Index

а	Arnoldi algorithm 64, 216, 279, 427–435
Ab initio (first principles) simulations	Arrayed bent-beam thermal actuator 128
461-462	Asymptotic waveform evaluation (AWE) 60
Acceleration methods of computing	Automated model order reduction
Gramians 82–83	methods 9
Acceleration sensitivity 304	
Accelerometer 148-149, 360, 474	h
 seismic perturbations detection of using 	Balanced realization 70
363-370	Balanced system 80
– battery modeling 368–369	Balanced truncation, motivation of 78
 – digital controller in SystemC 365–366 	Balancing transformation 78–80
 – embedded software, cross-compiled GNU 	- computation 81–82
GCC application for MIPS 369	Band Arnoldi process 65
- timed dataflow model of 359-361	Basic electrothermal actuator 127
 – electrical linear network model of 	Basis 57–59
361–363	- definition 58
Across quantities 26	 equivalent definition of 59
Additive white Gaussian noise	BCA (Bit-Cycle Accurate) compliant 365
(AWGN) 366	Beam
Algebraic equations 95, 97–102	 coupled electrothermal model of 138
Analog and mixed signal (AMS) 357–374	 electrothermal model of 131–134
Analog hardware description languages	- thermomechanical model of 134-136
(AHDLs) 4, 11–12, 506	Behavioral compact models 30
– simulation capabilities 13–14	Behavioral model composability 513-515
ANSYS [®] , MOR for 343, 425–437	Behavioral model performance 8
 Arnoldi algorithm model 427 	 encoding MEMS behavioral models
– open problems 432–436	508-515
– – tonpilz transducer 435	 – behavioral model composability
 practice-oriented research 426–429 	513-515
– programming issues 429–432	– – behavioral model extensions 512–513
 – obtaining system matrices from ANSYS 	– – nonlinear beam 511–512
430–431	Bent-beam actuators 128
– – partial solve (PSOLVE) 430	Biot number 132
solvers 431-432	Block–Arnoldi algorithm 213, 216–220
– Second Order ARnoldi (SOAR) 428	Black Box, nonlinear beam 509–511
Antiresonance 327	Block Krylov Subspace 59–60
Application Programming Interface (APIs)	Block moments 74
492	Body load contribution vector 297–298

 $System-level\ Modeling\ of\ MEMS,\ First\ Edition.\ Edited\ by\ T.\ Bechtold,\ G.\ Schrag,\ and\ L.\ Feng.\\ ©\ 2013\ Wiley-VCH\ Verlag\ GmbH\ \&\ Co.\ KGaA.\ Published\ 2013\ by\ Wiley-VCH\ Verlag\ GmbH\ \&\ Co.\ KGaA.$

Boolean equations 96, 102-104 - - system simulation 467 Boundary model 173-174 -- technology CAD (TCAD) 462 Branch 12 -- verification 465-467 Communicating synchronous finite state machines (CSFSMs) 366 Cadence simulation 191 Compact model builder 483 Cadence Virtuoso's plotting capabilities Compact model derivation 29–32 behavioral compact models 30 Cantilever model 277 - compact modeling of MEMS 30-31 Carbon nanotube (CNT) models 448-450 equivalent network models 30 Chip/adhesive/package model 153-155 - finite network (FN) models 29-30 Circuit model or network model 8 - mathematical model order reduction (MOR) Circuit-level design for RF MEMS devices 335 - 355- mixed-level modeling (MLM) 31 - extraction of reduced order model Physics-based compact models 31 Compact modeling of MEMS 8, 30-31, 340 - 345- - extraction procedure 343-345 192-194, See also RF-MEMS devices, – input function, handling nonlinearities in compact modeling of 341 - 343 behavioral compact models 30 -- second order ODE systems 341 - equivalent network models 30 - microswitch 351-354 - Physics-based compact models 31 - reduced order models application in Complementary variables 117 335–355, See also Vibrating devices Complex matching 328-330 -- model equations for 337-340 - consequence of matching 331-332 – Rayleigh mode preserving damping - real matching 330-331 Complex matrix-valued function 62 – stress stiffening 338 Complex Navier-Stokes equations 170 Circuit-level simulation 348 Component mode synthesis (CMS) 427 Closed loop force-feedback loop 378 Component, terminology 8 Coefficient of thermal expansion (CTE) Composable model libraries 14–15 130-131, 152 COMSOL 454-457 Combdrive 265 Constraint mechanical systems (CMS) Commercial MEMS design environment 99 461-481 Controllability 68-69 – accelerometer 474 - controllability (of a state) 68 - benchmarks 474-476 - controllability Gramian 68 - coupled package-device modeling Coriolis forces 293, 299-300, 397 478-480 Correction factors 175 - fluid damping 477 Cosimulation 110-112 - inertial gyroscope 474-476 - cosimulation interface 112 - IntelliSense's design methodology - coupling algorithms 111–112 467-470 Cosimulation aspects 357-374 - IntelliSuite 470-474, See also individual Coupled electrothermal model, equivalent circuit of 137-138 model order reduction implementations in - of a beam 138 Coupled multiphysics microsystems 4-6 461-481 - multiscale modeling and simulation − − *Ab initio* (first principles) simulations hierarchy 6 461-462 – layout-based design (bottom-up design) - sampling of 5 Coupled package-device modeling – schematic or component-based design 478 - 480(top-down design) 462-463 Coupling algorithms 111-112

