeit t gegeben.

Wenn v(t) = v0 = const, spricht man von einer
gleichförmigen Bewegung, andernfalls von
einer ungleichförmigen Bewegung.

Genauso wie die Koordinate, kann man
die Geschwindigkeit über der Zeit auf-
tragen (Geschwindigkeits-Zeit-Diagramm,
Abb. 1.3).

t

v

Abb. 1.3: Geschwindigkeits-Zeit-Diagramm

Insbesondere in der Dynamik zeigt sich, dass
die zeitliche Änderung der Geschwindigkeit
von großer Wichtigkeit ist. Analog zur mittle-
ren Geschwindigkeit wird daher die mittlere
Beschleunigung

ā :=
∆v

∆t

(∆v := v(t2) − v(t1)) und zur Momentan-
geschwindigkeit die Momentanbeschleuni-
gung eingeführt:

a :=
dv
dt
= Ûv(t).

Wegen v(t) = dx
dt gilt

a =
d
dt

(
dx
dt

)
=

d2x
dt2 = Üx.

Bekanntlich ist die Umkehrung der Differen-
ziation die unbestimmte Integration1). Daher
erhält man v(t) aus a(t), indem man die Be-
schleunigung über die Zeit integriert:

v(t) =
∫

a(t)dt .

Ebenso erhält man x(t) durch Integration über
v(t), also

x(t) =
∫

v(t)dt.

Symbolisch kann man schreiben

x(t)
 v(t)
 a(t).

Dabei steht⇀ für die Ableitung nach der Zeit
und↽ für die Integration über die Zeit. Bei
jeder unbestimmten Integration tritt eine Inte-
grationskonstante auf. Diese muss aus einer
Anfangsbedingung bestimmt werden.

Bewegungen mit a(t) = a0 = const heißen
gleichförmig beschleunigt, alle anderen un-
gleichförmig beschleunigt. Beispielsweise
fallen in der Nähe der Erdoberfläche alle Ge-
genstände mit der konstanten Beschleunigung
g = 9,81 m/s2 (Erdbeschleunigung), sofern
die Wirkung des Luftwiderstands vernachläs-
sigt werden kann.

Für gleichförmig beschleunigte Bewegungen
erhält man durch integrieren und unter Aus-
nutzung der Anfangsbedingungen v(t0) = v0
(Anfangsgeschwindigkeit) und x(t0)= x0 (Teil-
chenkoordinate zur Anfangszeit t0)

v(t) = a0(t − t0) + v0,

x(t) =
1
2

a0(t − t0)2 + v0(t − t0) + x0.

Aufgaben

1.1.1-1 Das Weg-Zeit-Diagramm einer Bewe-
gung habe die Form eines Trapezes. Zeichnen
Sie das Geschwindigkeits-Zeit-Diagramm!

1) vgl. Abschnitt B.3 im Anhang
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1.1.1-2 Für einen fallenden Gegenstand gilt
näherungsweise x(t) = bt2 mit b = 5 m/s2.
a) Bestimmen Sie seinen Ort für t = 1 s, 2 s, 5 s
und die Momentangeschwindigkeit zur Zeit
t = 5 s.
b) Wie groß ist die mittlere Geschwindigkeit
in den ersten fünf Sekunden?
c) Berechnen Sie die momentane Beschleuni-
gung zur Zeit t = 5 s.

Lösung: v = 50 m/s, v̄ = 25 m/s, a = ā =
10 m/s2

1.1.1-3 Ein Teilchen befindet sich zur Zeit t =:
t0 = 2 s am Ort x(t0) = 0,1 m. Es bewegt sich
mit v(t) = v0 cos(ωt), v0 = 2 m/s, ω = 4 s−1.
Gesucht: a(t) und x(t) für t =: t1 = 10 s.

Lösung: −5,96 m/s2, −2,21 cm

1.1.1-4 Leiten Sie den allgemeinen Ausdruck
für v(t) und x(t) bei der gleichförmig beschleu-
nigten Bewegung her!

1.1.1-5 Ein Auto bremst mit einer Verzöge-
rung von 6,5 m/s2 und legt bis zum Stillstand
45 m zurück. Wie groß sind Bremszeit und
Anfangsgeschwindigkeit?

