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13 Kleine und  
große Hindernisse

13.1 Der Schatten kleiner Objekte 

13.1.1 Der experimentelle Befund: Einzelspalt

Untersucht man den Schatten eines sehr kleinen Objekts,  
so wird man Überraschendes feststellen. Als besonders 
einfaches kleines Objekt bietet sich eine Blende mit einem 
Spalt (siehe Abb. 13.2 für den Aufbau und Abb. 13.3 für 
die Ergebnisse) an. Als Lichtquelle benutzen wir einen 
kleinen Laser.

1.  Ist der Spalt weit geöffnet, so sehen wir auf der Wand 
einen Lichtfleck – den Schatten des Spalts.

2.  Wird die Breite des Spalts weiter verringert, so beob-
achten wir ein Hell-Dunkel-Muster. Der helle Streifen 
in der Mitte ist etwas breiter und deutlich heller als die 
benachbarten hellen Streifen. Diesen Streifen nennen 
wir jetzt Hauptmaximum. Vom Hauptmaximum durch 
dunkle Streifen getrennt sehen wir etwas weniger helle 
Streifen (die sogenannten Nebenmaxima).

3.  Verringern wir die Breite des Spalts noch weiter, so 
werden die Abstände zwischen dem Hauptmaximum 
und den Nebenmaxima immer größer. Außerdem wird 
natürlich das gesamte Muster immer lichtschwächer.

4.  Kurz bevor der Spalt ganz geschlossen ist, geht die 
Struktur verloren und man sieht ein extrem lichtschwa-
ches breites Band.

Abb. 13.1:  Eine solche in der Breite 
verstellbare längliche Öffnung 
(einen Spalt) stellen wir in den 
Strahlengang. 

Abb. 13.2:  Mit diesem einfachen 
Experiment beobachten wir den 
Schatten des verstellbaren Spalts 
auf der gegenüberliegenden Wand.
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Abb. 13.3:   Je nachdem, wie weit der Spalt geöffnet ist, kann man schwach leuchtende Linien in dem Bereich 
beobachten, in dem man eigentlich Dunkelheit erwarten würde. 
Je weniger weit der Spalt geöffnet ist, desto größer ist der Abstand zwischen den schwach leuchtenden Linien. 
Vergleichbare Beobachtungen macht man für Wasserwellen.

Vergleichbare Effekte kann man auch mit 
Wasserwellen beobachten (siehe Band I, 
Abb. 8.50). 

Daher liegt die Vermutung nahe, dass die 
hellen und dunklen Streifen im Schatten des 
Lasers etwas mit der Wellennatur des Lichts 
zu tun haben. 

Wir rufen uns außerdem ins Gedächtnis, dass 
wir im Zusammenhang mit der Überlagerung 
von Wellen schon Interferenzmuster gesehen 
haben, welche entfernte Ähnlichkeit mit dem 
Schatten an der Wand zeigen, wenn man sich 
den Schirm wie in  Abb. 13.4 angeordnet 
vorstellt.

Abstand der Quellen: 2

Schirm

2λ

Abb. 13.4:   Interferenzmuster zweier Kugel wellen 
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13.1.2 Erklärung

Wir vermuten also, dass der Effekt durch 
Interferenz infolge von Beugung1 erklärbar 
ist. Auch ohne aufwendige mathematische 
Behandlung können wir zumindest 
erklären, wie die Dunkelstellen auf dem 
Schirm zustande kommen und sogar zu 
einem qualitativen Verständnis der 
Intensitäts unterschiede kommen.

Dazu betrachten wir das Problem vom 
Ende her: Wir betrachten einen Punkt P 
auf der Wand A und überlegen uns, ob und 
warum es an diesem Punkt zu Helligkeit 
oder Dunkelheit kommt. 

Beginnen wir mit der Wahl von P wie in 
Abb. 13.5 dargestellt. So wie der Punkt 
gewählt wurde, herrscht an diesem Punkt 
Dunkelheit. Es müssen also alle Licht-
wellen, die durch den Spalt treten, an 
diesem Punkt destruktiv interferieren. Zwei 
Wellen interferieren an einem Punkt genau 
dann destruktiv, wenn sie den Gangunter-
schied /2 aufweisen, denn dann treffen 
immer Berg und Tal aufeinander. Man 
könnte nun das graue Lichtbündel in 2 
Lichtstrahlen zerlegen (die beiden roten in 
Abb. 13.6 oder Abb. 13.7) und folgern, 
dass Dunkelheit eintritt, wenn diese beiden 
einen Gang unterschied von /2 aufweisen 
und daher destruktiv interferieren. Doch 
weit gefehlt! 

Beziehen wir noch einen Lichtstrahl mehr in unsere Überlegungen mit ein (den schwarzen 
in Abb. 13.6). Jetzt würden die beiden roten Lichtstrahlen destruktiv interferieren und 

 Beugung bedeutet, dass eine Welle an einem Hindernis abgelenkt wird.
 Interferenz bedeutet, dass zwei Wellen überlagert werden, indem ihre Amplituden – nicht die 
Intensitäten – addiert werden.

 Die Hell-Dunkel-Muster kommen also durch Interferenz zustande und diese wiederum (zumindest am Einzelspalt) 
durch Beugung.

a

A

P

s

Abb. 13.5:   Zur Erklärung der Interferenzmuster am 
Einzelspalt: Wir müssen für jeden vorgegebenen 
Punkt P untersuchen, warum es an diesem Punkt zu 
Helligkeit (konstruktive Interferenz aller Lichtstrah-
len) oder Dunkelheit (destruktive Interferenz aller 
Lichtstrahlen) kommt.

A

P

s

a

Abb. 13.6:   Zur Erklärung der Interferenzmuster am 
Einzelspalt: Wir betrachten den Punkt P aus Abb. 13.5. 
Im Punkt P kommt es zu Dunkelheit, weil alle 
Lichtstrahlen die vom Spalt an den Punkt P laufen, im 
Punkt P destruktiv interferieren.