– system model extraction (SME)

464-465

CoventorWare[™] 149–150

Current 101

d	e
3D parametric-library-based MEMS/IC design 407–423	Electrical linear networks (ELNs) 357, 361–363
 3D parametric library for MEMS 	Electrical stiffness 342
design-MEMS+® 409-415	Electrofluidic Kirchhoffian network 28
3D design entry 409-410	Electromechanical sigma-delta modulators
- integration with EDA tools 414–415	for inertial MEMS sensors 377-401, See
integration with MATLAB and Simulink	also under Inertial MEMS sensors
413-414	Electrostatic driving principles for MEMS 263–287
integration with Simulink 413-414	 – dynamic pull-in voltage 268
– integration with system simulators412–413	– examples
– – MEMS model library 410–412	– – electrostatic micropump diaphragm
 micromirror array design example 	281–285
419–422	 – IBM scanning-probe data storage device
 obstacles to widespread adoption 408 	275–281
 toward manufacturable MEMS designs 	plate model formulation 282-284
415–419	- linear MOR for 263–287
- – free parameter in MEMS design 415	 model order reduction methods 269–274
 parameterization of process and material 	– – for nonlinear systems 272–274
properties 415–418	– – parametric systems 272
- process design kits 418–419	– polynomial projection 273–274
	– representation of nonlinearities 270
Deep reactive-ion etching (DRIE) 488	– second-order linear systems 270–272
8()	– systems with few nonlinearities 272
Deflation 64	– – systems with many nonlinearities 273
Degrees of freedom (DOFs) 7, 164	 – systems with nonlinear inputs 272
Delays 358	– – training input 274
Delta cycles 110	 – trajectory piecewise-linear (TPWL)
'Device level' continuous-field models	method 274
19 D'C (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	– nonlinear MOR for 263–287
Differential algebraic equations (DAEs)	– phase space 268
53, 96, 450–453	– pull-in 266–268
Differential equations of MEMS models	– pull-in voltage 267
97–102	regimes of the trajectory 268–269
Digital controller in SystemC 365–366	Electrostatically actuated micropump
Digital light processing (DLP) projection	- physics-based electrofluidic compact mode
system 419	of 32-41
Digital micromirror device (DMD) 419	– – membrane drive 34–36
Dirichlet boundary condition 215	– micropump 39–40
Discontinuous forcing functions	– model calibration 40–41
114–116	– parameter extraction 40–41
Discrete empirical interpolation method (DEIM) 237, 250–255	tubes 38-39 valves 36-38
Display 360	Electrostatically actuated RF MEMS switch
Distributed effects in microsystems, modeling	41–48
of 163–187, See also Squeeze film	Element integration 156–157
damping (SQFD) in MEMS modeling	Element Menu Window (EMW) 451
- mixed-level approach for 163–187, See also	Embedded Linux file (ELF) 366
Mixed-level modeling (MLM)	Embedded Software, Cross-Compiled GNU
Distributed nodal method (DNM) 151	GCC Application for MIPS 369
Dominant modes 302	Energy harvesting modules, system-level
Doubly fixed beams 148	simulation of 313–333
Dynamic pull-in voltage 268	- experimental results 318
- / Pan m . onmbc 200	· r 220

