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Thermodynamics of Pure Fluids

First of all, let us introduce the notion of the thermodynamic state, or the
thermodynamic system, which is the fundamental concept of thermodynamic
formalism. The thermodynamic state is a primitive concept, the existence of
which is formally postulated but is not derived from other concepts. As with any
other primitive concept, the thermodynamic state cannot be strictly defined,
but should be understood as an idealized physical object whose contents are
in internal equilibrium, with zero fluxes of all physical quantities inside it and
zero fluxes between this object and the surrounding world. Consequently, this
object is homogeneous in space and does not evolve in time, such that the spatial
gradients and the time derivatives are zero. Therefore, the concepts of space and
time become useless for it. This is why one can say that a thermodynamic system
exists outside of space and time.

A thermodynamic state is determined by parameters of state that are also
primitive concepts, not strictly defined but understood as the minimal complete
set of parameters capable of describing all the possible thermodynamic states.
Usually they are selected as pressure P, temperature T , volume V , and mole
fractions of internal components ck . Instead of volume V we use molar volume
𝑣 = V∕N , where N is the number of moles.

In this chapter, all the fluids are considered as thermodynamic systems, i.e. they
are always in equilibrium.

The condition of the equilibrium imposes some constraints on the variation
of thermodynamic parameters, which cannot be arbitrary. These constraints are
formulated mathematically in the form of equations between the parameters of
state. They are as follows:

– Equation of state (EOS), for a single-phase one-component fluid,
– EOS and mixing rules, for a single-phase multicomponent fluid,
– Equilibrium equation and EOS, for multiphase one-component fluid,
– Equilibrium equations, EOSs, and mixing rules, for multiphase multicompo-

nent fluid.
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2 1 Thermodynamics of Pure Fluids

1.1 Equilibrium of Single-phase Fluids – Equation
of State

A single-phase fluid in equilibrium is completely described by its EOS. An EOS
is the result of the homogenization of a physical system consisting of a statistical
ensemble of particles (molecules) assumed to be in equilibrium between them
and with the external world.

1.1.1 Admissible Classes of EOS

The condition of the equilibrium is stronger than that of stability. And, any
thermodynamic system must be necessarily stable. Then any EOS should be
consistent with the basic thermodynamic principle which concerns the stability
of a single-phase state. It says that a single-phase system is stable if and only if
two conditions are satisfied:(

𝜕P
𝜕V

)
T
< 0, CV > 0 (1.1)

where CV is the isochoric calorific capacity: CV = (𝜕Q∕𝜕T)V , Q being the heat
transmitted to the examined system. The second inequality means that the heat
transmitted to the body can only augment its temperature, which is the conse-
quence of the second principle of thermodynamics. For an isolated system, this
condition becomes useless.

Consequently, an EOS for a single-phase fluid must describe a continuous
monotonically decreasing function P = P(V ) (at any fixed temperature T). The
best-known example of such an EOS is that of the ideal gas, which results from
statistical physics:

P = NRT∕V = RT∕𝑣 (1.2)
where 𝑣 = V∕N is the molar volume, N is the number of moles, and
R = 8.3144621 J⋅mol−1K−1 is the universal gas constant.

The ideal gas means the fluid which has particles of zero size and zero energy
of interaction between the particles.

If the condition of stability (1.1) is not satisfied, then this means that
single-phase state is impossible, and the system is multiphase.

If we desire that the same EOS could be able to describe two different
single-phase fluids (liquid and gas), then its solution should necessarily cross the
two-phase states of gas–liquid coexistence. Then, in this domain, the function
P(𝑣) describing the single-phase states should behave as an unstable function
(monotonically increasing). The inverse function 𝑣(P) should then have a
nonuniqueness in that domain, as shown in Figure 1.1.

In the domain of nonuniqueness shown in Figure 1.1, the function 𝑣(P) has
three different solutions for a fixed pressure.

Such a behavior is typical for a cubic polynomial with respect to the volume 𝑣,
which has three different zeros. Such a cubic EOS has been obtained naturally by
van der Waals (vdW) as the simplest generalization of the ideal EOS.

The main cubic EOS used in practice are vdW, Peng–Robinson, and
Soawe-Redlish-Kwong (SRK) EOS, (Prausnitz, Lichtenthaler, and de Azevedo
(1999)), (Sandler (1999)), and (Tester (1996)).
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Figure 1.1 Admissible trajectory of EOS capable of
describing the thermodynamic state of gas and liquid.

