
1 The Mathematical Framework

It is the goal of quantum theory – just as of every other physical theory – to predict the results
of experiments and to justify these predictions. To this end, it is necessary to describe the
state of the physical system at the beginning of an experiment. One must also be able to
formulate the evolution of the system under external influences and to predict the effect of its
interaction with the measurement apparatus. The mathematical framework which has proven
most expedient for the formulation of quantum mechanics is the theory of the Hilbert space
and probability theory. The fundamental connection between mathematical quantities and
physical reality is established by the following associations:

Quantum system ↔ Hilbert space.
Quantum state ↔ vector in (or, more generally: density operator

on) the Hilbert space.
Evolution of the quantum state ↔ linear operators, which act on the vectors, or

linear operators, which act on the operator
space (Liouville space).

Predictions ↔ probabilistic statements.

We will describe this basic scheme of the quantum theory in detail. In this chapter, we first
collect the required mathematical definitions and theorems. We shall not prove all of the
mathematical theorems; in particular, we assume that the reader has already had some contact
with quantum theory, so that our treatment here can be brief.

Since we will be concerned exclusively with d-level quantum systems (d = 2, 3, . . .), we
make use of a restriction which will greatly simplify our treatment:

General mathematical assumption: We consider only quantum systems which can
be described with the aid of a finite-dimensional Hilbert space Hd of dimension
d = 2, 3, . . ..

This restriction is justified, since the essential conceptual problems and the new ideas and
central methods can all be introduced by referring to a finite-dimensional Hilbert space. We
wish to avoid the addition of mathematical subtleties to the conceptual physical problems. For
the majority of physically-relevant cases which require a description in infinite-dimensional
Hilbert space, the results for finite-dimensional spaces can be directly applied.

As is usual in theoretical physics, we will make use of the Dirac notation. In this frame-
work, it is expedient to place the dyadic decomposition of operators at the centre of our treat-
ment. This is important for practical applications, since it permits a simple, direct reading-off
of the properties and effects of the operators.
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2 1 The Mathematical Framework

1.1 Hilbert Vector Space

1.1.1 The Scalar Product and the Dirac Notation

A d-dimensional Hilbert spaceHd is a linear complex vector space in which a scalar product
is defined. The vectors are denoted by |ϕ〉, |ψ〉, |u〉, |Φ〉, etc.; |null〉 is the null vector.

Addition and multiplication with a complex number, linear independence, the basis and
dimensionality of the Hilbert spaceHd are defined in an analogous way to the corresponding
concepts in real vector spaces.

A complex number is associated to a pair of vectors |ϕ〉 and |ψ〉 as their scalar product or
inner product, which we write in the form 〈ϕ|ψ〉. As the basis of this Dirac notation1, we have
introduced a ket space with the ket vectors |ϕ〉, |ψ〉, . . . and its dual vector space of the bra
vectors 〈χ|, 〈θ|, . . . (space of linear functionals). There is a declared correspondence between
the vectors of the ket space and of the bra space,

|ϕ〉 d.c.↔ 〈ϕ| , (1.1)

which is called the dual correspondence for vectors. We use the same central symbol as an
expression of the dual correspondence. Here, a ket vector |ϕ〉 = c1|ϕ1〉+ c2|ϕ2〉 is associated
via a one-to-one correspondence with a bra vector 〈ϕ| = c∗1〈ϕ1| + c∗2〈ϕ2| (∗ signifies the
complex conjugate). The ordering within the product 〈ϕ|ψ〉 is thus important. We have:

〈ϕ|ψ〉 = 〈ψ|ϕ〉∗
〈ϕ|c1ψ1 + c2ψ2〉 = c1〈ϕ|ψ1〉+ c2〈ϕ|ψ2〉 , c1, c2 ∈ C (1.2)

〈ϕ|ϕ〉 ≥ 0 ∀ |ϕ〉 ∈ Hn , (〈ϕ|ϕ〉 = 0⇔ |ϕ〉 = |null〉) .

From this, it follows that

〈c1ϕ1 + c2ϕ2|ψ〉 = c∗1〈ϕ1|ψ〉+ c∗2〈ϕ2|ψ〉 . (1.3)

The scalar product is linear in its second argument and antilinear in its first argument. When
〈ϕ|ψ〉 = 0 holds, the vectors are termed orthogonal to each other.

The product induces a norm on the Hilbert space according to

‖ϕ‖ =: ‖|ϕ〉‖ :=
√
〈ϕ|ϕ〉 . (1.4)

It vanishes if and only if |ϕ〉 is the zero vector. We mention without proof Schwarz’s inequality

|〈ϕ|ψ〉| ≤ ‖ϕ‖ ‖ψ‖ (1.5)

and the triangle relations

‖ϕ‖ − ‖ψ‖ ≤ ‖ψ − ϕ‖ , ‖ϕ+ ψ‖ ≤ ‖ϕ‖+ ‖ψ‖ . (1.6)

1Following Dirac, the scalar product is written as 〈ϕ|ψ〉 and called a “bracket”. Its components “bra” 〈ϕ| and
“ket” |ψ〉 denote independent vectors
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One can show by substitution that

〈ϕ|ψ〉 =
1
4

(
‖ϕ+ ψ‖2 − ‖ϕ− ψ‖2 + i ‖ϕ− iψ‖2 − i ‖ϕ+ iψ‖2

)
(1.7)

holds, as well as the parallelogram equation

‖ϕ+ ψ‖2 + ‖ϕ− ψ‖2 = 2 ‖ϕ‖2 + 2 ‖ψ‖2 . (1.8)

For a set of vectors {|ϕ1〉, |ϕ2〉, . . . , |ϕl〉} inHd, span(|ϕ1〉, . . . , |ϕl〉) denotes the set of all
possible linear combinations of these vectors. This set forms a subspace ofHd which is itself
a Hilbert space. We denote an orthonormal basis by ONB. For an ONB {|i〉, i = 1, . . . , d},
the decomposition

|ϕ〉 =
d∑

i=1

|i〉〈i|ϕ〉 (1.9)

applies, defining the components 〈i|ϕ〉 of the vector |ϕ〉with respect to the ONB. The set of all
vectors |ψ〉 which are orthogonal to all the vectors in a subspace Ĥ of H forms an additional
subspace of H, which is called the orthogonal complement Ĥ⊥. The direct sum of the two
subspaces is again the Hilbert space,H = Ĥ⊕Ĥ⊥ := {α|χ〉+β|ψ〉with |χ〉 ∈ Ĥ, |ψ〉 ∈ Ĥ⊥

and α, β ∈ C}.