13.1  Der Schatten kleiner Objekte

155

Kleine und große Hindernisse

der schwarze wäre übrig – es wäre also keine vollständige destruktive Interferenz aller 
Lichtstrahlen. Das darf aber nicht passieren. Die Folgerung, ob alle Strahlen in dem grauen 
Lichtbündel konstruktiv oder destruktiv interferieren, darf nicht davon abhängen, in wie 

s 
zwischen den beiden roten Lichtstrahlen nicht /2 sein.
Wenn jedoch zwischen dem oberen und dem 
unteren roten Lichtstrahl der Gangunter-
schied  herrschte, würden alle Strahlen im 
grauen Lichtbündel destruktiv miteinander 
interferieren (siehe Abb. 13.7): Der obere 
rote mit dem schwarzen, der orangefarbene 
mit dem orangefarbenen, der grüne mit 
dem grünen, der blaue mit dem blauen, 
denn jedes der aufgezählten Paare hätte den 
Gangunterschied von /2, unabhängig 
davon, in wie viele Elementarwellen das 
Lichtbündel zerlegt würde. 
Das ist also des Rätsels Lösung: Zwischen 
den beiden Grenzstrahlen des Lichtbün-
dels muss ein Gangunterschied von einer 
Wellenlänge herrschen! Jetzt bleibt uns nur 
noch die Aufgabe, den gerade hergeleiteten 

s =   zwischen dem 
obersten und dem untersten der Strahlen entweder mit den Koordinaten des Punktes P oder 
mit dem Winkel  zwischen der Mitte des grauen Lichtbündels und der optischen Achse in 
Verbindung zu bringen. 

Hierzu benutzen wir Abb. 13.8. Den 
Gangunterschied können wir konstruieren, 
wenn wir das Lot auf den grauen Mittel-
strahl durch die Oberkante des Spalts 
einzeichnen (rot gestrichelt in Abb. 13.8). 
Dieses Lot schließt mit der Spaltebene 
erneut den Winkel  ein1. 
Wir erreichen eine deutliche mathematische 
Vereinfachung, wenn wir annehmen, dass 
die Wand A weit weg vom Spalt ist. 

1 Winkel, deren Schenkel paarweise senkrecht aufeinander stehen, sind gleich! 

A

P

s

a

Abb. 13.7:   Zur Erklärung der Interferenzmuster am 
Einzelspalt: Wir betrachten den Punkt P aus Abb. 13.5. 
Wenn zwischen dem oberen und dem unteren 
roten Lichtstrahl der Gangunterschied  herrscht, 
interferieren alle Strahlen im grauen Lichtbündel im 
Punkt P destruktiv miteinander: Der obere rote mit 
dem schwarzen, der orangefarbene mit dem orange-
farbenen, der grüne mit dem grünen, der blaue mit 
dem blauen, denn jedes der aufgezählten Paare hätte 
den Gangunterschied von /2.

P (xP | yP)

 

2
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Abb. 13.8:   Hilfskonstruktion, um  mit s in 
Verbindung zu bringen
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Dann streben nämlich die Winkel 1 und 2 gegen den Winkel 1 2 nähern sich 

2 ein rechter Winkel ist, können wir elementare trigonome-
trische Beziehungen anwenden und erhalten:

(13.1) sin ( ) =   s __ a   

Der Grenzfall, dass die Wand sehr weit weg ist, ist unter dem Namen Fraunhofer-
Näherung s und  
herstellen.1

Nachdem wir das Zustandekommen der destruktiven Interferenz im Punkt P verstanden 
haben, drehen wir jetzt die Argumentation um und untersuchen, ob für einen bestimmten 
Gangunterschied zwischen der obersten und der untersten Welle aus dem Paket Hell oder 
Dunkel zu erwarten ist. Beginnen wir mit dem Fall, dass zwischen der obersten und der 
untersten Welle aus dem Paket der Gangunterschied null herrscht. 

Kein Gangunterschied

Wir betrachten die Situation, dass alle  
Lichtstrahlen entlang der optischen Achse 
laufen. Alle Lichtwellen haben beim 
Durchgang durch den Spalt und beim 
Auftreffen auf der Wand A die gleiche 
Phase. Das bedeutet, dass alle Wellen 
konstruktiv interferieren. Untechnisch 
gesprochen: es wird hell – wir haben den 
Ursprung des Hauptmaximums erklärt.

1 Es ist wichtig, sich vor Augen zu halten, wo genähert wurde und wo exakt gerechnet wurde.   
s ) =   s __ a    ist die Näherung.  

Wenn sie nicht eingehalten wird, liegt die sogenannte Fresnel-Beugung vor.

s = 0

s = 0

a

Abb. 13.9:  Wenn alle Lichtstrahlen  entlang der opti-
schen Achse  laufen, herrscht zwischen dem obersten 
und dem untersten Strahl der Gangunterschied null.
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Um weitere Winkel untersuchen zu können,  
vereinfachen wir die Darstellung etwas: 
Teilen wir das gesamte Licht, das durch 
den Spalt tritt, und sich in eine bestimmte 
Richtung ausbreitet (gekennzeichnet durch 
den Winkel ), in gelbe und in weiße 
Pakete. Jedes Paket umfasst immer Wellen, 
die /2 Gangunterschied aufweisen (gemes-
sen von der obersten zur untersten). Ein 
komplettes gelbes und ein komplettes 
weißes Paket löschen sich also gerade aus! 
Weil der Schirm weit entfernt sein soll, 
zeichnen wir das Strahlenpaket der 
Einfachheit halber als parallele Strahlen. 
In dieser Darstellung wird Abb. 13.7 zu 
Abb. 13.10.

Gangunterschied   3  __ 2    

Betrachten wir als Drittes die Situation, bei 
der die oberste und die unterste Welle, die 
durch den Spalt passieren, gerade einein-
halb Wellenlängen Gangunterschied haben. 
Dann haben wir also zwei gelbe und ein 
weißes Wellenpaket. Ein weißes und ein 
gelbes Paket löschen sich aus. Ein gelbes 
Paket bleibt also über und erzeugt Hellig-
keit, aber weniger als bei Lichtausbreitung 
entlang der optischen Achse, denn schließ-
lich haben zwei Drittel des Lichts sich 
gegenseitig ausgelöscht. (Außerdem ist der 
Spalt für schräg hindurchtretendes Licht 
schmaler, was auch Helligkeit kostet). 

s =  

s 

 a

Abb. 13.10:  Vereinfachte Darstellung der Abb. 13.7:  
Das Lichtbündel, das sich in eine Richtung  
ausbreitet, wird in farbige Bündel geteilt, wobei jedes 
Bündel so breit gewählt wird, dass der oberste und der 
unterste Strahl eines Bündels jeweils den Gangunter-
schied /2 aufweisen. 