P

υ

1.1.2 van der Waals EOS

The vdW EOS has the form:

P = RT
𝑣 − b

− a
𝑣2 , (1.3)

where coefficients a and b are given in Table 1.1 (Weast 1972).
These coefficients are fit with experimental data to calculate the gas phase.
If we would like to use this equation in the vicinity of the critical point, then

parameters a and b can be calculated from the exact relationships obtained from
the properties of the critical point:

a =
27(RTc)2

64Pc
, b =

RTc

8Pc

where Pc and Tc are the critical pressure and temperature.
vdW EOS was obtained from the ideal EOS by replacing ideal properties by

real ones. First of all, we replace the particles with the zero energy of interaction
between them by interacting particles. In the first approximation, the energy of
interaction is inversely proportional to the volume: ∼ −1∕V (the higher the vol-
ume the lower the energy, the lower the volume the higher the energy). Then the
internal energy is U = Uideal − A∕V , where Uideal is the energy of the ideal gas
(the kinetic energy of particles) and A is a parameter. Then the pressure, defined
as −𝜕U∕𝜕V , becomes P = Pideal − A∕V 2, where Pideal is the pressure of the ideal
gas defined as (1.2).

Secondly, we take into account the finite size of particles, b. The volume which
is accessible to the fluid is 𝑣 − b, but not 𝑣. Then we obtain P = RT∕(V∕N − b) −
A∕V 2, which is the vdW EOS.

1.1.3 Soave-Redlish-Kwong EOS

The SRK EOS is the empirical generalization of the vdW EOS:

P = RT
𝑣 − b

− a(T , 𝜔)
𝑣(𝑣 + b),

(1.4)
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Table 1.1 Parameters of the van der Waals equation of state.

a b Pc Tc

(Pa⋅m6 mol−2) (m3 mol−1) (bar) (K)

He 0.00345 23.71 × 10−6 2.26 5.2
H2 0.0247 26.61 × 10−6 12.80 33.2
CO2 0.3637 42.69 × 10−6 72.90 304.13
CO 0.1505 39.85 × 10−6 34.5 132.9
H2S 0.4544 43.39 × 10−6 90.04 373.1
H2O 0.5573 30.52 × 10−6 218.1 647.3
N2 0.1408 39.1 × 10−6 33.9 126.19
O2 0.1378 31.8 × 10−6 50.1 154.58
Air (80% N2, 20% O2) 0.1358 36.4 × 10−6

CH4 0.225 42.8 × 10−6 45.8 190.56
C2H6 0.5562 63.8 × 10−6 48.20 305.33
C3H8 0.8779 84.45 × 10−6 42.01 369.83
C4H10 − n 1.393 116.8 × 10−6 38.0 425.13
C4H10 − i 1.336 116.8 × 10−6 35.82 407.82
C5H12 1.926 146.0 × 10−6 33.7 469.7
C6H14 2.471 173.1 × 10−6 29.94 507.85
C7H16 3.089 203.8 × 10−6 27.4 540.2
C8H18 3.784 237.2 × 10−6 24.9 568.7
C9H20 4.511 20.2 × 10−6 24.9 568.
C10H22 5.288 305.1 × 10−6 21.1 617.7
C15H32 9.650 485.7 × 10−6 14.80 707.0

Table 1.2 Pitzer’s acentric factor.

He Ar H2 CO2 CO N2 O2 H2O CH4 C2H6 C3H8

𝜔 −0.390 0.000 −0.220 0.228 0.049 0.040 0.022 0.344 0.010 0.100 0.152

C4H10 − n C4H10 − i C5H12 C6H14 C7H16 C8H18 C9H20 C10H22 C12H26

𝜔 0.193 0.176 0.251 0.296 0.350 0.394 0.490 0.562

where a(T , 𝜔) = 𝛼[1 + (0.48508 + 1.55171𝜔 − 0.156613𝜔2)(1 −
√

T∕Tc)]2, 𝛼 =
0.427480 R2T2

c

Pc
, and b = 0.086640 RTc

Pc
, 𝜔 is the Pitzer’s acentric factor responsible

for the degree of nonsphericity of molecules. The acentric factor is zero for all
spherical molecules. Several examples of nonspherical molecules are given in
Table 1.2.
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1.1.4 Peng–Robinson EOS