1.1.2 Linear Operators on the Hilbert Space

Linear operators A,B, . . . map ket vectors in a linear way onto one another

A(α|ψ〉+ β|φ〉) = αA|ψ〉+ βA|φ〉 linearity(α, β ∈ C)
(A+B)|ψ〉 = A|ψ〉+B|ψ〉 sum

(AB)|ψ〉 = A(B|ψ〉) product (1.10)

A|ψa〉 = a|ψa〉 eigenvector |ψa〉 of A

eigenvalue a of A

1|ψ〉 = |ψ〉 identity operator, unit operator.

The domain of definition ofA need not be the entire Hilbert space, and its co-domain need not
be identical with its definition range. When necessary, we will make a remark on this point.
For the inverse operator A−1, we have AA−1 = A−1A = 1. We wish to extend the Dirac
notation further, and therefore adopt the convention that operators on the bra space (arrow to
the left) act from the right on bra vectors:

〈ϕ′| = 〈ϕ|←−B . (1.11)

The operators on the ket space (arrow to the right) act correspondingly from the left. For the
resulting vector, we write

|ψ′〉 =
−→
A |ψ〉 =: |Aψ〉 . (1.12)
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Via the dual correspondence (1.1), a ket vector |Aψ〉 corresponds to a bra vector 〈Aψ|:

|Aψ〉 d.c.↔ 〈Aψ| . (1.13)

We in addition introduce a dual correspondence for the operators. Referring to the Dirac
notation, the bra operator which corresponds to a ket operator

−→
A is likewise denoted by the

same central symbol A:

−→
A

d.c.↔ ←−A (1.14)

The correspondence is determined by the following condition on the scalar products (first
equation):

(〈ϕ|←−A )|ψ〉 = 〈ϕ|(−→A |ψ〉) =: 〈ϕ|A|ψ〉 . (1.15)

The second equation is an abbreviation, with the compactness which is characteristic of the
Dirac notation. Furthermore, we write A|ψ〉 for

−→
A |ψ〉 and 〈ψ|A for 〈ψ|←−A .

Adjoint operators The dual correspondence leads from |ψ〉 to 〈ψ|. By application of
−→
A to

|ψ〉, we obtain |Aψ〉, and the dual correspondence (1.13) defines 〈Aψ|. One can however also

obtain 〈Aψ| directly in bra space by applying an operator
←−
A † to 〈ψ|:

〈Aψ| =: 〈ψ|←−A † . (1.16)

The operator
←−
A † thus defined is called the adjoint operator to

←−
A . By

−→
A , both

←−
A as well as←−

A † are defined in the bra space. Finally, via the dual correspondence, the adjoint operator
−→
A †

in the ket space is:

−→
A † d.c.↔ ←−A † . (1.17)

In the Dirac notation, we can leave off the arrows as in Eq. (1.15) and thereby omit the
explicit reference to the two spaces. We evaluate Eq. (1.16) using Eq. (1.15):

〈Aψ|ϕ〉 = (〈ψ|←−A †)|ϕ〉 = 〈ψ|(−→A †|ϕ〉) = 〈ψ|A†ϕ〉 = 〈ψ|A†|ϕ〉 (1.18)

and summarise the result:

〈←−Aψ|ϕ〉 = 〈ψ|−→A †ϕ〉 = 〈ψ|A†|ϕ〉 . (1.19)

With 〈ϕ|ψ〉 = 〈ψ|ϕ〉∗, it follows from Eq. (1.19) that

〈ψ|A†|ϕ〉 = 〈ϕ|Aψ〉∗ = 〈ϕ|A|ψ〉∗ . (1.20)

Repeated application of Eq. (1.20) yields

〈ϕ|A|ψ〉 = (〈ϕ|A|ψ〉∗)∗ = 〈ψ|A†|ϕ〉∗ = 〈ϕ|(A†)†|ψ〉 (1.21)



1.1 Hilbert Vector Space 5

for arbitrary vectors 〈ϕ| and 〈ψ|. Thus, we find

(A†)† = A (1.22)

and we obtain the corresponding relation to Eq. (1.19)

〈A†ψ|ϕ〉 = 〈ψ|Aϕ〉 = 〈ψ|A|ϕ〉 . (1.23)

In a similar manner, one can readily convince oneself of the validity of the following operator
relations:

(
A−1

)†
=

(
A†)−1

, (cA)† = c∗A† (1.24)

(A+B)† = A† + B† , (AB)† = B†A† . (1.25)

In addition to the definition (1.16), equations (1.22) and (1.23) are frequently used.