Energy harvesting modules, system-level Generalized Kirchhoff's current law (GKCL) simulation of (contd.) 25 - 26- micropower module 315-316 Generalized Kirchoffian network 43-44 modeling and simulation 318–327 Generic modeling approach for microdevices – finite element method (FEM) model and systems 21-23 320 - 321Gramian-based MOR methods -- harmonic MEMS circuit cosimulation 77-83, 239 325 - 327- acceleration methods of computing the - - lumped element modeling 319-320 Gramians 82-83 -- model order reduction 322-323 - balanced system 80 – piezoelectric energy harvester 319 - balanced truncation, motivation of 78 - - transient MEMS circuit cosimulation - balancing transformation 78-80 -- computation 81-82 - piezoelectric harvester, maximum power - error bound of 84-85 point for 327-332 extension to more general systems -- complex matching 328-330 - passivity of 84-85 - - consequence of matching 331-332 - square-root algorithm (SR-method) 82 - - real matching 330-331 - stability of 84-85 vibrational harvesters 316–317 - truncation 80-81 wireless autonomous sensor nodes Gram-Schmidt process 63-64 314 - 315Graphical user interface (GUI) to SUGAR Energy storage system (ESS) 313–315 444, 450-451 Equation of motion 440-444 Graphical Window (GW) 451 Equivalent circuit method 136 Guyan reduction 427 Equivalent network models 30 Gyros 149 Etch holes 447 Gyroscopic matrix 300 Euler-Bernoulli beam theory 154 Events 113 Expansion points, different choices of Hall sensors 150 75 - 76Hankel singular values (HSVs) 70 Hardware description language (HDL) 20, 213, 344, 489 Feedback control system 378 Harel state charts 103 Feedback linearization 395-396 Harmonic distortion 258-259 Fill table(...) function 369 Harmonic MEMS circuit cosimulation Fingers 513 325 - 327Finite element analysis/method (FEA/FEM) Heterogeneous modeling with SystemC AMS 126, 147, 320-321, 337 358-363, See also under SystemC AMS - FEM-based spatial discretization 215 Finite networks (FNs) 29-30, 163-164, Hexpresso 469 Hierarchically nested states 104 170 - 173High-dimensional equation systems 108 Finite state machines (FSMs) 96, 102-104 Higher order electromechanical $\Sigma \Delta M$ Fluid damping 477 391-400 Fluidic systems 99-100 - band-pass EM $\Sigma \Delta M$ approach 399 Fraunhofer EMFT 32 Function block 389 - for MEMS accelerometer 391-397 -- advanced model 396-397 Functional mock-up interface (FMI) 112 -- design methodology 391-392 – example design 392–395 Galerkin method 73, 84, 134, 243 - - feedback linearization 395-396 'Gappy-least-squares' approximation 250 - for MEMS gyroscopes 397-400 Gas rarefaction effects 175–177 Hole model 174-175 Gaussian pulse module 360-361 Homotopy 108 Gauss-Seidel iteration 111 Hybrid systems 113