The Peng–Robinson EOS is

P = RT
𝑣 − b

− a(T , 𝜔)
𝑣2 + 2b𝑣 − b2 , (1.5)

where a(T , 𝜔) = 𝛼[1 + m(1 −
√

T∕Tc)]2, 𝛼 = 0.45724 R2T2
c

Pc
, b = 0.07780 RTc

Pc
, 𝜔 is

the Pitzer’s acentric factor, and m =
{

0.37464 + 1.54226𝜔 − 0.26992𝜔2, 𝜔 ≤ 0.49
0.379642 + 1.48503𝜔 − 0.164423𝜔2, 𝜔 > 0.49

1.1.5 Mixing Rules for Multicomponent Fluids

For single-phase mixtures, the EOSs are assumed to keep the same form, but the
efficient parameters a, b, and 𝛼 are calculated using some rules of averaging over
all the components, which are called the mixing rules.

For VdW, SRK, and Peng–Robinson EOSs, the mixing rules are identical:

a =
n∑

k=1

n∑
j=1

akjCkCj, b =
n∑

k=1
bkCk , akk = ak , akj = (1 − kkj)

√
akaj

where Ck is the mole fraction of component k in the mixture.
Coefficients of binary interaction, kkj = kjk , are determined in Table 1.3.

1.2 Two-phase Equilibrium of Pure Fluids

For two-phase fluids, the EOS for each phase is not sufficient to describe the equi-
librium. The main equilibrium relationships are formulated through chemical

Table 1.3 Coefficients of binary interaction, kkj .

N2 CO2 H2S CH4 C2H6 C3H8 C4H10 C5H12 C6H14 C7H16 C8H18 C9H20 C10H22

N2 0 0 0.13 0.025 0.01 0.09 0.095 0.1 0.11 0.115 0.12 0.12 0.125
CO2 0 0.135 0.105 0.130 0.125 0.115 0.115 0.115 0.115 0.115 0.115 0.115
H2S 0 0.07 0.085 0.08 0.075 0.07 0.07 0.6 0.6 0.6 0.055
CH4 0 0.005 0.01 0.025 0.03 0.03 0.035 0.04 0.04 0.045
C2H6 0 0.005 0.01 0.01 0.02 0.02 0.02 0.02 0.02
C3H8 0 0 0.002 0.01 0.005 0.005 0.005 0.005
C4H10 0 0.005 0.005 0.005 0.005 0.005 0.005
C5H12 0 0 0 0 0 0
C6H14 0 0 0 0 0
C7H16 0 0 0 0
C8H18 0 0 0
C9H20 0 0
C10H22 0
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potential, which is the specific energy of molecular interaction per one molecule.
As this is the intensive parameter, it can depend only on intensive thermodynamic
parameters of state such as pressure, temperature, and fluid composition. Conse-
quently, we start this chapter with the general relationships which can be obtained
for the chemical potential in terms of these thermodynamic parameters.

Such a relationship for the chemical potential can be obtained in two different
ways:

– By developing a differential equation for the chemical potential directly from
its definition through the Gibbs free energy; or

– By using the property of the homogeneity of the free energy with respect to the
number of particles N .

1.2.1 Pseudo-liquid/pseudo-gas and True liquid/gas

Before determining the equilibrium conditions between a gas and a liquid, we
should introduce the definition of gas and liquid in terms of intensive parameters
used in thermodynamics: P, 𝑣,T . As long as any phase is defined only by its EOS,
we can introduce the concept of pseudo-gas and pseudo-liquid in the following
way:

The pseudo-liquid and the pseudo-gas: they are hypothetical fictitious fluids,
each of them being defined only by a formal EOS (𝑣 = 𝑣(P,T), or P = P(𝑣,T)),
and each of them exists formally at any P,T . The difference between the
pseudo-gas and the pseudo-liquid is determined only by the different EOSs
used for them. If we use the same EOS for both phases, then the pseudo-gas
and the pseudo-liquid are identical at all P,T .
Along with pseudo-gas and pseudo-liquid, we can also introduce the concepts
of the following:

The true coexisting (equilibrium) gas and liquid: they are the fluids which are
determined by the system of EOS and the phase equilibrium equations. It will
be shown that, for a fixed T , the true gas and liquid have the same pressure,
but differ in molar volumes: 𝑣min for liquid and 𝑣max for gas.

The true single-phase gas and true single-phase liquid: they are the fluids which are
determined by EOS only and exist outside the two-phase coexistence domain,
such that gas exists at 𝑣 > 𝑣max, while liquid exists at 𝑣 < 𝑣min, for a given T .