Dyadic decomposition We introduce the dyadic product (outer product) or the dyad |u〉〈v|
of two vectors |u〉 and |v〉. It is a linear operator

|ϕ〉 → |ψ〉 = (|u〉〈v|)|ϕ〉 = |u〉〈v|ϕ〉 , (1.26)

which produces a vector parallel to |u〉. The scalar product 〈v|ϕ〉 appears as a complex factor.
|u〉〈v| is in the first instance to be considered as an overall symbol which cannot be decom-
posed, denoting a linear operator with certain properties. These include:

(α|u〉〈v|)† = α∗|v〉〈u| . (1.27)

For operator products, we find

A|u〉〈v| = |Au〉〈v| , |u〉〈v|A = |u〉〈A†v| . (1.28)

As we have seen in Eq. (1.9), the identity operator can be represented in terms of a dyad
with the aid of an ONB {|i〉, i = 1, . . . , d} of the Hilbert space:

1 =
∑

i

|i〉〈i| . (1.29)

This is also referred to as the completeness relation or the dyadic decomposition of the identity
operator. From Eq. (1.29), it follows using Eq. (1.26) that every linear operator has a dyadic
decomposition (outer product representation)

A =
∑

i,j

|i〉〈i|A|j〉〈j| =
∑

i,j

〈i|A|j〉|i〉〈j| =
∑

i,j

Aij |i〉〈j| (1.30)

with the matrix elements Aij := 〈i|A|j〉. We can read off the equations (1.26) through (1.30)
as a suggestive mnemonic rule, that |u〉〈v| and the dyadic decomposition of A can be taken
formally to act in such a way, as if |u〉 and 〈v| were independent vectors and not parts of
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an overall symbol |u〉〈v|. This is one of the great advantages of the Dirac notation. For the
adjoint operator, we obtain

A† =
∑

i,j

A∗
ij |j〉〈i| . (1.31)

Via the supremum norm ‖A‖, one can associate to a linear operator A a positive number:

‖A‖ := sup
〈ϕ|ϕ〉=1

|〈ϕ|A|ϕ〉| . (1.32)

Trace The trace is a frequently-used complex-valued function of a linear operator:

tr[A] :=
∑

i

〈i|A|i〉 =
∑

i

Aii , {|i〉} ONB . (1.33)

The trace of an operator is independent of the choice of the basis. The proof of this statement
demonstrates the usefulness of the dyadic decomposition (1.29) of the identity operator. Let
{|li〉} and {|mj〉} be an arbitrary ONB; then using the mnemonic rule above, we find:

tr[A] =
∑

i

〈li|A|li〉 =
∑

i,j,k

〈li|mj〉〈mj |A|mk〉〈mk|li〉

=
∑

i,j,k

〈mk|li〉〈li|mj〉〈mj |A|mk〉 =
∑

j,k

〈mk|mj〉〈mj |A|mk〉 (1.34)

=
∑

j

〈mj |A|mj〉 .

In a similar manner, using Eq. (1.29) one can prove the following properties of the trace:

tr[AB] = tr[BA] cyclic permutations

tr[A+B] = tr[A] + tr[B] linearity

tr[αA] = α tr[A] linearity

tr[A|ψ〉〈ψ|] = 〈ψ|A|ψ〉 expectation value of A (1.35)

tr[|ϕ〉〈ψ|] = 〈ψ|ϕ〉 trace of a dyad

tr[A†] = (tr[A])∗ adjoint operator

The terms expectation value or mean value ofA used in quantum physics will later be justified
on the basis of physical arguments.

1.1.3 Normal Operators and Spectral Decompositions

Among the linear operators on Hd, those which are diagonalisable, also called the normal
operators, play a particularly important role in mathematics and physics. An operator N
is termed diagonalisable if there exists an ONB {|i〉} of Hd and a set of complex numbers
λi ∈ C such that

N |i〉 = λi|i〉 (1.36)
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holds. Here, λi = 0 is not excluded. An immediate result is that the matrix of N in the ONB
of the eigenvectors is diagonal

Nij = 〈i|N |j〉 = λiδij (1.37)

and therefore the operator N can be written in the form of a spectral decomposition

N =
∑

i

λi|i〉〈i| , λi ∈ C . (1.38)

This is also called the orthogonal decomposition. The ONB {|i〉} of Eq. (1.36) is also referred
to as the eigenbasis of N . Conversely, the diagonalisability condition (1.36) follows directly
from each of these relations. If there are g ≥ 2 linearly-independent eigenvectors |jl〉 belong-
ing to an eigenvalue λj of the eigenvalue problem (1.36), where l = 1. . . g, then λj is said to
be g-fold degenerate. Every linear combination of these eigenvectors

|ψ〉 =
g∑

l=1

cl|jl〉 (1.39)

is then likewise an eigenvector belonging to the eigenvalue λj . The eigenvectors span a
g-dimensional subspaceH(j) ofH. The projector

P =
g∑

l=1

|jl〉〈jl| , P † = P ; P 2 = P , (1.40)

projects into the subspace H(j). The projector Q = 1 − P projects into the orthogonal com-
plement of H(j), i.e. H⊥

(j). The subspaces belonging to different eigenvalues are orthogonal
to one another.

Diagonalisability is by no means a trivially-occurring property. Even in the two-
dimensional Hilbert space H2, there are frequently-used operators which are not diagonal-
isable. An example is

A = |0〉〈1| with 〈0|1〉 = 0 and 〈0|0〉 = 〈1|1〉 = 1 (1.41)

as can be shown with the help of the following theorem.
In order to recognise whether a given operator is a normal operator, the following cen-

tral theorem is very useful: A necessary and sufficient condition that an operator N can be
spectrally decomposed – that is, it is diagonalisable – is the vanishing of the commutator
([A,B]− := AB −BA) of N and N†:

[N,N†]− = 0 . (1.42)

The proof of this theorem can serve as an example of the application of the formalism
which we have thus far constructed. The fact that diagonalisability follows from Eq. (1.42) is
clear. The converse direction of the proof can be divided into two steps:
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1. Step: Each operator in Hd has at least one eigenvalue λ and one eigenvector |1〉, which
can be found with the aid of the secular equation:

N |1〉 = λ|1〉 , 〈1|N† = λ∗〈1| . (1.43)

It then follows that

〈1|N |1〉 = λ , 〈1|N†|1〉 = λ∗ (1.44)

and thus

N†|1〉 = λ∗|1〉+ |a〉 , 〈1|N = λ〈1|+ 〈a| (1.45)

with 〈1|a〉 = 0. Using the normality condition [N,N†]− = 0, we find after evaluation
with Eqs. (1.43) and (1.45)

0 = 〈1|[N,N†]−|1〉 = 〈a|a〉 . (1.46)

|a〉 is thus the null vector |null〉 and (1.45) can be written as follows:

N†|1〉 = λ∗|1〉 , 〈1|N = λ〈1| . (1.47)

We have thus determined the action of N and N† on |1〉.