s 

a

s =   2
3

Abb. 13.11:   ist so eingestellt, dass der Gang unter-

schied zwischen oberster und unterster Welle   
3

 
__

 2    
beträgt. Das Lichtbündel kann also in 3 farbige Pakete 
eingeteilt werden. Ein gelbes und ein weißes löschen 
sich aus. Ein Bündel passiert, ohne mit den anderen zu 
interferieren. Wir sehen also einen hellen Fleck (das 
erste Nebenmaximum), aber er ist weniger hell als der 
Lichtfleck bei   = 0  (das Hauptmaximum).
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Um zu überprüfen, ob bei diesem Winkel  
ein Intensitätsmaximum vorliegt, variieren 
wir den Winkel  ein wenig: Macht man 
ihn geringfügig größer, passieren zwei 
gelbe und je ein vollständiges und ein 
unvollständiges weißes Paket den Spalt 
(siehe Abb. 13.12). Ein gelbes und ein 
weißes Paket interferieren destruktiv. Das 
unvollständige weiße Paket interferiert mit 
einem Teil des gelben Pakets, sodass ein 
Teil eines gelben Pakets übrig bleibt. Das 
Resultat ist daher Helligkeit, aber weniger, 
als in Abb. 13.11, sodass wir annehmen, 
dass Abb. 13.11 tatsächlich das erste 
Nebenmaximum liefert (was sich bei 
genauerer Rechnung als näherungs weise, 
aber nicht exakt richtig erweist, weil wir in 
diesem einfachen Argument Interferenzen 
innerhalb eines Bündels nicht betrachten).

Gangunterschied 2   

Betrachten wir als Viertes die Situation, 
bei der die oberste und die unterste Welle, 
die durch den Spalt passieren, gerade zwei 
Wellenlängen Gangunterschied haben. 
Dann haben wir also zwei gelbe und zwei 
weiße Wellenpakete. Je ein weißes und ein 
gelbes Paket löschen sich aus. Es liegt also 
wiederum vollständige Auslöschung aller 
Teilwellen vor!

s 

s ≈ 1,7  

 

 

a

Abb. 13.12:   ist so eingestellt, dass der Gangunter-
schied zwischen oberster und unterster Welle 1,7  
beträgt. Das Lichtbündel kann also in 3 vollständige 
farbige Pakete und ein unvollständiges weißes Paket 
eingeteilt werden. Ein gelbes und ein weißes löschen 
sich aus. Ein Teil des gelben Pakets passiert. Wir sehen 
also einen hellen Fleck, aber er ist weniger hell als das 
erste Nebenmaximum aus Abb. 13.11. 

s 

 

 a

s = 2  

Abb. 13.13:   ist so eingestellt, dass der Gangun-
terschied zwischen oberster und unterster Welle 
2  beträgt. Das Lichtbündel kann also in 4 farbige 
Pakete eingeteilt werden. Je ein gelbes und ein weißes 
löschen sich aus. Es tritt also vollständige destruktive 
Interferenz auf. Wir sehen einen dunklen Fleck. 
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Gangunterschied   5  __ 2    

Betrachten wir als Fünftes die Situation, bei 
der die oberste und die unterste Welle, die 
durch den Spalt passieren, gerade zweiein-
halb Wellenlängen Gangunterschied haben. 
Dann haben wir also drei gelbe und zwei 
weiße Wellenpakete. Je ein weißes und ein 
gelbes Paket löschen sich aus. Ein gelbes 
bleibt also über, und erzeugt Helligkeit: das 
zweite Nebenmaximum. Weil vier Fünftel 
des Lichts sich gegenseitig ausgelöscht ha-
ben, ist das zweite Nebenmaximum weniger 
lichtstark als das Hauptmaximum oder das 
erste Nebenmaximum. 

Zusammenfassung

Hinter einem Einzelspalt wird ein Hell-Dunkel-Muster beobachtet. Es ist durch Inter-
ferenz der gebeugten Wellen begründet. Bei allen Gangunterschieden 

(13.2) s = n    n
erhalten wir destruktive Interferenz (Dunkelheit), 
Bei allen Gangunterschieden 

(13.3) ( n +   1 __ 2   )    n
erhalten wir konstruktive Interferenz (Helligkeit in den Nebenmaxima).
Die hellen Flecken in den Nebenmaxima sind deutlich lichtschwächer als das Haupt-

s in der Fraunhofer-Näherung auch mithilfe der 
Spaltbreite a und des Ablenkwinkels  ausgedrückt werden kann:

(13.4)   s __ a   = sin 
können wir auch schreiben:

(13.5) sin  = n    __ a      Dunkelheit 

(13.6) sin  =  ( n +   1 __ 2   )     __ a    Helligkeit (Nebenmaxima)

(13.7) sin  = 0    Helligkeit (Hauptmaximum)
Für die Intensitätsverteilung müssen wir eine andere Rechenmethode anwenden (die 
dann auch ergeben wird, dass die Formel (13.5) für die Minima exakt ist, Gl. (13.6) für 
die Maxima jedoch einen geringfügigen Fehler aufweist).

s 

 

 

 
a

s =  
2

5

Abb. 13.14:   ist so eingestellt, dass der Gangunter-

schied zwischen oberster und unterster Welle   
5  __

 2   

beträgt. Das Lichtbündel kann also in 5 farbige Pakete 
eingeteilt werden. Je zwei gelbe und zwei weiße 
löschen sich aus. Ein Bündel passiert, ohne mit den 
anderen zu interferieren. Wir sehen also einen hellen 
Fleck, aber er ist weniger hell als der Lichtfleck bei 

s = 0 (das Hauptmaximum) und weniger hell als der 

Lichtfleck bei  s =   
3  __

 2    (das 1. Nebenmaximum). 
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Weiterführende Überlegungen: Mathematische Behandlung des Einzelspalts

Mit einer etwas komplexeren mathematischen Behandlung können wir nicht nur heraus-
finden, wo Hell- und Dunkelzonen im Beugungsmuster auftauchen, sondern sogar die 
Intensitätsverteilung berechnen.