i	1
Index reduction 109	Lagrange equations 98
Induced norm 62	Lanczos algorithm 216
Inertial gyroscope 474–476	Laplace transform 60
Inertial MEMS sensors 377-401, See also	Laplace variable 229
Higher order electromechanical $\Sigma \Delta M$;	Laser Doppler vibrometer (LDV) system
Second order electromechanical $\Sigma \Delta M$	159
 electromechanical sigma—delta modulators 	Limiter block 389
for, system level modeling of 377–401	Linear independence 57–60
- – feedback control system 378	Linear mechanical systems 295–297
Initial state (z ₀) 103	Linear model order reduction, for MEMS
Initial state of the system 67	electrostatic actuators 263–287, See also
Initialize() function 361	Electrostatic driving principles for MEMS
In-plane actuators 127–129	Linear system theory 66–71
Input alphabet (X) 103	- balanced realization 70
Integrated circuit (IC) systems 483–498	- controllability 68–69
IntelliSense's design methodology 467–470	- observability 68–69
- closing the loop 469–470	passivity of a system 70–71realization theory 69–70
- one step at a time 468–469	- stability of a system 70–71
- from the top down 467–468	- transfer function 66–67
IntelliSuite, system model extraction in	- two different LTI systems, measure of the
470–474	difference between 67–68
– high-LEVEL overview 470–471	Linear time-invariant (LTI) systems 56
- implementation 473–474	Lithographie, Galvansformung, Abformung
– lookup table (LUT) 471	(LIGA) technology 125
 residual stress and film damping effects, 	Long-short beam actuator 128–129
capturing 471–472	Long-short-beam thermal microactuator 128
Intellisuite [™] 150	Lumped element models 8, 30–31, 101,
Internal variables 106	198–201, 319–320
	Lyapunov equations 81
k	
Kirchhoff's current law (KCL) 25,	M
101, 171 Virghhoffs flow law (VEL) 12	Macromodeling 8, 30, 104–105
Kirchhoff's flow law (KFL) 12 Kirchhoff's mesh rule 12	Markov parameters 75 Mass flow rate 100
Kirchhoff's node rule 12	Master algorithms 112
Kirchhoff's potential law (KPL) 12	Mathematical model order reduction (MOR)
Kirchhoff's voltage law (KVL) 101	32
Kirchhoffian networks, system-level modeling	Mathematical structure of MEMS models
using 19–48	96–104, <i>See also</i> Numerical methods for
- basic principles 19–48	system-level simulation
– compact model derivation 29–32	– algebraic equations 97–102
 from continuous-field level to compact 	– Boolean equations 102–104
models 23-29	– differential equations 97–102
– generalized Kirchhoff's current law (GKCL)	- finite state machines 102–104
25	– fluidic systems 99–100
 generalized networks for tailored 	 hierarchically nested states 104
system-level modeling of microsystems	– Lagrange equations 98
20–32, See also individual entry	– mass flow rate 100
Knudsen numbers 176	– model behavior 97
Kronecker product 240	– multibody system (MBS) 98–99
Krylov-subspace methods 59, 215, 219, 239,	- networks 101–102
271, 314, 431	– solution of the DAE system 97

Mathematical structure of MEMS models (contd.)

- terminal behavior 97

terminal variables

MATLAB 413-414

Matlab/Simulink 304-306

Matrix function norms 62-63

Matrix norms 61-62

Matrix 57

Maximum power point (MPP) principle

McMillan degree of the system 69

Mealy machines 103

Membrane drive 34-36

MEMS-Synth 469

Microbeam model 152–153

Microhotplates 214, 220-223

Micromirror array design 419-422

 Cadence Virtuoso's plotting capabilities 420

Micropower module 315-316

Micropump, physics-based system-level model -- numerical approach 301 of 39-40

Microswitch 351-354

Microsystems modeling, issues in 3-17

analog hardware description languages

automated model order reduction methods

composable model libraries 14–15

-- de facto standard 14

- coupled multiphysics microsystems 4-6

- handling complexity, following the VLSI paradigm 10 - 11

– – view 10

- model validation 15-16

- model verification 15-16

- multiscale modeling and simulation 6-7

parameter extraction 15–16

system-level model

– general attributes of 12–13

-- terminology 7-9

 system-level models for microsystems 3 - 4

Minimal realization of the system 69 Mixed-level modeling (MLM) 15, 31, 163 - 164