2. Step: We complete |1〉 to obtain an ONB {|i〉} and introduce with the aid of the dual
notation for N :

N =
∑

ij

nij |i〉〈j|, nij := 〈i|N |j〉, n1i = ni1 = λδi1 (1.48)

the operator M

M := N − λ|1〉〈1| , M =
∑

i,j �=1

nij |i〉〈j| . (1.49)

M is the restriction of N to the orthogonal complement of |1〉.
Making use of Eqs. (1.43) and (1.47), we can show that M is also a normal operator,
([M,M†]− = 0). The same procedure can be applied to it in the subspace which is
orthogonal to |1〉. M also has an eigenvector, which we denote as |2〉. We now complete
|1〉 and |2〉 to an ONB and repeat the procedure. We continue in the same manner until the
entire Hilbert space is used up and |1〉 has been completed to a well-defined ONB. At the
same time, N has been spectrally decomposed with respect to this basis. This concludes
the proof. The fact that the operator A of Eq. (1.41) does not fulfill the condition (1.42)
can be readily verified.

The diagram in Fig. 1.1 demonstrates how the various properties of the operators in Hilbert
space correspond in an intuitively clear way to an increasing specialisation in the dyadic de-
composition. In the following section, we will go through this diagram step by step from
above to below.
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(bi-orthogonal decomposition)linear operator

L =
∑

i λi|li〉〈ri|with ONB {|li〉} and ONB {|ri〉}, λi ∈ C)

normal operator (diagonalisable, N =
∑

i λi|i〉〈i|, with ONB {|i〉} , λi ∈ C)
"real"

Hermitian operator (λi ∈ R)

positive operator (λi ≥ 0)

projector (λi ∈ {0, 1})

identity operator (λi = 1 , ∀i)

"phase"

unitary operator (λi = eiϕi , pure phase)

Figure 1.1: Hierarchy of operators. Characterisation of operators through their dyadic decomposition.
→ is in each case the direction of increasing specialisation. The eigenvalues are characterised in brack-
ets ( ). The bi-orthogonal decomposition of a linear operator is derived in Sect. 13.3.3.

Functions of operators An operator function f(N) is defined in terms of its expansion in
a power series. For a normal operator N in the dyadic decomposition, it can be expressed in a
simple way in terms of functions of the eigenvalues:

f(N) :=
∑

i

f(λi)|i〉〈i| ⇒ f(N)|i〉 = f(λi)|i〉 . (1.50)

f(N) has the same eigenvectors |i〉 asN . We give an example which is formulated as a matrix
representation with respect to the basis of the eigenvectors:

σz =
(

1 0
0 −1

)
= |0〉〈0| − |1〉〈1| (1.51)

eϕσz = eϕ|0〉〈0|+ e−ϕ|1〉〈1| =
(
eϕ 0
0 e−ϕ

)
. (1.52)

1.1.4 Hermitian Operators

We follow the right-hand branch of the tree diagram in Fig. 1.1. A linear operator H onHd is
termed Hermitian or self-adjoint when it has the property H† = H . Hermitian operators are
special normal operators. They play an important role in quantum mechanics, owing to their
special properties: Hermitian operators have a spectral decomposition with an ONB {|i〉}

H =
∑

i

ri|i〉〈i| , ri ∈ R (1.53)
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and real eigenvalues ri. In case of degeneracy, the eigenvectors can be chosen to be or-
thonormal, so that {|i〉} forms an ONB. Eigenvectors belonging to different eigenvalues are
orthogonal. This is often called the spectral theorem. Hermitian operators are also referred to
as observables. The reason for this physical terminology will become clear later.

It follows immediately from Eq. (1.53) together with Eq. (1.35) that for an arbitrary vector
|ϕ〉, the expectation value 〈ϕ|H|ϕ〉 is real. It is an important characteristic of Hermitian
operators that the converse is also true: the expectation value 〈ϕ|A|ϕ〉 is real for all vectors if
and only if A is Hermitian.

For a proof of the converse, we assume that for an operator A the mean value 〈χ|A|χ〉 is
real for all vectors |χ〉. For two arbitrary vectors |ϕ〉 and |ψ〉 from H, the identity

4〈ϕ|A|ψ〉 = {(〈ϕ|+ 〈ψ|)A(|ϕ〉+ |ψ〉)− (〈ϕ| − 〈ψ|)A(|ϕ〉 − |ψ〉)}
+ i[(〈ϕ|+ i〈ψ|)A(|ϕ〉 − i|ψ〉)− (〈ϕ| − i〈ψ|)A(|ϕ〉+ i|ψ〉)] (1.54)

holds. If we exchange |ϕ〉 and |ψ〉 in this expression, then the part denoted by {. . . } remains
the same and the part [. . . ] changes its sign. Taking into account that all expectation values2

are real, it then follows that 〈ψ|Aϕ〉 = 〈ϕ|Aψ〉∗ = 〈Aψ|ϕ〉. The operatorA is thus Hermitian.
It is notable that Eq. (1.54) contains on the right only expectation values, and on the left only
a transition matrix element. When all the expectation values of an Hermitian operator are
known, then all the transition matrix elements are also known.

The expectation value 〈ϕ|A|ϕ〉 is also called the mean value. Since their eigenvalues and
mean values are real, Hermitian operators will play a special role in the theory of measure-
ments (cf. Chap. 2).

Commuting Hermitian operators For these, the theorem on simultaneous diagonalisabil-
ity holds (w/o.P.)3: Two Hermitian operators (observables) A and B commute ([A,B]− = 0)
if and only if they have a common ONB {|i〉} of eigenvectors.