Wir nehmen einen einfachen Spalt der  
Breite a an, der sich in einer Richtung 
unendlich weit ausdehnt, damit wir nur 
in einer Richtung Beugungseffekte 
berücksichtigen müssen (aus der Bild-
ebene hinaus ist der Spalt also unendlich 
lang). Um die Amplitude im Punkt P zu 
berechnen, müssen wir die Wellenfunkti-
onen aller Wellen in der Abb. 13.15 
addieren: der roten, der blauen, der 
orangefarbenen und noch vieler mehr, 
die wir hier nicht alle aufführen können, 
denn es sind unendlich viele Wellen-
funktionen bis hin zur schwarzen. 
Schreiben wir die ersten Wellenfunktionen1 auf:

(13.8)     Arot (r, t) =   ̂  
   

 A  cos (  t k r) 

(13.9)    Ablau (r, t) =   ^ 
   

 A  cos  (  t k (r rblau) ) 
(13.10) Aorange (r, t) =   ^ 

   
 A  cos  ( k (r rorange) ) 

(13.11)              … = …   

(13.12)    Agrau (r, t) =   ^ 
   

 A  cos  ( k (r rgrau) ) 
r r(Farbe) ist die Phasenverschiebung der 
farbigen Welle gegenüber der roten Welle.  ist die Kreisfrequenz, k ist die Kreiswellen-
zahl. Bis auf die Phasenverschiebungen sind die Wellenfunktionen alle gleich.

Unendlich viele Funktionswerte aufsummieren – das klingt nach Integrieren. Und genau 
das müssen wir tun. Dazu führen wir – anstelle der Farbe – eine Koordinate in der Ebene 
des Spalts ein, die wir x nennen (siehe Abb. 13.15). Die Phasenverschiebung der Welle 
hängt vom Beugungswinkel  und vom x-Wert ab, wo die Welle den Spalt passiert2:

(13.13) r (x) = x · sin ( )

1 siehe Gleichung 8.33 ff. aus Band 1
2 In dieser Aussage steckt die Fraunhofer-Näherung!

s 

 
 

x = 0

x = a

ky


kx


k


Abb. 13.15:  Zur Berechnung der Feldstärkeverteilung
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Für die folgende Rechnung ist es praktischer, den Beugungswinkel  mithilfe des Betrags k 
und der y-Komponente ky des Wellenzahlvektors  

 
 

 

 k   auszudrücken (siehe Abb. 13.15):

(13.14) sin ( ) =   
ky

 __ k  

r (x) zu:

(13.15) r (x) = x ·   
ky

 __ k  

Jetzt integrieren wir also über alle Wellenfunktionen, die den Spalt passieren1:

(13.16) AP (r, t) =   
x = 0

  
a

     
^ 

   
 A  cos  (  t k (r r (x) )  dx 

(13.17)   
x = 0

  
a

     
^ 

   
 A  cos  (  t k r k · x   

ky
 __ k   )  dx 

Wir kürzen mit k im dritten Teil des Arguments des Cosinus, ziehen das   ̂  
   

 A  vor das 
 Integral2 und verschieben noch die Integrationsgrenzen. Damit erhalten wir

(13.18) AP =   ^ 
   

 A    
a __ 
2
  
  

  a __ 2  

   cos (  t k r ky  x) dx 

Dieses Integral können wir mithilfe der Stammfunktion lösen3:

(13.19) AP =   ^ 
   

 A    [ sin (  t k r ky  x)
  ______________ ky

   ]  a __ 2  
  

  a __ 2  
  

(13.20) AP
  ^ 
   

 A  __ ky
    { sin  ( k r ky   

a __ 2   ) ( k r} + ky   
a __ 2   )  } 

                                         
                                                                                           

Auf jeden der beiden Sinus-Terme wenden wir das Additionstheorem4   
sin (  ± ) = sin ( ) cos ( ) ± sin ( ) cos ( )  an und erhalten:

(13.21) AP
  ^ 
   

 A  __ ky
   { sin ( k r) cos  ( ky   

a __ 2   ) ( ky   
a __ 2   )  cos ( k r) 

                                    
                                 1. Term in der geschweiften Klammer in Gleichung (13.20)

                                   [ sin ( k r) cos  ( ky   
a __ 2   )  + sin  ( ky   

a __ 2   )  cos ( k r) ]  } 
                                 
                                2. Term in der geschweiften Klammer in Gleichung (13.20)

1 Hier steckt noch eine Näherung: Wir haben vorausgesetzt, dass der ganze Spalt gleichmäßig ausgeleuchtet wird. 
Sonst hätten nicht alle Wellen dieselbe Amplitude.

2 denn   ^ 
   

 A  ist ja einfach eine Konstante
3 Das negative Vorzeichen kommt von der Kettenregel (und hier aus der inneren Ableitung).
4 In der Formelsammlung finden Sie das Additionstheorem mit anderen Variablen. Wir nutzen  und , weil sie in 

diesem Abschnitt sonst nicht vorkommen.
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Wir lösen das Minus vor der eckigen Klammer auf und sortieren um:

(13.22) AP
  ^ 
   

 A  __ 
ky

   {sin ( k r) cos  ( ky   
a __ 2   ) k r) cos  ( ky   

a __ 2   )  
                                    
                                                                    = 0 

                           ( ky   
a __ 2   )  cos ( k r ( ky   

a __ 2   )  cos ( k r)}    
                           
                                          { sin  ( ky   

a __ 2   )  cos ( k r) } 

was wir jetzt noch ein bisschen umgruppieren und den  
Vorfaktor noch mit a erweitern:

(13.23) AP (r, t) =   ^ 
   

 A  a   
sin  ( ky   

a __ 2   ) 
 ______ 

ky   
a __ 2  
   cos ( k r)

                                    
                        Amplitude       Welle 

  AP (ky)

Dies ist die Wellenfunktion einer Welle, deren Ampli-
tude AP (ky) von ky (also von der Richtung der Welle) 
abhängt1.  

(13.24) AP (ky) =   ^ 
   

 A  a   
sin  ( ky   

a __ 2   ) 
 ______ 

ky   
a __ 2  
  

Ein Beobachter sieht – wegen der Trägheit des Auges – 
nur das zeitliche Mittel des Wellenterms. Aber er erkennt, 
dass die Amplitude der Welle von der Ausbreitungsrich-
tung ky abhängt. In  AP (ky)  steckt also das Interferenzmu-
ster!