- alternative damping models, comparison with 185-186

- evaluation 179-180

- - numerical evaluation 179-180

experimental evaluation 180–185

- of squeeze film damping in MEMS 169 - 179

- - automated model generation 178-179

- - coupling with mechanical models 177-178

- - finite network-based evaluation of the Reynolds equation 170-173

– gas rarefaction effects 175–177

-- motivation for using 168-169

 – physics-based lumped element models 173-175

– total damping force calculation 177

Mixed-mode simulation 7

Mixed-signal systems 109-110, 113

Modal-superposition (MSUP)-based nonlinear MOR for MEMS gyroscopes 291-308, See also Reduced order model generation pass algorithms

- extraction of capacitances 301-302

– analytical approach 301

 – for comb cell conductors and platelike capacitors 301-302

– hybrid approach 301

- flow chart of 294-295

- - expansion pass 294

- - generation pass 294 - - master nodes 294

- - use pass 294

- multivariable capacitances, data sampling and function fit procedures for 302-304

- system simulations of MEMS based on modal superposition 304-307

- - based on Kirchhoffian networks 306

– full order FEM models 306–307

-- Matlab/Simulink 304-306

- theoretical background of 295-299

– body loads of capacitive sensors 297–298

– linear mechanical systems 295–297

- - nonlinear electromechanical interactions 297-298

- - parametric reduced order models for packaging interactions 298-299

- vibratory gyroscope 293-294

Model behavior 97

Model description languages 105-107

Model order reduction (MOR) 4, 108, 238, 269-274, 322-323, See also ANSYS®, MOR for; Electrostatic driving principles for

MEMS; Gramian-based model order reduction

- basic idea of 71-73

- expansion points, different choices of 75 - 76

- moment-matching 73-77

– moments and moment vectors 73–74

 projection matrices Wand V, computation Multifeedback and local resonators (MFLRs) architecture 398 of 74-75 Model order reduction (MOR), system-level Multilaver pads 447 Multiparameter momentmatching 229 modeling of MEMS by means of 53-87 Multiscale modeling 6-7, 108 applied to electrothermal simulation 54 - Gramian-based MOR methods 55 - linear system theory 66-71 Nanohub 502 - mathematical background 53-87 Navier-Stokes equations 166-167, 170, 175 - mathematical preliminaries 56-66 NEMS 448-450 - - basis 57-60 Netlist Window (NW) 451 - - Block Krylov subspace 59-60 Nètwork method 98 – Krylov subspace 59 Network on Chip (NoC) 366 - - Laplace transform 60 Networks 101-102 – linear independence 57–58 - current 101 -- matrix 57 Kirchhoff's current law (KCL) 101 -- norms 61-63 - Kirchhoff's voltage law (KVL) 101 – orthogonality of the vectors 58 - lumped elements 101 - - rational function 60-61 - voltage 101 – scalar 57 Newton iteration 111 -- subspace 57-58 Newton-Raphson iterations 108 – vector 57 NOdal Design of Actuators and Sensors - - vector space 57-58 (NODAS) 506 - model order reduction, basic idea of Nodal model of microbeam element 152 Node voltages 101 - moment-matching MOR 73-77 Nonlinear DAEs, solution of 107-109 - nonlinear systems 86 Nonlinear model order reduction, for MEMS - nonzero initial condition 85-86 electrostatic actuators 263-287, See also - numerical algorithms 63-66 Electrostatic driving principles for MEMS – parametric systems 86 Nonlinear Navier-Stokes equations 170 reduced model, stability, passivity, and error Nonlinear transmission-line model 246-247 estimation of 84-85 Nonzero initial condition 85-86 - for second-order systems 86 Norms 61-63 Model validation in microsystems modeling induced norm 62 - matrix norms 61-62 Model verification in microsystems modeling operator norm 62 15 - 16 subordinate matrix norm 62 Modeling formalisms (MFs) 357 - vector norms 61-62 Models of computation (MoCs) 357 Numerical algorithms 63-66 Modified Gram-Schmidt process 63-64 - Arnoldi algorithm 64-65 Moment-matching-based linear MOR - Band Arnoldi process 65 213 - 234- deflation 64 Moment-matching model order reduction - Gram-Schmidt process 63-64 73-77, See also Model order reduction modified Gram-Schmidt process 63–64 (MOR) Numerical methods for system-level - development of 76-77 simulation 107-112 error bound of 84 - mixed-signal simulation cycle 109-110 Padé approximation 76 - nonlinear DAEs, solution of 107-109 - passivity of 84 - - choice of tolerances 108 - stability of 84 - - high-dimensional equation systems 108 Moments of transfer function 73 -- homotopy 108 Moore machines 103 - - index reduction 109 Multibody system (MBS) 98-99 -- model order reduction 108 Multidimensional moment matching 229 - - stiffness and multiscale systems 108