Lösung: 3,72 s, 24,2 m/s

1.1.1-6 Eine Rakete beschleunige in der Start-
phase gemäß a = ct mit c = 3 m/s3. Geben Sie
ihre Geschwindigkeit und die zurückgelegte
Wegstrecke 5 s nach dem Start an.

Lösung: 37,5 m/s, 62,5 m

1.1.1-7 Die Geschwindigkeit eines Körpers,
der durch ein viskoses Medium fällt, ist
v(t) = vL(1 − e−Pt ). Welche Strecke legt eine
Stahlkugel in Glycerin in der Zeit t = 1/P zu-
rück, wenn sie anfänglich ruhte (vL = 7 cm/s,
P = 140 1/s)?

Lösung: 0,184 mm

1.1.2 Bewegung im Raum

Zur eindeutigen Bestimmung der Lage eines
Massenpunkts im Raum sind statt einer Koor-
dinate drei anzugeben. Diese fasst man zweck-
mäßigerweise in einem Vektor1) zusammen
(Ortsvektor). Bewegt sich der Massenpunkt
durch den Raum, so lässt sich seine Bahnkurve
beschreiben, indem man zu jedem Zeitpunkt
t den Ortsvektor ®r(t) angibt. Die Bahnkurve
(Trajektorie), zunächst für die Bewegung in
der Ebene, hat also die Form

®r(t) :=

(
x(t)
y(t)

)
.

r(t1)
→

r(t2)
→

Abb. 1.4: Spiralförmige Bewegung. Die Bahnkur-

ve kann z. B. in der Form ®r(t) = at

(
sin(ωt)
cos(ωt)

)
mit

a, ω = const angegeben werden.

Die Geschwindigkeit ist ebenfalls durch einen
Vektor zu beschreiben, den Vektor der Mo-
mentangeschwindigkeit:

®v :=
d®r
dt
= Û®r =

(
Ûx
Ûy

)
.

Dieser Vektor liegt zu jedem Zeitpunkt tan-
gential an der Bahnkurve (vgl. Abb. 1.5).

1) vgl. Abschnitt B.1 im Anhang
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→

r

→

O

v

Abb. 1.5: Vektor der Momentangeschwindigkeit

Analog zur geradlinigen Bewegung definiert
man den Vektor der Momentanbeschleuni-
gung:

®a :=
d®v
dt
= Û®v =

(
Ûvx

Ûvy

)
.

Für den Beschleunigungsvektor erweist sich
die folgende Zerlegung in Komponenten als
zweckmäßig (Abb. 1.6):

®a = ®a‖ + ®a⊥.

Dabei heißt ®a‖ Tangential- oder Bahnbe-
schleunigung und ®a⊥ heißtZentripetal- oder
Normalbeschleunigung.

→
→
a

→
a||

a⊥

→

v

Abb. 1.6: Zerlegung des Beschleunigungsvek-
tors in Komponenten parallel und senkrecht zum
Geschwindigkeitsvektor

Geschwindigkeitsänderungen (d. h. Beschleu-
nigungen) setzen sich aus zwei Anteilen zu-
sammen: Änderung des Betrages von ®v (dem
entspricht ®a‖) und Änderung der Richtung von
®v (dem entspricht ®a⊥).

Eine wichtige spezielle Bewegungsform in
der Ebene ist die gleichförmig beschleunigte
Bewegung, definiert durch ®a = ®a0 = const. So-
lange man Luftwiderstand, Tragflächeneffekte
(dynamischer Auftrieb) etc. vernachlässigen

kann, entsprechenWurf- und Geschossbahnen
einer gleichförmig beschleunigten Bewegung
mit

®a0 =

(
0
−g

)
,

wenn ein Koordinatensystem mit nach oben
weisender y-Achse gewählt wird.

Geschwindigkeitsvektor und Bahnkurve der
gleichförmig beschleunigten Bewegung wer-
den durch

®v(t) = ®a0(t − t0) + ®v0,

®r(t) =
1
2
®a0(t − t0)2 + ®v0(t − t0) + ®r0

beschrieben.

Eine weitere wichtige Bewegungsform ist die
Kreisbewegung. In Abbildung 1.7 sind zwei
Punkte P1 und P2 auf einer rotierenden Schei-
be dargestellt.