Die Funktion  y =   
sin (u)

 _____ u    für die Richtungsabhängigkeit 
der Amplitude2 begegnet uns in der Physik öfter, sie 
bekommt einen eigenen Namen: sinc-Funktion (oder sinus 
 cardinalis). Sie ist in Abb. 13.16 oben dargestellt. Weil die 
(vom Auge wahrgenommene) Intensität dem Quadrat der 
Amplitude entspricht, lautet die Gleichung für die Intensi-
tätsverteilung

(13.25) IP ~   
sin2  (   a __ 2   ky ) 

 _______ 
  (   a __ 2   ky )  2    ,

die wir ebenfalls in Abb. 13.16 (Mitte) grafisch darstellen.

1 Was für eine Rechnerei! Später geht das einfacher mit komplexen Zahlen und der Fourier-Transformation.  
Alternativ könnte man auch Zeiger-Diagramme verwenden.

2 ... wenn man  ky ·   
a __ 2    kurz als u schreibt.
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Abb. 13.16:  oben: Schaubild der 
sinc (x)-Funktion;  
Mitte: Schaubild der sinc2 (x)-Funk-
tion;  
unten: zum Vergleich: Lage der 
Extrema von sinc (x) und sin (x)   
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sinc-Funktion und sinus-Funktion haben die Nullstellen 
bei derselben Stelle, sodass unsere Formel (13.5) für die 
Dunkelstellen exakt gilt. Für die Lage der Intensitäts-
maxima hingegen müsste man die Extremwerte in 
Gleichung (13.25) finden, also Gleichung (13.25)  ableiten 
und die Ableitung null setzen. Diese Nullstellen kann 
man nicht analytisch finden. Wir unternehmen das 
grafisch und erkennen, dass die Extrema fast dort liegen, 
wo wir sie mit unserer einfachen Argumentation 
vermutet hatten (siehe Abb. 13.16 unten).

In den drei Darstellungen in Abb. 13.16 ist auf 
der  x-Achse der Grafik und damit als Maß für den 
Beugungswinkel immer    a __ 2   ky aufgetragen. Das ist in 
der theoretischen Physik beliebt, aber nicht sehr an-
schaulich. Aus ky kann man auch den Beugungswinkel  
ausrechnen (siehe Gleichung (13.14)):

(13.26)  = arcsin  (   ky
 __ k   ) 

und dann den Intensitätsverlauf als Funktion des 
Beugungswinkels  darstellen:

(13.27) I ( ) ∼   (   sin  ( k · sin ( ) ·   a __ 2   ) 
  ____________ 

k · sin ( ) ·   a __ 2  
   )  2 

oder, mit    k __ 2   =    __    :

(13.28) I ( ) ∼   (   sin  (   a · sin ( )
 _________    ) 
 __________ 

  
a · sin ( )

 _________   
   )  2     usw.

Wiederholt man die Rechnung für verschiedene Spalt-
breiten a, so erkennt man, dass das Muster breiter wird, 
je schmaler der Spalt ist (siehe Abb. 13.18).
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Abb. 13.17:   Amplitudenverteilung 
(oben) und Intensitätsverteilung 
(unten) bei Beugung am Einzelspalt: 
Anstelle des Arguments x der sinc-
Funktion haben wir jetzt mithilfe der 
Gleichung (13.26) den Beugungswinkel 

 auf der x-Achse dargestellt.
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Kleine und große Hindernisse

13.1.3 Auswirkungen und Anwendungen

Beugung und Interferenz am Einzelspalt (und auch an anderen kleinen Objekten) ist eines 
der wichtigsten Phänomene der Physik, sowohl unter fundamentalen Aspekten als auch 
unter Anwendungsaspekten.

13.1.3.1 Experimenteller Hinweis auf die Wellennatur von Licht

Wichtig ist der Effekt nicht zuletzt aus Sicht des Grundlagenforschers: Er ist ein Hin-
weis auf die Wellennatur von Licht und nur ein Wellenmodell kann die Beugung mit 
 Interferenzerscheinungen erklären. Weder Strahlen noch klassische Teilchen können 
Interferenzeffekte erklären.

13.1.3.2 Spektralzerlegung 

Betrachten wir die Gleichungen (13.5) 
und (13.6) etwas näher. Der Winkel, unter 
welchem Hell- oder Dunkelerscheinungen 
beobachtbar sind, hängt sowohl von der 
Spalt breite a als auch von der Wellenlän-
ge  ab. Damit erhält der Spalt (und noch 
viel mehr eine Serie von Spalten, das so-
genannte Gitter) eine eminente Bedeutung 
als optisches Bauteil, denn beide erlauben 
eine Spektralzerlegung von Licht, ähnlich 
wie mit dem Prisma: verschiedene Wellen-
längen werden in verschiedene Richtungen 
abgelenkt (siehe Abb. 13.19).

Abb. 13.19:  Zwei verschiedenfarbige Laserstrahlen 
werden gleichzeitig am selben Spalt gebeugt.  
Man erkennt: Am Ort des sechsten Minimums des 
Beugungsmusters von grünem Licht befindet sich 
das fünfte Nebenmaximum des Beugungsmusters von 
rotem Licht. Rotes Licht wird also stärker gebeugt.
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14.4 Nicht nur Licht ist eine „komische Welle“

14.4.1 Elektronen sind nicht nur Teilchen

Wenn Wellen Teilchencharakter haben, können dann auch Teilchen Wellencharakter 
haben? Formal lassen sich natürlich die Gleichungen, welche einer Frequenz eine Energie 
zuordnen und einer Wellenzahl einen Impuls zuordnen
 E =     
 p =  k 
leicht umdrehen:

(14.32)  =   E __   

(14.33) k =   
p
 __   

Anstelle der Kreiswellenzahl k und der Kreisfrequenz  kann auch die Wellenlänge   =    ___ k    
und die Frequenz  f =    ___     verwendet werden:

(14.34) f =   E ____    =   E __ h  

(14.35)  =    ____ p   =   h __ p  

Die Forderung, dass auch Teilchen als Wellen betrachtet werden müssten und dass ihnen 
Frequenz und Wellenlänge nach den Gleichungen (14.34) und (14.35) zuzuordnen sei, geht auf 
L. de Broglie1 zurück. Einem Elektron, welches sich nach Durchlaufen einer Beschleuni-
gungsspannung von 50 V mit einer Geschwindigkeit von 4,2 · 106 m/s fortbewegt, würde 
also nach (14.34) und (14.35) eine Frequenz von 1,21 · 10   s  und eine Wellenlänge von 
1,73 · 10  m zugeordnet. 