0	 moment-matching-based linear MOR for
Observability 68–69	213-234
– observability Gramian 68	– application of 223–227
– observability (of a state) 68	 – application to extraction of thin-film
One-end fixed beams 148	thermal parameters 227-232
Open circuit condition 327	− − DOT [®] (Design Optimization Tools) 231
Open Core Protocol (OCP) 365	 – parameter extraction methodology
Operator norm 62	230–232
Optical-based microsystems 6	– for packaging interactions 298–299
Order of the Krylov subspace 59	Partial differential equation (PDE) 53, 95,
Order of the reduced model 250	131, 164, 337
Ordinary differential equations (ODEs) 53,	Partial solve (PSOLVE) 430
95, 131, 164, 215, 337	Passivity of a system 70–71
Orthogonality of the vectors 58	Periodic AC analysis 14
Out-of-plane actuators 129	Periodic steady-state analysis 14
Output alphabet (Y) 103	Periph_io_get() 369
Output function (g) 103	Periph_io_set() 369
Oversampling ADC 379	Petrov-Galerkin projection 72, 84
Oversampling ADC 377	Phase space 268
	Physical design kits 13
p	Physics-based compact models 8, 19, 31–41,
Packaging effects of MEMS devices,	See also under Electrostatically actuated
system-level modeling of 147-160	micropump
- element integration 156-157	Physics-based lumped element models
 FEM and experimental validation 	173–175
157–160	- boundary model 173–174
- impact on typical MEMS devices	- hole model 174–175
148–150	
accelerometers 148–149	Piezoelectric energy harvesters 316–317
doubly fixed beams 148	Piezoelectric generator 317–318
- – fine meshing 150	- design of 317-318
gyros 149	- fabrication of 317-318
- hall sensors 150	Piezoelectric harvester, maximum power point
one-end fixed beams 148	for 327–332
	Poiseuille flow 172
pressure sensors 149	Polynomial projection 273–274
solid modeling 150	Power spectral density (PSD) of output
thermal actuators 149	bitstream 385
- single substructures, behavioral modeling	Pressure sensors 149
of 152–156	Primitive behavioral model 8
- support model 155–156	Probe-based microsystems 6
nodal model 156	Process design kits (PDKs) 418–419
– system partitioning 151–152	Processing() function 358, 361, 365
Packaging interactions, parametric reduced	Projection-based nonlinear model order
order models for 298–299	reduction 237–260
Padé approximation 76, 271	 discrete empirical interpolation method
Padé via Lanczos (PVL) 77	(DEIM) 250-255
Parameter extraction in microsystems	– – thermal analysis 251–253
modeling 15–16	– evaluation cost for 239–240
Parametric electrothermal MEMS models	– harmonic distortion 258–259
213–234	- problem specification 238
Parameterization 13, 492-494	- projection principle 239-240
Parameterized Arrays 447-448	– pull-in effect 256–258
Parametric model order reduction (pMOR)	– generalizing from training inputs 258
213, 228-230, 295	- Taylor series expansions 240-245