ϕ

x

y

P2

s1

s2
P1

Abb. 1.7: Kreisbewegung

Offenbar legen sie in gleichen Zeiten verschie-
dene Strecken zurück. Der je Zeiteinheit über-
strichene Winkel ϕ (Drehwinkel) ist aber für
beide Punkte gleich. Wählt man ein Koordi-
natensystem, dessen Ursprung im Zentrum
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der Drehung liegt, so hat der Betrag des Orts-
vektors eines beliebig ausgewählten Punktes
einen konstanten Wert: |®r | =: R = const1). Die
Bahnkurve hat die Form

®r =

(
R cos ϕ(t)
R sin ϕ(t)

)
.

Ableiten nach der Zeit ergibt die Geschwin-
digkeit

®v = Rω®e®v .

Hierbei wurde die momentane Winkelge-
schwindigkeit

ω(t) := Ûϕ(t)

und der Einheitsvektor2) in Richtung von ®v

®e®v :=

(
− sin ϕ

cos ϕ

)
eingeführt. ω gibt an, welchen Winkel der
Ortsvektor pro Zeiteinheit überstreicht.

Man überzeugt sich leicht, dass die Bahn-
geschwindigkeit, das ist der Betrag des Ge-
schwindigkeitsvektors, mit ω gemäß

v(t) = Rω(t)

zusammenhängt. Das heißt: je weiter der be-
trachtete Punkt von der Drehachse entfernt ist,
umso schneller bewegt er sich.

Differenzieren des Geschwindigkeitsvektors
nach der Zeit liefert den Beschleunigungsvek-
tor
®a = Rα®e®v − Rω2 ®e®r,

wobei die momentane Winkelbeschleuni-
gung

α(t) := Ûω(t)

und der radial nach außen weisende Einheits-
vektor

®e®r :=

(
cos ϕ
sin ϕ

)

eingeführt wurden. Der erste Term in der For-
mel für ®a entspricht der Tangentialbeschleuni-
gung, der zweite demzufolge der Zentripetal-
beschleunigung.

Diemittlere Winkelgeschwindigkeit im Zei-
tintervall ∆t := t2 − t1

ω̄ :=
∆ϕ

∆t
,

und die mittlere Winkelbeschleunigung

ᾱ :=
∆ω

∆t

sind in gewohnter Weise definiert.

Bei der gleichförmigen Kreisbewegung
(ω =: ω0 = const) ist der Zusammenhang zwi-
schen Zeit und Drehwinkel durch

ϕ(t) = ω0(t − t0) + ϕ0

gegeben. Die Anzahl der Umläufe pro Zeitein-
heit heißt Drehzahl oder Drehfrequenz. Für
sie gilt

f :=
1
T
=
ω0
2π

([ f ] = s−1 =: Hertz (Hz)). Dabei ist T die Pe-
riode der Kreisbewegung, d. h. die Zeitdauer
für einen vollständigen Umlauf.

Auch für die gleichförmig beschleunigte
Kreisbewegung gelten Formeln analog zu
denen der geradlinigen Bewegung. Die Ma-
thematik ist in beiden Fällen die gleiche – nur
die Formelsymbole und deren physikalische
Bedeutung sind unterschiedlich:

ω(t) = α0(t − t0) + ω0

ϕ(t) =
1
2
α0(t − t0)2 + ω0(t − t0) + ϕ0.

Erfolgt die Bewegung nicht in einer Ebene,
sondern im Raum, so ist die Hinzunahme einer

1) R und ϕ heißen Polarkoordinaten (vgl. Abschnitt B.5 im Anhang)
2) vgl. Abschnitt B.1 im Anhang
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weiteren Koordinate notwendig. Die Bahnkur-
ve (Trajektorie) hat die Form:

®r(t) :=
©­­«

x(t)
y(t)
z(t)

ª®®¬ .

z

x

y

→

r(t1)

Abb. 1.8: Spiralförmige Bewegung. Bahnkurve:

®r(t) =
©­­«

R cos(ωt)
R sin(ωt)

bt

ª®®¬ mit R, b, ω = const. Die ersten

beiden Komponenten entsprechen einer gleichför-
migen Kreisbewegung.