If the eigenvalue a of an observableA is degenerate, then the eigenvectors form a subspace
which is at least two-dimensional. No associated eigenvector is therefore uniquely charac-
terised by specifying a. If we consider only those eigenvectors of A within the subspace
which are at the same time eigenvectors of an observable B which commutes with A and
has eigenvalues b (intersecting sets), then a common eigenvector could be uniquely specified
through this additional condition. We denote it by |a, b〉:

A|a, b〉 = a|a, b〉, B|a, b〉 = b|a, b〉 . (1.55)

If only a subspace is determined in this way, then we continue and require that an eigenvector
of A and B at the same time be an eigenvector of an observable C which commutes with A
and B: |a, b, c〉. This procedure must be repeated until all degeneracies have been lifted. A
set of observables which possesses exactly one common system of eigenvectors is called a
complete system of commuting observables. Specifying the eigenvalues of all the operators
determines a vector precisely. It is important that the procedure described in fact terminates.
This is guaranteed by the following result (w/o.P.): In every Hilbert space Hd, there exists
a finite(!) complete set of operators which commute pairwise (functions of operators are not
taken into consideration). For the proof, we refer to the literature (cf. Sect. 1.4).

2According to Section 1.1.1, 〈ϕ| + i〈ψ| is the dual bra vector of |ϕ〉 − i|ψ〉.
3w/o.P. means without proof
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1.1.5 Unitary Operators

We first follow the left-hand branch of the operator-hierarchy tree in Fig. 1.1 and thereafter
return to the right-hand branch. A linear operator U is called unitary when it has the property
U† = U−1. Unitary operators are special normal operators. They have a spectral decompo-
sition

U =
∑

i

eiϕi |i〉〈i| , ϕi ∈ R, (1.56)

with an ONB {|i〉}, whereby, due to the defining equation, the eigenvalues are pure “phase
factors”. As with Hermitian operators, the eigenvectors span the entire space. Eigenvec-
tors with different eigenvalues are orthogonal. Eigenvectors with degenerate eigenvalues can
be chosen to be orthogonal. As one can readily show, a linear operator is unitary precisely
when each of its matrix representations is unitary. It follows immediately from the spectral
decomposition that the operator function U(t) = eiHt, t ∈ R, is unitary if H is Hermitian.
Furthermore, in this case:

U(t = 0) = 1 (1.57)

U(t2)U(t1) = U(t2 + t1) . (1.58)

Unitary equivalence and conservation of the norm Under combined unitary transforma-
tions of vectors and operators according to

|ϕ′〉 = U |ϕ〉 A′ = UAU−1 , (1.59)

scalar products (in particular, the norm of a vector), eigenvalues and expectation values remain
unchanged. Conversely, a linear operator T , which conserves the norm on application to an
arbitrary vector inHd,

‖Tϕ‖ = ‖ϕ‖ , (1.60)

is a unitary operator: T † = T−1. For the proof, we apply Eq. (1.7) and rewrite it using
Eq. (1.60). For T , a unitarity relation holds:

〈Tϕ|Tψ〉 = 〈ϕ|ψ〉 . (1.61)

1.1.6 Positive Operators and Projection Operators

We wish to discuss some special cases of Hermitian operators (compare Fig. 1.1). A positive
operator is defined by the fact that for an arbitrary vector |ϕ〉, the following inequality:

〈ϕ|A|ϕ〉 ≥ 0 ∀ |ϕ〉 , (1.62)

holds, i.e. its expectation value is always real and non-negative. We can then write

A ≥ 0 . (1.63)
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Furthermore, we define an inequality for operators:

A ≥ B ⇔ (A−B) ≥ 0 . (1.64)

From the condition of positivity, it follows for the spectral decomposition that every positive
operator A is Hermitian, A† = A. It has the spectral decomposition

A =
∑

i

ai|i〉〈i|, ai ≥ 0 . (1.65)

with non-negative eigenvalues.
For an arbitrary linear operator A, A†A is a positive operator. On the other hand, for each

positive operator A there is a linear operator B such that A can be written in the form

A = B†B . (1.66)

B is determined only up to unitary transformations (B → UB). We can find B explicitly via
the spectral decomposition of A (1.65) and an ONB {|ϕi〉}

B =
∑

i

√
ai |ϕi〉〈i| . (1.67)

Substitution verifies (1.66).
A linear operator P is a projection operator (more precisely: an orthogonal projection

operator) when it meets the following conditions:

P 2 = P idempotent. (1.68)

P † = P Hermitian. (1.69)

It follows from these properties that

〈v|P |v〉 = 〈v|PP |v〉 = 〈v|P †P |v〉 = ‖P |v〉‖2 ≥ 0 . (1.70)

P is therefore a positive operator and fulfills

P =
∑

i

pi|i〉〈i| ; pi ≥ 0 (1.71)

with the ONB {|i〉}. Because it is idempotent, we furthermore have

P 2 =
∑

i

p2
i |i〉〈i| , P =

∑

i

pi|i〉〈i| , (1.72)

and thus p2
i = pi or pi ∈ {0, 1}. The projection operator P therefore assumes the form

P =
∑

j∈I

|j〉〈j|, I ↔ subset of the ONB . (1.73)

P projects onto the subspace spanned by {|j〉} with j ∈ I .

As a complement to Fig. 1.1, Fig. 1.2 shows retrospectively the “intersecting sets” of the
different types of operators.
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1.2 Liouville Operator Space

As we shall see in Chap. 2, in the special case of pure states, quantum-mechanical systems
can be described by normalised vectors |ψ〉 in a Hilbert space Hd. In the general case of
mixed quantum states, their description is accomplished using density operators (Chap. 4).
All possible dynamical changes of state can be described in terms of linear transformations
between density operators (Schrödinger representation). We will discuss this quite generally
in Chap. 14. In preparation for this discussion, it is expedient to introduce the Liouville space
L here. It is the space of the linear operators which act on the Hilbert space. We can restrict
ourselves to a brief presentation, since the procedure is essentially a repetition of Sect. 1.1.