 – microfluidic channel example 241–242 – model reduction via quadratic Taylor expansion 242–244 	 based on GKN theory 167 based on modified Reynolds equation 167
– – stability issues 244	- finite network-based evaluation of
 trajectory piecewise-linear method 245–250 	170–173 RF-MEMS devices, compact modeling of
– – nonlinear transmission-line model	191–208
246–247 Proper orthogonal decomposition (POD)	 RF-MEMS multistate attenuator parallel section 194–205
methods 55, 239	– – lumped element network 198
Pseudo bimorph electrothermal actuator 127	– whole RF-MEMS multistate attenuator network 205–207
Pseudo-linear relation 22	
PSugar 450	\$
Pull-in effect 256–258	Scalar variable 57 Scaling factor 472
9	Second Order ARnoldi (SOAR) 428
Quadratic Taylor expansion, model reduction	Second order electromechanical $\Sigma \Delta M$
via 242–244	for a MEMS accelerometer 380–391– advanced model 386–391
Quadrature phase shift keying (QPSK)-modulated 364–367	basic model 380-386
Quantization noise loop transfer function	function block 389
(QNTF) 385–386	- – limiter block 389
Quantizer block output 381	– power spectral density (PSD) of output bitstream 385
r	– – switch block 382
Radio-frequency (RF) switches 3–5 Rates 358	Second-order linear systems, MOR methods for 270–272
Rational function 60–61	Second order ODE systems 341
Rational interpolation 75	Seismic perturbations detection using
Rayleigh mode preserving damping 338	accelerometer 363–370
Real matching 330–331	Serendi-CDI 501–504
Realization theory 69–70 Reduced order modeling (ROM) of MEMS 8,	Sigma-delta modulators ($\Sigma \Delta M$) 378–379, See also Second order electromechanical
19, 483–498, <i>See also</i> SoftMEMS simulation environment	$\Sigma \Delta M$ Signal flow model (or black diagram model)
- applications 494–498	Signal-flow model (or block-diagram model)
- error estimation of 84–85	Silicon-based microhotplate 220–223
– generation pass algorithms 299–304	SIMPLORER® 223–225
 – extraction of body load contribution 	SIMULINK 413–414, 454–457
vectors for 299–301	Single substructures, behavioral modeling of
 MEMS development environment 484–485 	152–156 – chip/adhesive/package model 153–155
– passivity 84–85	– microbeam model 152–153
– stability 84–85	Single-input multiple-output (SIMO) system
Reference node 101	56, 75
Relevant modes 302 Resistance Inductance Capacitance (RLC)	Single-input single-output (SISO) system 56, 217
361	Singular value decomposition (SVD) 239
Resistivity 130	SoftMEMS simulation environment
Reynolds equation-based modeling strategies 166–167	485–494 – implementation within 485–494
based on decomposition into cells 167	- issues with 486–487
- based on FEM 167	- range of validity of the model 487

SoftMEMS simulation environment (contd.) - model 440 - - spatial resolution 486 - nodes 440 - - temporal resolution 487 - parameters 440 - model output 492 - simulation 453-454 modeling abstraction levels 486 - SUGAR, COMSOL, SPICE, SIMULINK, - modeling process 490-491 integration of 454-457 modeling requirements within 485–494 - SUGAR-based applications 444-454 models and inputs 487–490 -- accelerometers 444 - parameterization 492-494 -- common ground tracers 445-447 Solution of the DAE system 97 - - design/simulation 445 Solvers 431-432 -- etch holes 447 Source stepping 116 -- GUI configuration 450-451 Sparse Lyapunov equations 83 – gyroscopes 444 - - layout generation 445 Specific heat 130 Spectre-Verilog A model 279 - - library 444 SPICE (Simulation Program with Integrated -- microgrippers 444 Circuit Emphasis) 104–105, 137, 454–457 – – multilayer pads 447 essential features of 105 -- NEMS 448-450 subcircuits in 105 -- optimization 448 Spring force 472 -- parameterized arrays 447-448 Square-root algorithm (SR-method) 82 -- PSugar 450 -- RF-MEMS 444 Squeeze film damping (SQFD) in MEMS modeling 165-169 - - thermal actuators 444 - mixed-level modeling of 169-179, See also - verification 457 Superposition 427 individual entry Reynolds equation-based modeling Support model effect on MEMS devices strategies 166-167 155 - 156Surface micromachined beamlike – based on decomposition into cells 167 electrothermal microactuators 125-143 - classification and problem description – based on FEM 167 -- based on GKN theory 167 127 - 131- - based on modified Reynolds equation - - arrayed bent-beam thermal actuator 128 167 Stability of a system 70-71 - - bent-beam actuators 128 - - in-plane actuators 127-129 State charts 96 State diagrams 102 – long-short beam actuator 128–129 State of the system 67 – out-of-plane actuators 129 State set (Z) 102 - coupled electrothermal model, equivalent State-space representation 56, 215 circuit of 137-138 State-space transformation 69 - material properties 129-131 Static random access memory (SRAM) - - coefficient of thermal expansion 419 130 - 131Stiffness 108 -- resistivity 130 Stress stiffening 338 - - specific heat 130 Structured model 8 - - thermal conductivity 129-130 Subcircuits in SPICE 105 - modeling 131-136 - - electrothermal model of a beam Subordinate matrix norm 62 Subspace 57–58 131 - 134SUGAR, for MEMS 439-458 - - thermomechanical model of beam compact modeling building blocks for 134 - 136- solving 136-139 designing 443 differential algebraic equations (DAEs) - system-level modeling of 125-143 450-453 Switch block 382 - equation of motion 440-444 System in package (SiP) 147