Auch ®v und ®a müssen um eine Komponente
erweitert werden.

Kreisbewegungen können im Raum um unter-
schiedliche Achsen erfolgen. Daher beschreibt
man die Winkelgeschwindigkeit durch einem
Vektor, dessen Betrag mit Ûϕ(t) und dessen
Richtung mit der Richtung der Drehachse
übereinstimmt. Aus dem Ortsvektor ®r und
dem Vektor der Winkelgeschwindigkeit ®ω
lässt sich der Geschwindigkeitsvektor mithilfe
des Kreuzprodukts1) berechnen:

®v = ®ω × ®r .

Konsequenterweise beschreibt man auch die
Winkelbeschleunigung durch einen Vektor.
Dieser ist durch

®α :=
d ®ω
dt

definiert (Vektor der Winkelbeschleuni-
gung).

Aufgaben

1.1.2-1 Ein Teilchen bewegt sich mit der Be-

schleunigung

(
4
3

)
m/s2. Es befindet sich zur

Zeit t = t0 = 0 am Ort x = 4 m und y = 3 m.
Seine Geschwindigkeit ist im gleichen Zeit-

punkt durch

(
2
−9

)
m/s gegeben. Berechnen

Sie
a) seine Geschwindigkeit zur Zeit t = 2 s!
b) seinen Ort zur Zeit t = 4 s,

Lösung:

(
10
−3

)
m/s,

(
44
−9

)
m

1.1.2-2 Die Fallgeschwindigkeit mittelgroßer
Regentropfen beträgt bei Windstille ca. 8 m/s.
Welche Geschwindigkeit hat ein Zug, an des-
sen Wagenfenstern die Tropfen Spuren hin-
terlassen, die um 70◦ von der Senkrechten
abweichen?

Lösung: 79 km/h

1.1.2-3 Vom Dach eines 12 m hohen Hau-
ses wird ein Stein steil nach oben geworfen.
Dieser fällt 6,4 s nach dem Abwurf in 32 m
Entfernung auf den Erdboden. Mit welcher
Anfangsgeschwindigkeit und unter welchem
Winkel wurde er abgeschleudert?

Lösung: 29,94 m/s, 80,4◦

1.1.2-4 Ein Körper wird mit der Anfangsge-
schwindigkeit 35 m/s unter einemWinkel von

1) vgl. Abschnitt B.1 im Anhang
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60◦ abgeschleudert. Bestimmen Sie die Wurf-
weite, Wurfhöhe und Flugdauer!

Lösung: 108,1 m, 46,8 m, 6,18 s

1.1.2-5Mit welcher Geschwindigkeit bewegt
sich ein Punkt auf der Erdoberfläche
a) am Äquator
b) in Hamburg
relativ zum Sternenhimmel? (Erdumfang
ca. 40 000 km, Hamburg liegt auf ca. 54◦
nördliche Breite, Bahnbewegung der Erde etc.
vernachlässigen)

Lösung: ca. 1667 km/h, 980 km/h

1.1.2-6 Bei einer Fluggeschwindigkeit von
420 km/h legt die Nabe der Luftschraube wäh-
rend jeder Umdrehung die Strecke 3,6 m zu-
rück. Welche Drehzahl hat die Luftschraube?

Lösung: 32,4 Hz

1.1.2-7 Ein Elektromotor mit der Drehzahl
4000 min−1 läuft innerhalb von 8 s bis zum
Stillstand aus. Wie viele Umdrehungen führt
er dabei aus?

Lösung: 266,7

1.1.2-8 Ein Teilchen bewege sich auf ei-
ner Kreisbahn gemäß ϕ = at2 + bt (a =
3 rad/s2, b = 2 rad/s). Berechnen Sie die Win-
kelgeschwindigkeit und die Winkelbeschleu-
nigung zur Zeit t = 4 s!

Lösung: 26 rad/s, 6 rad/s2

1.1.2-9 Ein Elektromotor führt innerhalb der
ersten 10 s nach dem Anlassen 280 Umdrehun-
gen aus, wobei die Drehbewegung 5 s gleich-
förmig beschleunigt und danach gleichförmig
ist. Welche Drehzahl hat der Motor erreicht?