Aber verhält sich ein Elektron auch wie eine Welle? Dazu müsste es Beugungs- und Inter-
ferenzerscheinungen zeigen. Im Folgenden zeigen wir vor allem Doppelspalt experimente, 
auch wenn auf anderem Weg erzeugte Interferenzen früher gemessen wurden.

1 Louis-Victor de Broglie, wurde am 15. August 1892 in Dieppe (Normandie) als Kind von Herzog Victor de Broglie 
und Pauline d’Armaillé geboren. Louis-Victor besuchte das Lycée Janson de Sailly in Paris.  
Das Studium der Philosophie und der Geschichte, insbesondere der Rechtsgeschichte, an der Pariser Sorbonne 
schloss er 1910 mit dem Lizenziat ab. 
Auf Anregung seines siebzehn Jahre älteren Bruders Maurice, eines promovierten Physikers, studierte Louis de 
Broglie ab 1911 Mathematik und Physik, was er wegen des Ersten Weltkriegs mehrere Jahre als Nachrichtenoffizier 
unterbrechen musste. 1919 setzte de Broglie seine Studien fort und wurde Mitarbeiter im Privatlabor seines Bruders, 
in dem er vorrangig über Röntgenspektroskopie und den Photoeffekt arbeitete. Ende des Jahres 1923 erschienen de 
Broglies erste Abhandlungen zur Wellenmechanik. 1924 schloss de Broglie sein Studium mit der berühmt geworde-
nen Dissertation Recherches sur la théorie des Quanta ab, in der er vermutete, dass der Welle-Teilchen-Dualismus 
auf jegliche feste Materie anzuwenden sei. Diese kühne Idee wurde 1926 und 1927 vom Institut de France ausge-
zeichnet. 1929 folgten für die Entdeckung der Wellennatur der Elektronen die begehrte Medaille Henri Poincaré der 
Académie des sciences und der Nobelpreis für Physik. 1929 wurde er zum Professor für Theoretische Physik am 
Institut Henri Poincaré in Paris berufen, wechselte jedoch 1932 an die Sorbonne, wo er bis 1962 lehrte. Im Jahr 1960 
folgte er seinem kinderlosen Bruder Maurice als Herzog nach. Am 19. März 1987 starb er in Louveciennes bei Paris.
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14.4.2 Interferenzen mit Elektronen

14.4.2.1 Elektronenbeugung am Einzel- und Mehrfachspalt

Der direkteste Hinweis auf wellenartiges  
Verhalten von Elektronen gelang Claus Jönsson1 
19592 an der Universität Tübingen mit seinem 
Doppelspaltversuch mit Elektronen, weshalb in 
einer Umfrage der Zeitschrift „Physics World“ 
der englischen physikalischen Gesellschaft im 
Jahre 2002 dieses Experiment zum schönsten 
Experiment aller Zeiten gewählt wurde.
Die Wellenlänge des mit 50 kV beschleunigten 
Elektronenstrahls beträgt 0,005 nm. Das ist 
deutlich kleiner als die Atom abstände in einem 
Festkörper (ca 0,1 nm). Daher scheiden mecha-
nisch hergestellte Spalte aus. Und weil es kein 
Material gibt, das für Elektronen transparent ist, 
kann die Spaltstruktur nicht auf eine Trägerplatte 
aufgebracht werden (so wie optische Spalte auf 
Glas aufgebracht werden).

Hergestellt wurde die beugende Struktur schließlich, indem (siehe Abb. 14.13)
eine dünne Silberschicht auf Glas aufgedampft wurde,
auf diese Silberschicht schmale Streifen aus Kohlenwasserstoff aufgebracht wurden 
(mit Elektronenstrahlen),
auf diese Strukturen eine elektrolytische Kupferschicht aufgebracht wurde.
Weil die Kohlenwasserstoffstreifen nicht elektrisch leitend sind, haftete während der 
Elektrolyse dort kein Kupfer an.

das Silber und die Kohlenwasserstoff-Streifen blieben auf der Glasplatte zurück.

1 Claus Jönsson wurde am 26. Mai 1930 in Berlin-Charlottenburg geboren. Er promovierte und habilitierte in Tübin-
gen, wo er im Rahmen einer Doktorarbeit bei Gottfried Möllenstedt die hier gezeigten Experimente durchführte. 

2 Bedenken Sie: 1927 Theorie von L. de Broglie, 1929 Nobelpreis hierfür, 1959 zugehöriges Doppelspaltexperiment.

Abb. 14.13:  Das Verfahren zur Herstellung von 
Beugungsspalten für die Elektronenbeugung  
(Darstellung aus Originalarbeit von  
C. Jönsson)  
aus: Zeitschrift für Physik A, 454 (1961)
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So entstanden freistehende Einzel- 
bis Fünffachspalte in der Kupfer-
schicht. 

Trotzdem waren die entstandenen 
Spalte immer noch sehr breit 

Elektronenwellenlänge (0,005 nm, 
s. o). Somit ist die experimentelle 
Situation vergleichbar mit dem 
Versuch, Interferenzeffekte von 
rotem Licht an einem 8 cm breiten 
Spalt zu untersuchen! Dies ist 
zwar nicht unmöglich, stellt je-
doch  – nach der Herstellung der 
Kupferfolien mit den Spaltstruk-
turen – eine erneute experimen-
telle Herausforderung dar: Der 
Elektronenstrahl muss den Spalt 
beleuchten und gleichzeitig über 
die ganze Breite köhärent sein.

Selbst wenn die Kohärenz-
anforderung erfüllt ist, sind die 
Beugungswinkel sehr klein, weil 
der Quotient aus Spaltmaßen und 
Wellenlänge sehr klein ist. Daher 
musste das Interferenzmuster ver-
größert werden, um beobachtbar 
zu sein. Dies geschah mit einer 
elektronenoptischen Zylinderlinse.