1.2.1 Scalar Product

The Liouville space L is a linear complex vector space whose elements |A), |B), . . . are the
linear operators A,B, . . . which operate on a Hilbert space. One can readily verify that these
linear operators in fact fulfill the axioms of a linear vector space. Later, we will leave off the
brackets |) in order to simplify our notation.

In this new notation, the dyadic decomposition (1.30) of an operator A in terms of the
basis {|i〉} onHd has the form

|A) =
d∑

i,j=1

Aij ||i〉〈j|) . (1.74)

The d2 dyads |i〉〈j| inHd make up the d2 elements ||i〉〈j|) of a basis of L. For the dimensions
of the spaces, we therefore have

dimL = (dimHd)2 . (1.75)

linear

P = P † = P 2

〈ψ|A|ψ〉 ≥ 0 ∀|ψ〉 ∈ H

normal N†N = NN†

U† = U−1

1

Hermitian H† = H

projector

positive

unitary

Figure 1.2: “Intersecting sets” of operator types. Note that for λi ∈ {1,−1}, special Hermitian opera-
tors can also be unitary and vice versa.
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Of course, there are other basis sets besides the dyads in L. The Liouville space L has a scalar
product (A|B). Formally, it has the same properties as the scalar product in the Hilbert space
Hd (cf. Sect. 1.1.1). (A|B) is a complex number and obeys the relations:

(A|B) = (B|A)∗ , (A|c1B1 + c2B2) = c1(A|B1) + c2(A|B2) , (A|A) ≥ 0 . (1.76)

The operator basis Two operators A and B are called orthogonal if

(A|B) = 0 (1.77)

holds, without either of the operators being the null operator. The triangle inequality (1.6) and
an equation analogous to the parallelogram equation (1.8) also apply. Every operator |A) can
be decomposed in terms of an orthonormal operator basis {|Qs), s = 1, . . . , d2} of L

(Qs|Qt) = δst,

d2
∑

s=1

|Qs)(Qs| = 1 : (1.78)

|A) =
d2∑

s=1

|Qs)(Qs|A) . (1.79)

The scalar product as trace Scalar products in L can be represented in various ways. We
will use the scalar product defined via the trace inHd:

(A|B) := tr[A†B] , (1.80)

since in this case the Pauli spin operators, which are important for the simplest quantum
systems, can be completed to form a basis (compare Sect. 3.1). The decomposition (1.79)
–leaving off the vector brackets– takes on the form

A =
d2
∑

s=1

Qs tr[Q†
sA] . (1.81)

The basis of the Liouville space generated from the dyads |i〉〈j| with i, j = 1, . . . , d is or-
thonormal with respect to the trace-scalar product (1.80)

(
|i〉〈j|

∣
∣∣|i′〉〈j′|

)
= δii′δjj′ . (1.82)

1.2.2 Superoperators

As might be presumed, we can define linear operators in the Liouville space itself, which map
the elements of the space onto one another:

|A)→ S|A) =: |SA) =: S(A) =: SA . (1.83)

These operators, which we write using italic symbols, are called superoperators. From the
point of view of the Hilbert space Hd, they map linear operators in a linear manner onto one
another

A→ B = S(A) . (1.84)



1.3 The Elements of Probability Theory 15

Examples We give two examples of superoperators: For the superoperator A
B → A(B) := ABA−1 , (1.85)

linearity follows from the linearity of A. One can readily verify that

A−1(B) = A−1BA (1.86)

holds. An important superoperator for the description of the dynamic evolution of mixed states
(compare Chap. 4) is the Liouville operator or Liouvillian, L

A→ L(A) :=
1
�

[H,A]− . (1.87)

In its application to physical problems, H in this expression is the Hamiltonian. The powers
of L are written

L2(A) =
1
�2

[
H, [H,A]−

]
− . (1.88)

The concepts of adjoint, Hermitian, unitary and positive superoperators can be directly taken
over from the corresponding definitions in Hilbert space.

1.3 The Elements of Probability Theory

As we have already emphasized, it is the central goal of quantum theory to make predictions
concerning the probability of occurrence of measured values. To this end, it will be assumed
that information about the state of the quantum object being measured is available. With this
goal in mind, it is expedient to review briefly the basic concepts of probability theory here.

Predictions are conclusions drawn from the past and applied to the future. In classical
physics, the reverse direction of conclusions plays a similarly important role. From the results
of measurements, conclusions about the state of the object before the measurement are drawn.
To what extent is this also possible for quantum systems? In the discussion of this question,
Bayes’ Theorem plays a very important role. We will sketch its proof after first presenting
some preliminary considerations concerning conditional probabilities.

1.3.1 The Probability of Random Events

When a stochastic experiment is repeated, the result cannot be predicted. It is a random event.
Such events could be for example the occurrence of an even or an odd number of dots when
throwing dice, or the occurrence of a number greater than 2. Let {Ai; i = 1, . . . , n} be the
number of such events. We introduce the following notation, in analogy to set theory:

Ai ∩ Aj ∩ Ak is the event which consists of the simultaneous occurrence of the events
Ai, Aj and Ak. In the case of dice, A1 could be e.g. the event “even number of dots” and A2

the event “number of dots > 4”; then A1 ∩A2 is the event “the six is thrown”. p(A1 ∩A2) is
the probability that both A1 and also A2 occur (joint probability). We can also write

p(A1, A2) := p(A1 ∩A2) . (1.89)
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A1∩A2 A2A1

A1∪A2

Figure 1.3: Set diagram for probabilities.

Ai ∪Aj ∪Ak is the event consisting of the occurrence of at least one of the events Ai, Aj

or Ak. For a number Z of dots, let 2 ≤ Z ≤ 4 be the event A1 and 3 ≤ Z ≤ 5 be the event
A2. Then A1 ∪A2 is the event 2 ≤ Z ≤ 5.