Lösung: 37,3 Hz

1.1.2-10Bestimmen Sie den Beschleunigungs-
vektor eines Teilchens, das sich auf der durch

®r(t) =

(
A sin(ωt)

bt3

)
beschriebenen Bahnkurve

bewegt zur Zeit t1 = 10 s (A= 10 cm,ω = 2 s−1

und b = 0,01 m/s3).

Lösung:

(
−0,3652

0,6000

)
m/s2

1.2 Dynamik
1.2.1 Newtonsche Axiome

Wie bereits erwähnt, befasst sich die Kinema-
tik mit der mathematischen Beschreibung von
Bewegungsvorgängen. Die Dynamik ist die
Lehre vom Zusammenhang zwischen Bewe-
gung und deren Ursache, der Kraft. Zu den
zentralen Begriffen Teilchenort, Geschwindig-
keit und Beschleunigung kommen die Begriffe
Kraft und Masse hinzu.

Den Widerstand eines Körpers gegen Bewe-
gungsänderung (d. h. gegen Beschleunigung)
nennt manTrägheit. DasMaß für die Trägheit
heißt Masse. Eine experimentelle Anordnung
zur Bestimmung der Masse ist in Abb. 1.9 dar-
gestellt. Auszumessende und Referenzmasse
werden durch eine Feder beschleunigt.

Je träger ein Körper ist, umso mehr wird er ver-
suchen, seine Anfangsgeschwindigkeit v = 0
beizubehalten. DieMasse einesKörpers ergibt
sich aus

m := m0
v0
v
.

Dabei ist m0 eine Referenzmasse (Kilogramm-
prototyp) und v0 deren Geschwindigkeit. v
ist die Geschwindigkeit des Körpers, dessen
Masse bestimmt werden soll. (Einem Körper,
der mit großer Geschwindigkeit weg gestoßen
wird, wird nach der obigen Formel offenbar
eine kleine Masse zugeschrieben.)

Diese etwas ungewöhnliche Art, die Masse
einzuführen, hat den Vorteil, dass der Zusam-
menhang mit der Trägheit sehr deutlich wird
und außerdem nur Größen verwendet werden,
die vorher definiert worden sind.
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Referenz-

masse

v
v0

Abb. 1.9: Zur Definition der trägen Masse. Eine Feder wird zwischen einem Referenzkörper und dem
Körper, dessen Masse zu bestimmen ist, gestaucht. Beide Körper werden gleichzeitig losgelassen. Dies
kann so eingerichtet werden, dass sie sich in genau entgegengesetzte Richtungen auseinander bewegen.
Reibungseffekte müssen vernachlässigbar klein sein.

Körper gleicher Masse nehmen bei unter-
schiedlicher stofflicher Zusammensetzung ver-
schiedene Volumina ein. Um diesen Sachver-
halt quantitativ zu erfassen, führt man die
Dichte ein. Im einfachsten Fall der homogen1)
aufgebauten Körper ist die Dichte das Verhält-
nis aus Masse und Volumen

ρ :=
m
V
.

Newton2) hatte die Vorstellung, dass sich alle
Erscheinungen der Mechanik (zumindest im
Prinzip) aus wenigen Axiomen3) ableiten las-
sen sollten. Die drei Newtonschen Axiome
lauten:

1. Axiom (Trägheitsgesetz4)) Jeder Körper
verharrt in einem Zustand der Ruhe oder
gleichförmig geradlinigen Bewegung, wenn
er nicht durch einwirkende Kräfte gezwungen
wird, seinen Zustand zu ändern.

Bis Galilei glaubte man, dass alle Gegenstän-
de zur Ruhe kommen, wenn keine äußeren
Kräfte wirken5). Durch Galilei verändert sich
der Standpunkt grundsätzlich: bewegte Kör-
per kommen aufgrund der immer vorhandenen
Reibungskräfte zur Ruhe.

2. Newtonsches Axiom (Dynamisches
Grundgesetz, Aktionsgesetz) Das Dynami-
sche Grundgesetz

®Fres = m®a (**)

kann als Definitionsgleichung für die physi-
kalische Größe Kraft aufgefasst werden. m
und ®a sind zuvor definiert worden. Somit lässt
sich über die Messung der Beschleunigung
schließen, welche resultierendeKraft auf einen
Körper wirkt ([ ®F] = kg m

s2 =: Newton (N)).