So the true phases exist in some limited domains, while the pseudo-phases exist
everywhere.

The pseudo-phases do not exist in reality; they are some purely mathematical
objects, but are necessary to formulate the equilibrium equations.

1.2.2 Equilibrium Conditions in Terms of Chemical Potentials

The equilibrium conditions for gas and liquid coexistence result from the
minimization of the fluid energy or from the maximization of fluid entropy. Let
us examine an isolated system consisting of a pseudo-gas and a pseudo-liquid
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defined by their EOSs (different or identical). The differential thermodynamic
relationship, which defines the internal energy U of each phase, is

dUi = TidSi − PidVi + 𝜇idNi, i = g, l

where S is the entropy.
For an isolated system, the total internal energy U = Ug + Ul, the total volume

V = Vg + Vl, and the total number of particles N = Ng + Nl are constant. Then
dVg = −dVl, dUg = −dUl, dNg = −dNl, and we obtain for the total entropy of the
system:

dS = dSg + dSl =
(

1
Tg

− 1
Tl

)
dUg +

(
1
Pg

− 1
Pl

)
dVl +

(
𝜇g

Tg
−

𝜇l

Tl

)
dNg .

In the equilibrium, the entropy of an isolated system reaches the maximum;
then dS = 0, which yields the equilibrium equations in the following form:

Pg = Pl ≡ P, Tg = Tl ≡ T , 𝜇g(P,T) = 𝜇l(P,T) (1.6)

The last relationship in (1.6) is not an identity, i.e. it cannot by satisfied at any
P and T , but is an equation which determines a unique function

P = Psat(T) (1.7)

which is the equilibrium gas–liquid curve, or the curve of gas–liquid coexistence.
Pressure (1.7) is called the saturation pressure.

The physical meaning of (1.6) follows from the meaning of the chemical poten-
tial 𝜇k , which is the energy of interaction of the molecules of type k with all other
molecules of the mixture, per one molecule k (“the specific energy”). Then (1.6)
says the equilibrium is reached when the specific energy of interaction in the gas
phase is the same as that in liquid phase.

The objective of the phase equilibrium theory consists exactly in constructing
the coexistence curve (1.7) for different models (EOSs) of gases and liquids.

1.2.3 Explicit Relationship for Chemical Potential

Let us use the definition of the free Gibbs energy G:

dG ≡ −SdT + V dP + 𝜇dN , (1.8)

where S is the entropy and N is the number of moles. Then we obtain the defini-
tion for chemical potential:

𝜇 =
(
𝜕G
𝜕N

)
T ,P

, V =
(
𝜕G
𝜕P

)
T ,N

. (1.9)

Assuming that the Gibbs energy is a continuous and differentiable function
of its arguments, we can use the property of commutation for the operation of
differentiation:(

𝜕

𝜕P

(
𝜕G
𝜕N

)
T ,P

)
T ,N

=
(

𝜕

𝜕N

(
𝜕G
𝜕P

)
T ,N

)
T ,P
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Then:(
𝜕𝜇

𝜕P

)
T ,N

= 𝑣. (1.10)

The value 𝑣 =
(
𝜕V
𝜕N

)
T ,P

is the molar volume (m3 mol−1).
Chemical potential and molar volume are intensive parameters; they cannot

then depend on the particle number N . Then Equation (1.10) becomes{
𝜕𝜇(P,T)

𝜕P
= 𝑣(P,T),

𝜇|P=P∗
= 𝜇(P∗,T)

(1.11)

where the second relationship represents the initial condition taken at a special
point P∗ at which the chemical potential is known a priori (frequently P∗ = Pat).
The integration of (1.11) leads to

𝜇(P,T) = ∫
P

P∗

𝑣(P,T)dP + 𝜇(P∗,T) (1.12)

or if we change the variables of integration (integrating by parts):

𝜇(P,T) = 𝑣P − 𝑣∗P∗ − ∫
𝑣

𝑣∗

P(𝑣,T)d𝑣 + 𝜇(P∗,T), (1.13)

where 𝑣∗ = 𝑣(P∗).
Another method can be used to obtain the same relationship for the chemical

potential, which is based on the homogeneity of the Gibbs free energy. It leads
directly to the explicit algebraic relationship without obtaining the differential
equation (1.11). This method is presented in Appendix A.

In particular, for an ideal gas, using (1.12) and the EOS (1.2), we obtain

𝜇(P,T) = RT ln P
P∗

+ 𝜇(P∗,T) (1.14)

Chemical potential for cubic equations, obtained from (1.13), is given in
Appendix B.