An impossible event is denoted by ∅ and a certain event by Ω. Two events Ai and Aj are
called exclusive events when Ai ∩Aj = ∅. They cannot occur simultaneously.

Axioms With each random event A we associate a real number p(A) with 0 ≤ p(A) ≤ 1,
which is called the probability of A, and which fulfills a series of axioms that we shall not list
here. An example is given by Kolmogorov’s axioms. We note only the additivity axiom: for
pairwise exclusive random events A1, A2, . . . , An (i.e. tr(Ai ∩Aj) = 0),

p(A1 ∪A2 ∪ . . . ∪An) = p(A1) + p(A2) + . . .+ p(An) (1.90)

holds. When the events A1 and A2 are not exclusive, we find

p(A1 ∪A2) = p(A1) + p(A2)− p(A1 ∩A2) . (1.91)

The set diagram in Fig. 1.3 gives an intuitive picture of this relation. For thrown dice, let
Z ≤ 2 be event A1 and Z ≥ 4 be event A2; then the probability that either A1 or A2 occurs is
p(A1 ∪A2) = 2

6 + 3
6 = 5

6 .

Frequency interpretation In order to make the axiom clear, we used the example of throw-
ing dice. In fact, this axiom, like all mathematical axioms, requires no physical interpretation.
p(A) is defined by the axioms themselves. When applied to physical events, probability is
usually interpreted as the relative frequency:

p(A) := lim
N→∞

N(A)
N

(1.92)

Here, N(A) is the absolute frequency of occurrence of the event A in a total number N of
attempts. This physical interpretation is not without problems. For a finite number N , it can
be taken as an estimate of p(A).
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1.3.2 Conditional Probability and Bayes’ Theorem

We extend the concept of probability. The conditional probability p(A|B) of an eventA is the
probability of occurrence of A under the condition that another event B, which itself has the
probability p(B), has already occurred. We define:

p(A|B) :=
p(A ∩B)
p(B)

. (1.93)

Resolution of this expression leads to the plausible equation for the probability p(A ∩ B) for
the occurrence of both A and B:

p(A ∩B) = p(A|B) · p(B) . (1.94)

As an example, we consider two urns. The urn U1 contains 3 white and 3 black balls; urn
U2 contains 2 white and 4 black balls. From each of the urns, balls are picked with the same
probability p(U1) = p(U2) = 1

2 . The probability of being picked is the same for every ball,
i.e. 1

12 . The probability of picking a ball both from U1 and also that the ball picked be white
is given by p(w ∩U1) = 3

12 = 1
4 . The conditional probability p(w|U1) of getting a white ball

when picking from urn U1 is given according to Eq. (1.93) by

p(w|U1) =
p(w ∩ U1)
p(U1)

=
2
4

=
1
2
. (1.95)

This follows intuitively directly from the description of the randomness of the situation. Anal-
ogously, one finds p(w|U2) = 1

3 .

Independence Two random events A and B are called independent events when the occur-
rence of the one event has no influence on the probability of occurrence of the other,

p(A|B) = p(A) . (1.96)

In this case, it follows with (1.93) that

p(A ∩B) = p(A)p(B) . (1.97)

From this, it must be distinguished whether the events A and B are exclusive (mutually con-
tradictory), A ∩B = ∅. In that case, we have p(A|B) = 0.

Total probability The certain event Ω can be represented as the sum of n pairwise exclusive
random events Ai, (Ai ∩Aj = ∅, ∀i �= j):

Ω = A1 ∪A2 ∪ . . . ∪An; Ai ∩Aj = ∅, ∀ i �= j . (1.98)

For an arbitrary random event B, we then find B = (A1 ∩B) ∪ (A2 ∩B) ∪ . . . ∪ (An ∩B).
From the additivity axiom (1.90) it follows that

p(B) =
n∑

i=1

p(B ∩Ai) , (1.99)
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and with Eq. (1.94) we obtain the addition theorem for probabilities or the total probability

p(B) =
n∑

i=1

p(B|Ai)p(Ai) . (1.100)

We will give an example in the next section.

Bayes’ theorem With p(A ∩B) = p(B ∩A), Eq. (1.94) for random events Ai leads to

p(A|B)p(B) = p(B|A)p(A) . (1.101)

Under the assumption of pairwise exclusivity and completeness (1.98), we obtain with
Eq. (1.100) the fundamental Bayes’ Theorem

p(Ai|B) =
p(B|Ai)p(Ai)∑n

j=1 p(B|Aj)p(Aj)
. (1.102)

The denominator guarantees the normalisation
∑

i p(Ai|B) = 1, which ensures that one of
the events Ai must occur.

Bayes’ theorem can be interpreted as follows: let the probabilities p(Ai) and the condi-
tional probabilities p(B|Ai) for B given Ai be known for a certain situation. Then equation
(1.102) permits the computation of the conditional probability p(Ai|B) for Ai given B. If
the event B occurs after event Ai, then p(Ai|B) answers the following question: if B oc-
curs, what was the probability that Ai had already occurred? This conclusion for Ai given B
applies in the reverse direction to that of p(B|Ai). This demonstrates the significance of the
theorem.

We give an example, again based on picking balls from urns. Let us presume the existence
of three urns of type I with 2 white and 6 black balls in each one, and of one urn of type II
with 1 white and 7 black balls. The probability of choosing any one of the urns from which
to pick a ball is the same. Result B means that a white ball is picked. The event A1 (or A2)
means that a ball is picked from an urn of type I (or of type II). Then we have the following
probabilities: p(A1) = 3

4 , p(A2) = 1
4 , p(B|A1) = 1

4 , p(B|A2) = 1
8 . The probability that

a white ball picked comes from an urn of type I is, according to Bayes’ theorem, given by
p(A1|B) = 6

7 = 0.86 and is thus greater than p(A1). A white ball comes from the urn of type
II with a probability p(A2|B) = 1

7 = 0.14, which is less than p(A2). The choice of the type
of urn is made with the a priori probabilities p(Ai). If a white ball was picked, one can make
an inference about which urn it originated from. For this inference there is in general only
a probability statement which is given by p(Ai|B). If the urn of type II contained no white
balls, the inference could be made with certainty (p(A1|B) = 1) that a white ball was picked
from an urn of type I.