Viel bedeutender ist das Dynamische
Grundgesetz in einer anderen Funktion
(Hauptaufgabe der Mechanik): Beachtet
man, dass die Beschleunigung als erste Ab-
leitung des Geschwindigkeitsvektors nach der
Zeit definiert ist, so ist klar, dass (**) als Dif-
ferenzialgleichung6) aufgefasst werden kann.
Wenn die auf einen Körper wirkende Kraft
als Funktion von ®r , ®v, t und evtl. weiterer Va-
riablen gegeben ist und Anfangsbedingungen
der Art ®r(t0) = ®r0, ®v(t0) = ®v0 vorliegen, so lie-
fert die Lösung der Differenzialgleichung ®v(t)
und ®r(t), d. h. die Bahnkurve des Körpers. Die
Bewegung von Körpern lässt sich also mit
mathematischen Mitteln aus den wirkenden
Kräften bestimmen! Im Zusammenhang mit

1) homogen: überall gleich beschaffen
2) Sir Isaac Newton, 1643-1727
3) Axiom: Grundsatz, der ohne Beweis als wahr angenommen wird.
4) geht auf Galileo Galilei,1564 - 1642, zurück
5) Aristoteles, 384 – 322 v. Chr.
6) vgl. Anhang B.4
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diesem Problemkreis wird (**) auch Bewe-
gungsgleichung genannt.

(Hinweis: (**) lässt sich umstellen zu ®a = ®F/m.
Gemäß dem im Abschnitt Kinematik Gesag-
ten erhält man ®r(t) durch zweifaches Integrie-
ren. Wozu braucht man also das Dynamische
Grundgesetz? Das Verfahren mit der Integrati-
on funktioniert nur, wenn die Beschleunigung
als Funktion der Zeit bekannt ist. Dies ist aber
häufig nicht der Fall.)

Das Dynamische Grundgesetz ist die wichtigs-
te Formel der Physik!

Newton hat das Dynamische Grundgesetz in
einer allgemeiner gültigen Form angegeben:

®Fres =
d ®p
dt

mit

®p := m®v (Impuls).

Diese Formel ist auch dann gültig, wenn sich
dieMasse im Laufe der Bewegung ändert, z. B.
beim Start einer Rakete (Treibstoffausstoß).

3. Axiom (Wechselwirkungsgesetz) Übt ein
Körper 1 auf einen anderen Körper 2 eine
Kraft ®F12 aus, so wirkt eine gleich große, aber
entgegen gerichtete Kraft von Körper 2 auf
Körper 1, also

®F12 = − ®F21.

Aufgaben

Hinweis: Auf Körper in der Nähe der Erd-
oberfläche wirkt die Gewichtskraft mg, die
senkrecht nach unten in Richtung Erdmittel-
punkt wirkt (vgl. Abschnitt 1.3.2).

1.2.1-1 Welche Kraft wirkt im Halteseil eines
Aufzugs von 1500 kg Masse beim Anfahren
nach oben/unten, wenn die Beschleunigung in
beiden Fällen 1,5 m/s2 beträgt?

Lösung: ca. 17,0 kN, 12,5 kN

1.2.1-2 Eine Person trägt ein 10 kg schwe-
res Postpaket an einer Schnur (Reißfestigkeit
150 N) und betritt einen Aufzug. Welche Be-
schleunigung darf beim Anfahren des Aufzugs
nicht überschritten werden, damit die Schnur
nicht reißt?

Lösung: 5,19 m/s2

1.2.1-3Auf einen Körper wirke eine konstante
Kraft ®F0. Geben Sie die allgemeine Lösung der
zugehörigen Bewegungsgleichung an (nicht
rechnen, nachdenken!).

1.2.1-4 Die resultierende Kraft auf einen Kör-
per derMassem sei F = F0−kt (F0, k Konstan-
ten, t Zeit). Geben Sie die Teilchenposition als
Funktion der Zeit an!