1.2.4 Equilibrium Conditions in Terms of Pressure and Volumes

The equilibrium condition that results from (1.10) and (1.12) is

∫
P

P∗

𝑣g(P,T)dP + 𝜇g(P∗,T) = ∫
P

P∗

𝑣l(P,T)dP + 𝜇l(P∗,T) (1.15)

which should be complemented with two EOSs for two pseudo-phases:

𝑣g = 𝑣g(P,T), and 𝑣l = 𝑣l(P,T) (1.16)

(we can only operate with pseudo-phases until the volumes 𝑣min and 𝑣max of true
coexisting gas and liquid are defined).
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Let us determine the pseudo-liquid and the pseudo-gas by the same EOS; then
the chemical potentials 𝜇g(P∗,T) and 𝜇l(P∗,T) are identical, since they corre-
spond to the same pseudo-fluid. Then, for any P∗, we obtain from (1.15):

∫
P

P∗

[𝑣g(P,T) − 𝑣l(P,T)]dP = 0 (1.17)

The solution to this equation is the pressure of gas–liquid coexistence: P = Psat.
All cubic EOSs are formulated explicitly with respect to function P(𝑣) and not

𝑣(P); this is why it is preferable to change the variables of integration in (1.17),
integrating it by parts: (𝑣g − 𝑣l)Psat − (𝑣∗ − 𝑣∗)P∗ − ∫ 𝑣g

𝑣∗
P(𝑣)d𝑣 + ∫ 𝑣l

𝑣∗
P(𝑣)d𝑣 = 0,

where 𝑣∗ = 𝑣(P∗). Definitely, we obtain the system of the equilibrium equation
and two EOSs:⎧⎪⎨⎪⎩

(𝑣g − 𝑣l)Psat = ∫
𝑣g

𝑣l

P(𝑣)d𝑣,

𝑣g = maximal solution of Psat = P(𝑣),
𝑣l = minimal solution of Psat = P(𝑣)

(1.18)

This system of three equations determines a unique nontrivial solution in terms
of pressure Psat of gas–liquid coexistence and two different volumes 𝑣g and 𝑣l of
coexisting phases. The existence of this nontrivial solution is shown in the next
section.

1.2.5 Solvability of the Equilibrium Equation – Maxwell’s Rule

Let us consider a cubic EOS which has the typical form presented in Figure 1.2.
Let us select points A and B in such a way that the surfaces AGM and MHB are
equivalent. Then the coordinates of points A and B, i.e. the pressure Psat and the
volumes 𝑣min and 𝑣max, represent the desired nontrivial solution to the problem
of gas–liquid coexistence.

Proof : The left-hand side of (1.18) is equal to the surface of the rectangle AFEB.
The right-hand side is the surface of the area FAGMHBE under the curve.
These areas are identical, as the areas of AGM and MHB are equivalent. Then
Equation (1.18) is satisfied, if 𝑣g = 𝑣max and 𝑣l = 𝑣min. ◽

Figure 1.2 Graphical illustration of the solvability
of the equilibrium equation.

υ
υmin υmax
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F E
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P

ν

Figure 1.3 The true phase diagram of a one-component
fluid.

Corollaries:

(1) The cubic (with respect to the volume) EOSs, which have the typical shape
presented in Figure 1.2, are capable of describing the nontrivial gas–liquid
coexistence.

(2) The line AB, corresponding to the nontrivial gas–liquid coexistence and
called Maxwell’s line, is constructed in such a way that the surfaces AGM
and MHB would be identical. Such a graphical technique is equivalent to the
analytical technique of solving the equilibrium equation.

(3) The true curve P(𝑣), which corresponds to the two-phase equilibrium, is
the horizontal Maxwell’s straight line that defines the unique pressure of
two-phase coexistence, as shown in Figure 1.3.