The following explanation of Bayes’ theorem can also be helpful: we consider the special
case that all the p(Ai) are equal. The event B is to be predicted. The event Ak for which
the subsequent occurrence of B is most probable (i.e. p(B|Ak) = max) has also previously
occurred with maximum probability, p(Ak|B) = max.
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Bayes’ assumption This is not to be confused with Bayes’ theorem. If there is no reason to
assume that an event Ai is particularly preferred by the situation, it can be reasonable to make
Bayes’ assumption that all the a priori probabilities are equal,

p(A1) = p(A2) = . . . = p(An) . (1.103)

This assumption is not the same as Bayes’ theorem. After the occurrence ofB, this assumption
is replaced by the probabilities p(Ai|B) from Eq. (1.102). The probabilities can be estimated
in this way.

1.3.3 Random Quantities

A random variable X is given by association of numbers x to the corresponding random
events. Throws of dice can be used as an illustrative example. A discrete random quantity X
is determined by the values x1, x2, . . . , xn and the probabilities p(x1), p(x2), . . . , p(xn) with
which the values occur (

∑n
i=1 pi = 1). The generalisation to an enumerable infinity of values

xi and to a continuous variable x is usually not problematic.
Important values for the characterisation of a random variable X are the expectation value

or the mean value

〈X〉 :=
∑

i

pixi (1.104)

and the dispersion or the mean square deviation

var(X) = (∆X)2 := 〈X2〉 − 〈X〉2 = 〈(X − 〈X〉)2〉 , (1.105)

which is also called the variance var(X). The standard deviation ∆X =
√

var(X) indicates
how widely the random variable is distributed around its mean value. In quantum mechanics,
∆X is also referred to as the uncertainty of X .

1.4 Complementary Topics and Further Reading

• Most textbooks of quantum mechanics contain a summary of the mathematical funda-
mentals. We mention in particular the following books: [Sak 85], [Ish 95], [Bal 98],
[Gri 02], [CDL 05].

• A detailed treatment of Hilbert space with reference to quantum mechanics can be found
in [Jor 69].

• The bra space as the vector space of all linear continuous functionals in a vector space V
(also called the dual space V ∗): [FK 98, Chaps. 2.8 and 4.2].

• A collection of references for Sect. 1.3: [Ish 95], [NC 00].



20 1 The Mathematical Framework

1.5 Problems for Chapter 1

Prob. 1.1 [for Sect. 1.1]: Prove the relations (1.5), (1.6), (1.7), (1.8), (1.24), (1.25), (1.27),
(1.28), (1.30), (1.35), (1.50), (1.61).

Prob. 1.2 [for Sect. 1.1]: Prove that a linear operator which acts on a finite-dimensional
complex vector space has at least one eigenvector and one eigenvalue.

Prob. 1.3 [for Sect. 1.1]: Give several examples of a basis set ofH3.

Prob. 1.4 [for Sect. 1.1]: Let {|i〉, i = 1, . . . , d} be an ONB. Prove that Parseval’s identity

‖ϕ‖2 =
n∑

i=1

|〈ϕ|i〉|2 (1.106)

holds for all vectors |ϕ〉 ∈ H2.

Prob. 1.5 [for Sect. 1.1]: Show that the matrix which corresponds to the operator product
AB is equal to the product of the matrices of A and B.

Prob. 1.6 [for Sect. 1.1]: Show that every linear operator C can be written in the form

C = R+ iI (1.107)

with Hermitian operators R and I . Consider the analogy: linear operator↔ complex number;
Hermitian operator↔ real number.

Prob. 1.7 [for Sect. 1.1]: Show that the determinant of a unitary matrix is ±1.

Prob. 1.8 [for Sect. 1.1]: Show that for two unitary n × n matrices U1 and U2, the matrix(
U1 0
0 U2

)
is also unitary.

Prob. 1.9 [for Sect. 1.1]: Does the projection operator P = |u〉〈u| have an inverse?

Prob. 1.10 [for Sect. 1.1]:

a) The operator A is known to be diagonalisable. How can its spectral representation be
found?

b) Are the Pauli operators σx = |0〉〈1|+ |1〉〈0|, σy = −i|0〉〈1|+ i|1〉〈0|, and σz = |0〉〈0|−
|1〉〈1| diagonalisable? Find their spectral representation.

Prob. 1.11 [for Sect. 1.1]: Give an example of a normal operator which is neither Hermitian
nor unitary.
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Prob. 1.12 [for Sect. 1.2]: Confirm that the relation

tr[C(AB)] = tr[(A−1C)B] (1.108)

holds for the superoperator A defined in Eq. (1.85).

Prob. 1.13 [for Sect. 1.2]: Let H be a Hermitian operator which obeys the eigenvalue equa-
tion

H|ei〉 = Ei|ei〉 . (1.109)

Find the eigenvectors and the eigenvalues of the Liouville operator L from Eq. (1.87).

Prob. 1.14 [for Sect. 1.2]: Show that the Liouville operator from Eq. (1.87) has the matrix
representation

Lij,i′j′ =
1
�
(Hii′δj′j − δii′Hj′j) . (1.110)

Prob. 1.15 [for Sect. 1.2]: Prove the following relation by referring to the definition of the
Liouville operator L:

ecLA = e
c
�

HAe−
c
�

H . (1.111)

Prob. 1.16 [for Sect. 1.2]: Describe some situations which can be used to give an intuitive
understanding of conditional probability, of the total-probability theorem, or of Bayes’ theo-
rem.