Lösung: x(t) =
F0
2m

t2 −
k

6m
t3 + v0t + x0

1.2.1-5 Auf einen geöffneten Fallschirm, der
mit der Geschwindigkeit v fällt, wirkt eine
Kraft cv2 entgegen der Bewegungsrichtung.
Wie groß ist die konstante Endgeschwindigkeit
eines Fallschirmspringers?

Lösung:
√

mg/c

1.2.1-6 Ein Auto (m = 1000 kg) fährt mit kon-
stanter Geschwindigkeit (v0 = 120 km/h) auf
einer ebenen Straße. Welche Strecke legt es in-
nerhalb von 20 s zurück, wenn derMotor plötz-
lich ausgekuppelt wird? Welche Geschwindig-
keit hat es 20 s nach dem Auskuppeln?
(Man nehme an, dass der Luftwiderstand und
alle Reibungskräfte näherungsweise durch den
Ansatz FR = −cv2 mit c = 0,8 kg/m beschreib-
bar seien!).

Lösung: 21,7 m/s, 534 m

1.2.1-7 Ein Mann (Masse 75 kg) und ein Kind
(Masse 25 kg) befinden sich auf einem zuge-
frorenen See. Sie ziehen an den Enden eines
Seils. In welchem Verhältnis stehen die Be-
schleunigungen von Mann und Kind?

Lösung: 1 : 3
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1.2.2 Dynamik starrer Körper

Häufig können ausgedehnte Körper näherungs-
weise als starr (d. h. nicht verformbar) ange-
sehen werden (Modellvorstellung des star-
ren Körpers). Die Bewegung starrer Körper
lässt sich als Überlagerung einer Translati-
onsbewegung (der Körper nimmt zu allen
Zeiten zur Anfangslage parallele Lagen ein)
des Schwerpunktes1) und einer Rotationsbe-
wegung um den Schwerpunkt auffassen. Bei
der Behandlung der Bewegungsgesetze spie-
len Kreisbewegungen eine wichtige Rolle, da
alle Bestandteile eines rotierenden Körpers
auf Kreisbahnen umlaufen. Das Dynamische
Grundgesetz kann in eine Form gebracht wer-
den, die zur Behandlung von Kreisbewegun-
gen besonders geeignet ist.

Versucht man einen drehbar gelagerten Körper
in Rotation zu versetzen, so stellt man fest, dass
die erzielte Wirkung (die Winkelbeschleuni-
gung) nicht nur von der aufgewändeten Kraft,
sondern genauso stark vom Abstand Drehach-
se –Wirkungslinie (demHebelarm) der Kraft
abhängt (Abb. 1.10).

Drehachse

A

Wirkungslinie

A

A

~F

~r

b

Abb. 1.10: Drehmoment einer Kraft ®F mit An-
griffspunkt A

Das Produkt aus diesen beiden Einflussfakto-
ren nennt man Drehmoment

M = bF

oder vektoriell

®M := ®r × ®F .

Im Folgenden wird ein Massenpunkt betrach-
tet, der sich unter der Wirkung einer Kraft auf
einer Kreisbahn vom Radius r bewegt. Die
Kraft ®F wird analog zur Beschleunigung in
zwei Komponenten zerlegt (vgl. Abb. 1.11).

→

→
r

→

F||

→
F⊥

→

F

v

Abb. 1.11: Kraftzerlegung bei der Kreisbewe-
gung

Die Zentripetalkraft ®F⊥ wirkt zum Drehzen-
trum hin und ist für die Richtungsänderung
des Geschwindigkeitsvektors ®v verantwortlich.
Offenbar gilt (vgl. Kinematik der Kreisbewe-
gung):

F⊥ = ma⊥ = −mrω2.

Ebenso

F‖ = ma‖ = mrα

und daher

M = rF‖ = mr2α.

Dieser Formel ist zu entnehmen, dass die Win-
kelbeschleunigung umso kleiner ausfällt, je
weiter die Masse von der Drehachse entfernt
ist. Die Trägheit eines Körpers hängt bei Dreh-
bewegungen also nicht nur von der Masse,
sondern auch von deren Abstand zur Drehach-
se ab.