Sichtbar gemacht wurden die 
Elektronen letzten Endes durch 
einen Schirm mit einer fluores-
zierenden Schicht (wie die 
Mattscheibe eines alten Röhren-
fernsehers). Die optischen Muster 
konnten dann abfotografiert 
werden.
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Abb. 14.14:  Elektronenstrahl-Interferenzmuster nach Beugung 
an einem Spalt. links: Experimentelle Daten (Fotos aus Original-
arbeit von C. Jönsson,  aus: Zeitschrift für Physik A, 454 (1961), 
rechts: Berechnete Intensitätsverläufe. Für die Rechnung wurden  
a = 0,45 μm  und  d = 2 μm  angenommen. Die Simulationsdateien 
befinden sich unter http://merkur-verlag.de/_perform_media/
dokumente/download/0349_dl.zip
von oben nach unten: Einzelspalt, Doppelspalt, Dreifachspalt, 
Vierfachspalt, Fünffachspalt
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14.4.2.2  Das Davisson-Germer-Experiment    

Schon vor dem Doppelspaltversuch von 
Jönsson gab es experimentelle Hinweise 
auf die Wellennatur von Elektronen. 1926 
gelang Clinton Davisson1 und Lester 
Germer2 im Davisson-Germer-Experiment 
der Nachweis der Welleneigenschaften 
von Elektronen durch Interferenzversuche 
an einem Nickel-Einkristall. In diesem 
werden Elektronen gebeugt, wenn sie die 
Bragg-Bedingung erfüllen. De Broglies 
Wellenlängenformel galt bereits damit 
als bestätigt. Unabhängig von den beiden 
gelang George Paget Thomson3 in England der Nachweis der Elektronenbeugung an einer 
Graphitprobe.
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Abb. 14.16:  Detail des Versuchs von Davisson und Germer: Durch die Variation der Beschleunigungsspannung 
wurde die de Broglie-Wellenlänge variiert und damit bei einem  festen Streuwinkel von 50° die Bragg-Bedingung 
erfüllt oder nicht erfüllt.

1 Clinton Joseph Davisson wurde am 22.10.1881 als Sohn des Handwerkers Joseph Davisson und der Lehrerin Mary 
Calvert in Bloomington geboren. 1902-1908 studierte er Physik an der U. of Chicago sowie in Purdue und Prince-
ton, wobei er sein Studium zeitweise aus finanziellen Gründen unterbrochen hatte. 1910/11 erhielt er ein Stipendium 
für die Princeton University und promovierte dort 1911. Er war von 1911 bis 1917 Assistenzprofessor am Carnegie 
Institute of Technology in Pittsburgh, 1917 wechselte er – zuerst für die Zeit des Krieges – in die Ingenieurabteilung 
der Western Electric Company (den späteren Bell Telephone Laboratories) wo er nach Ende des Kriegs blieb, 
nachdem ihm zugesichert worden war, er dürfe Grundlagenforschung treiben. 1926 führte er zusammen mit seinem 
Assistenten das Experiment durch, welches nach ihm benannt wurde und für das er 1937 den Nobelpreis für Physik 
erhielt. Er starb 1958 in Charlottesville. Einer seine Söhne war ebenfalls ein bekannter Physiker.

2 Lester Germer, geboren am 10. Oktober 1896 in Chicago, studierte nach seinem Schulbesuch Physik an der 
Columbia University und promovierte dann unter der Anleitung von C. J. Davisson, für den er auch danach bei 
den späteren Bell Telephone Laboratories arbeitete. 1926 führte er zusammen mit C. J. Davisson das Experiment 
durch, welches nach beiden Experimentatoren benannt wurde und für dessen Durchführung C. J. Davisson 1937 den 
Nobelpreis für Physik erhielt (zusammen mit Thomson, der den Preis ebenfalls für die Elektronenbeugung erhielt). 
Germer war später begeisterter Bergsteiger und starb am 3. 10. 1971 an Herzversagen während einer Bergtour.

3 George Paget Thomson (* 3.5.1892 in Cambridge; † 10.9.1975 in Cambridge) war Sohn des britischen Physik-
nobelpreisträgers Sir Joseph John Thomson (1906, Entdeckung des Elektrons). Nach dem Studium der Physik lehrte 
G. P. Thomson u. a. in Cambridge, Aberdeen und am Imperial College, London. 1927 entdeckte er gleichzeitig mit 
C. J. Davisson die Elektronenbeugung am Kristallgitter, ein Beweis für die Materiewellen-Theorie de Broglies. 
Beide erhielten 1937 den Nobelpreis. Thomson war später Vorsitzender der britischen MAUD-Kommission zur 
Untersuchung der Möglichkeit einer Atombombe, nach dem Krieg beschäftigte er sich weiter mit der Kernenergie-
nutzung.
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Abb. 14.15:  Schematischer Aufbau des Experiments 
von Davisson-Germer
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Weiterführendes: LEED

Auch heute noch ist die Beugung von Elektronen am Kristallgitter ein vielgenutztes Expe-
riment – allerdings mit anderer Zielrichtung als das klassische Experiment von 1926/1927.

Dass Elektronen sich wie Wellen verhalten, bedarf heute keines Nachweises mehr. Aber 
aus der Beugung von Elektronen – und insbesondere aus dem Interferenzmuster – kann 
man auf die Kristallstruktur des beugenden Objekts Rückschlüsse ziehen.

Insofern wäre man versucht zu vermuten, dass Röntgenbeugung und Elektronenbeugung 
dieselbe Information liefern. Weil aber Röntgenstrahlen viel tiefer in das Material eindrin-
gen als Elektronen (denn letztere sind geladen und werden daher von den Atomrümpfen 
im Festkörper eingefangen) werden mit Röntgenbeugung die Kristallstruktur im Innern des 
Festkörpers und mit Elektronenbeugung die Kristallstruktur in der unmittelbaren Nähe der 
Oberfläche untersucht.

Von besonderer Bedeutung ist die Beugung mit langsamen Elektronen (LEED-Low 
Energy Electron Diffraction).
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Abb. 14.17:  Prinzip-Schaubild für LEED-Apparatur Abb. 14.18:  typische LEED-Aufnahme
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14.4.3 Beugung und Interferenz am Spalt mit Neutronen