1.2.6 Calculation of Gas–Liquid Coexistence

As an example we illustrate the technique of solving the equilibrium equation in
the case of the Peng–Robinson EOS applied to both pseudo-phases. Substituting
(1.5) into (1.18) and integrating it, we obtain the equilibrium equation comple-
mented with two EOSs:⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝑣g − 𝑣l)Psat = RT ln
(𝑣g − b)
(𝑣l − b)

− a
2
√

2b
ln

(𝑣g − 𝑣1)(𝑣l − 𝑣2)
(𝑣g − 𝑣2)(𝑣l − 𝑣1)

,

𝑣g = maximal solution of
{

Psat = RT
𝑣 − b

− a
𝑣2 + 2b𝑣 − b2

}
,

𝑣l = minimal solution of
{

Psat = RT
𝑣 − b

− a
𝑣2 + 2b𝑣 − b2

} (1.19)

where 𝑣1 = b(−1 +
√

2), 𝑣2 = b(−1 −
√

2).
This system of three equations has a unique nontrivial solution (at a fixed T)

with respect to Psat, 𝑣g , and 𝑣l.
To calculate (1.19) numerically, we present it in the following form:

RT
𝑣l − b

− a
𝑣2

l + 2b𝑣l − b2
= RT

𝑣g − b
− a

𝑣2
g + 2b𝑣g − b2

, (1.20a)

F ≡ (𝑣g − 𝑣l)Psat − RT ln
(𝑣g − b)
(𝑣l − b)

+ a
2
√

2b
ln

(𝑣g − 𝑣1)(𝑣l − 𝑣2)
(𝑣g − 𝑣2)(𝑣l − 𝑣1)

= 0
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(1.20b)

where Psat = RT
𝑣g − b

− a
𝑣2

g + 2b𝑣g − b2
(1.20c)

Two unknown values in (1.20a) and (1.20b) are 𝑣g and 𝑣l. We solve this system as
follows:

(1) For a series of values 𝑣g(k), we calculate 𝑣l(k) by solving the nonlinear
Equation (1.20a).

(2) We then calculate the function F(k) from (1.20b).
(3) We find the minimum of |F|, which should tend to 0; we also determine the

value of k that corresponds to this minimum (it is called “ki”).
(4) We then calculate explicitly 𝑣l = 𝑣l(ki) and 𝑣g = 𝑣g(ki);
(5) Then we calculate explicitly Psat from (1.20c).

The code Matlab is presented in Appendix F.
The examples of the calculation are presented in Figures1.4 and 1.5.
A maximal temperature exists, above which Equations (1.19) have no nontrivial

solutions. For high T , the volume tends to infinity, and the system tends to the
ideal gas, so the existence of the two-phase state becomes impossible.

As mentioned, the solution to Equations (1.19) can be obtained graphically
using the Maxwell technique: the straight line that corresponds to the two-phase
equilibrium should be traced in such a way that the surfaces between the curve
P(𝑣) and this straight line under and over it would be equivalent.

1.2.7 Logarithmic Representation for Chemical Potential – Fugacity

For real gases, one uses the form similar to (1.14) while replacing the pressure by
a new function called “the fugacity” f (introduced by Lewis in 1901):

𝜇 = RT ln
f (P,T)
f (P∗,T)

+ 𝜇(P∗,T) (1.21)

100

T = 447 K

T = 397 K

T = 347 K

T = 297 K
10–1

P
re

ss
ur

e 
(b

ar
)

10–4 10–3 10–2

Molar volume (m3 mol–1)

10–1

Decane

100

Figure 1.4 Phase diagram computed numerically for decane, for four values of temperature.
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In particular, P∗ = Pat.
The two properties of the fugacity result from its definition:

(1) f = P for ideal gas (1.22)

(2) f →
P→0

P, as any substance tends to the ideal gas when P → 0 (1.23)

Then the fugacity is a bounded function at P → 0, while the chemical potential
tends to −∞, which explains why the use of the fugacity is preferable.

Using the fact that the fugacity at Pat is practically equal to the pressure, it is
possible to replace fat by pressure Pat in (1.21):

𝜇 = RT ln
f (P,T)

Pat
+ 𝜇ideal

at (T) (1.24)

in which the chemical potential 𝜇ideal
at (for an ideal gas at Pat) is not the same as

𝜇(Pat,T). Frequently, this difference is however neglected. In this case, the equiv-
alence (1.24) becomes approximate.

The expression for the fugacity through volume and/or pressure follows from
the general relationship for the chemical potential (1.12):

ln
f
f∗

= 1
RT ∫

P

P∗

𝑣(P,T)dP (1.25)

where P∗ is an arbitrary pressure. In particular, if P∗ = Pat, then we obtain

ln
f
fat

≈ ln
f

Pat
= 1

RT ∫
P

Pat

𝑣(P,T)dP. (1.26)
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Figure 1.5 Phase diagram computed numerically for three chemical components: propane,
pentane, and decane, for T = 300 K.