1) Der Schwerpunkt oder Massenmittelpunkt eines Körpers lässt sich experimentell ermitteln, indem man den
Körper nacheinander an mindestens zwei verschiedenen Punkten an einem Faden aufhängt. Denkt man sich den
Faden jeweils nach unten verlängert, so ergibt der Schnittpunkt der Verlängerungslinien die Lage des Schwerpunkts.
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Betrachtet man einen starren Körper, der
aus mehreren näherungsweise punktförmigen
Massen zusammengesetzt ist (vgl. Abb. 1.12),
so gilt die obige Überlegung für jede der Mas-
sen.

ri
→

mi

rj
→

mj

Abb. 1.12: Starrer Körper, der aus punktförmigen
Massen zusammengesetzt ist

Da diese alle mit der selben Winkelgeschwin-
digkeit ω rotieren, gilt

Mres = Jα,

wobei J Massenträgheitsmoment genannt
wird und durch

J :=
∑

alle Teilchen
mir2

i

gegeben ist.

Bei kontinuierlichen Massenverteilungen tritt
in der obigen Formel anstelle der Summe ein
Integral (vgl. Abb. 1.13):

J :=
∫

Volumen

r2 dm.

Wichtig ist, dass das Massenträgheitsmoment
keine feste Eigenschaft des rotierenden Kör-
pers ist, sondern immer nur in Bezug auf eine
bestimmte Drehachse angegeben werden kann.
Für einfache Körper sind Trägheitsmomente
bezüglich verschiedener Achsen tabelliert (vgl.
Tabelle 1.1).

Tabelle 1.1: Massenträgheitsmomente bezüglich einiger Symmetrieachsen einfacher Körper. Die For-
meln für Vollzylinder und Vollkugel sind als Spezialfälle enthalten. Auch das Trägheitsmoment eines
langen, dünnen Stabes bezüglich einer Schwerpunktachse senkrecht zur Stabachse lässt sich leicht
ablesen.

Quader Hohlzylinder Hohlkugel

1
12

m(a2 + b2)
1
2

m(R2 + r2) für A1

1
4

m(R2 + r2 +
1
3

l2) für A2

2
5

m
R5 − r5

R3 − r3

b

a

A2

A1

R
r

l

r

R
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r
→

dm

Abb. 1.13: Starrer Körper bei kontinuierlicher
Massenverteilung

Für andere Achsen kann das Trägheitsmoment
häufig mithilfe des Steinerschen Satzes be-
rechnet werden: Das Trägheitsmoment eines
Körpers der Masse m bezüglich einer Achse
A sei JA. Das Trägheitsmoment des Körpers
bezüglich der Achse, die durch den Körper-
schwerpunkt S und parallel zu A verläuft, sei
JS (vgl. Abb. 1.14). Haben die beiden Achsen
den Abstand a voneinander, so gilt

JA = JS + ma2 .

S

A

a

Abb. 1.14: Zwei zueinander parallele Rotationsa-
chen im Abstand a. Eine der beiden Achsen geht
durch den Schwerpunkt des Körpers.

Betrachtet man Tabelle 1.2, so stellt man fest,
dass zu jedem Ausdruck in der linken Spalte
ein ähnlicher Ausdruck in der rechten Spalte
gehört – die Formeln für translatorische Bewe-
gungen und für Rotationsbewegungen weisen
eine große formale Ähnlichkeit auf.

Zum Beispiel lautet das Dynamische Grund-
gesetz der Drehbewegung in vektorieller Form

®Mres := J ®α.

Als Gegenstück zum Impuls wird derDrehim-
puls eingeführt:

®L := J ®ω

Tabelle 1.2: Translations- und Rotationsgrößen. Der Punkt bedeutet wie üblich die Ableitung nach der
Zeit.

Translationsgröße Rotationsgröße
Ortskoordinate x Drehwinkel ϕ

Geschwindigkeit v = Ûx Winkelgeschwindigkeit ω = Ûϕ

Beschleunigung a = Ûv Winkelbeschleunigung α = Ûω

Masse m Massenträgheitsmoment J
Impuls p = mv Drehimpuls L = Jω
Kraft F = ma = Ûp Drehmoment M = Jα = ÛL
Arbeit dW = Fdx Arbeit dW = Mdϕ

kinetische Energie Ekin =
1
2

mv2 Rotationsenergie Erot =
1
2

Jω2

Leistung P = Fv Leistung P = Mω