Nicht nur mit Elektronen wurden Interferenzmuster am Doppelspalt beobachtet. 1988 
wurde von einer Wiener Forschungsgruppe1 ein Beugungsexperiment an Doppel- und 
Einfachspalt durchgeführt2. Langsame Neutronen mit einer De-Broglie-Wellenlänge von 
ca 2 nm wurden an einem Einzelspalt gebeugt, der von zwei an den Stirnseiten polierten 
Glasplatten3 gebildet wurde. Ein Doppelspalt wurde gebildet, indem in den Spalt ein absor-
bierender Bor-Draht eingebracht wurde. Zwar waren Beugungsexperimente mit Neutronen 
schon vorher durchgeführt worden, jedoch lassen sich diese Daten mit ihren geringen 
Streuungen genauestens mit Modellrechnungen vergleichen und zeigen, dass auch Neutro-
nen am Doppelspalt Interferenzen erzeugen. 
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Abb. 14.19:  Der experimentelle Aufbau zur Messung von Neutronenbeugung am Einzelspalt und Doppelspalt.  
Die Breite des Spalts S1 war variabel, die des Spalts S2 betrug 100 μm. Die Spalte S3 und S4 waren 20 μm breit. 
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Abb. 14.20:  Interferenzmuster nach Beugung eines Neutronenstrahls am 90 μm breiten Einzelspalt (links), am 
23 μm breiten Einzelspalt (Mitte) und am Doppelspalt (rechts). Der Doppelspalt wurde erzeugt, indem ein 104,1 μm 
dicker Bor-Draht in einem 150 μm-Einzelspalt angeordnet wurde. Punkte: Messdaten, Linien: Modellrechnung 
unter Berücksichtigung aller experimenteller Gegebenheiten (Spaltgeometrie, Geschwindigkeitsverteilung, etc).  
Daten aus Zeilinger et. al., Reviews of Modern Physics 60, S. 1067 (1988) 

1 Zeilinger et al.
2 Lesen Sie zumindest Abschnitt II der (gut lesbaren Originalveröffentlichung Zeilinger et al., Reviews of Modern 

Physics 60, S. 1067 (1988). Es ist sehr lehrreich, von wassergefüllten optischen Bänken und Ähnlichem zu lesen ...
3 Borosilikatglas mit 10 % Gd3O3 zur Erhöhung der Neutronen-Absorption
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14.4.4 Beugung und Interferenz am Doppelspalt mit Atomen 

Die experimentelle Schwierigkeit, zwei Atomstrahlen zur Interferenz zu bringen, besteht 
darin, dass Atome nicht geladen sind1 und dass sie nicht durch Materie durchgehen wie 
Neutronen. Also müssen passend dimensionierte freitragende Spaltstrukturen hergestellt 
werden wie in den bahnbrechenden Jönsson-Experimenten2.

1991 wurde die Beugung von Atomen an einem freitragenden Doppelspalt von einer 
Konstanzer Gruppe3, 4 veröffentlicht.

Als Atom wurde metastabiles Neon gewählt. Neon, da es als Edelgas nicht so leicht mit 
seiner Umgebung reagiert und weil es – bedingt durch die kleine Masse – eine relativ 
große De-Broglie-Wellenlänge aufweist. Diese konnte – durch Einstellen der Geschwin-
digkeit – aus 0,56 Å oder 1,03 Å 5 ausgewählt werden. Metastabile Neon-Atome6 wurden 
deshalb gewählt, weil sie leichter detektierbar sind.

Die beugende Struktur war ein Doppelspalt in einer 20 μm dicken Goldfolie mit einer 

Als Detektor diente ein Sekundärelektronen-
Er musste also mit einer hochpräzisen Mechanik in der „Schirmebene“ verschoben werden.

1 Sonst könnte man ein Fresnel’sches Biprisma für die Strahlen bauen. Auch die Tübinger Arbeitsgruppe erzeugte die 
Elektronenstrahlinterferenz zuerst mit einem Biprisma und erst im zweiten Schritt wurden Spalte hergestellt.

2 Beugung von H2 und He an einem LiF-Kristall wurde schon 1930 von Stern und Estermann gezeigt.
3 O. Carnal, *1964 in New York, wuchs in der Schweiz auf und promovierte 1992 an der ETHZ in Zürich mit den 

hier erwähnten Doppelspaltexperimenten. Inzwischen ist er im Management in der Halbleiterindustrie tätig.
4 Jürgen Mlynek (* 15. März 1951 in Gronau [Leine]) absolvierte nach dem Abitur 1969 an der Leibnizschule in 

Hannover seinen Grundwehrdienst. Er studierte von 1970 bis 1976 Physik in Hannover und Paris und promovierte 
1979 in Hannover. Nach Stationen in Hannover, San José (IBM Research Laboratory) und der Eidgenössischen 
Technischen Hochschule (ETHZ) in Zürich wurde er 1990 ord. Professor in Konstanz und 2000 Professor an der 
Humboldt-Universität zu Berlin. Er war von 1996 bis 2001 Vizepräsident der Deutschen Forschungsgemeinschaft 
(DFG). Von 2000 bis 2005 war er Präsident der Humboldt-Universität zu Berlin. 2005 wurde er Präsident der 
Helmholtz-Gemeinschaft, in der die meisten Großforschungseinrichtungen zusammengeschlossen sind, die nicht zur 
Max-Planck-Gesellschaft gehören.

5 Das sind also 0,056 nm oder 0,103 nm. Erinnern Sie sich: Das ist von derselben Größenordnung wie der Atom-
abstand in einem typischen Kristallgitter!

6 Metastabile Atome sind Atome, bei denen sich ein Elektron in einem stark angeregten, jedoch langlebigen Zustand 
befindet. In dem benutzten Ne beispielsweise wies der metastabile Zustand eine durchschnittliche Lebensdauer von 
6000 s auf. 
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Abb. 14.21:  Das Prinzipschaubild des Experiments zur Interferenz von Atomstrahlen  
Abb. samt Original-Bildunterschrift aus: O. Carnal und J. Mlynek, Phys. Rev. Lett. 66, p. 2689 (1991)

Abb. 14.22:  Interferenzmuster eines am Doppelspalt gebeugten Neon-Atom-Strahls  
Abb. samt Original-Bildunterschrift aus: O. Carnal und J. Mlynek, Phys. Rev. Lett. 66, p. 2689 (1991)
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14.4.5 Beugung und Interferenz am Doppelspalt mit Edelgasclustern

Auch an Clustern (das sind kleine oder sehr kleine Anhäufungen) von Neonatomen wurden 
Interferenzen beobachtet, die wir in Abb. 14.24 zeigen.
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Abb. 14.23:  Das Prinzipschaubild des Experiments zur Interferenz von Atomstrahlen
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Abb. 14.24:  Interferenzmuster eines am Doppelspalt gebeugten Neon-Cluster-Strahls 
Daten und englischsprachige Bildunterschrift aus der Originlveröffentlichung 
W. Schöllkopf und J. P. Toennies: Science 266, S. 1345 (1994) 