System model extraction (SME) 464-465 - generic modeling approach for microdevices System partitioning 151-152 and systems 21-23 SystemC AMS 357-374 pseudo-linear relation 22 - heterogeneous modeling with 358-363 Tanner's C-code modeling 489 - - 2.4 GHz RF transceiver 366-368 Taylor series expansions 240-245 – SystemC AMS timed dataflow (TDF) - quadratic Taylor expansion, model reduction via 242-244 358-359 - - timed dataflow model of accelerometer TDF cluster 358 Technology CAD (TCAD) 462 359-361 Terminal behavior 97 System-level modeling of MEMS 53-87, 506-507, See also under Model order Terminal variables 97 reduction (MOR); Packaging effects of Thermal actuators 149 MEMS devices; Surface micromachined Thermal conductivity 129-130 beamlike electrothermal microactuators Timed dataflow model of accelerometer – algorithmic approaches for 95–118, See 359-361 also Mathematical structure of MEMS Timestep 358 models Tire pressure monitoring systems (TPMS) – advanced simulation techniques 483 Total damping force calculation 177 113 - 118– complementary variables 117 Training input 274 - - discontinuous forcing functions Trajectory piecewise-linear (TPWL) 237, 114-116 245-250, 264, 274, 285 - - emerging problems 113-118 - nonlinear transmission-line model – hybrid or mixed-signal systems 113 246-247 - - model equations, structural changes in - stability issues 247-249 116 - 118Transfer function 66-67 - description 104-107 Transient MEMS circuit cosimulation – general approaches for 104–107 323 - 325-- macromodeling 104-105 Transition function (f) 103 – model description languages 105–107 Truncated-balanced realizations (TBRs) 244 - - SPICE (Simulation Program with Truncation 80-81 Integrated Circuit Emphasis) Tubes, system-level model of 38-39 104-105 - general attributes of 12-13 UML behavioral state machines 103 - for microsystems 3-4 - terminology 7-9 Unsymmetric Lanczos process 74 U-shaped actuator 127 - - behavioral model 8 - - circuit model or network model 8 U-shaped principle 125 -- compact model 8 -- component 8 - - lumped-element model 8 Valves, compact model of 36-38 -- macromodel 8 Variable gap parallel plate capacitor 264–269 - - physics-based model 8 Vector function norms 62-63 - - primitive behavioral model 8 real valued vector function 62 - - reduced-order model 8 Vector norms 61-62 – signal-flow model (or block-diagram Vector space 57–58 model) 8 Vector VerilogA compact models 196-201 -- structured model 8 - using generalized Kirchhoffian networks VerilogA model 352 Very high speed integrated circuit hardware 19-48. See also Kirchhoffian networks description language-analog and mixed-signal extensions (VHDL-AMS) 106 Tailored system-level modeling, generalized Very-large-scale integration (VLSI) 4, 10-11 Kirchhoffian networks for 20-32 - in handling complexity 10-11

Vibrating devices 345–351 Vibrational harvesters 316-317 Vibratory gyroscope 293-294 Viscous force 472 Voltage 101 Volterra method 240

Wafer level package (WLP) 147 Web-based community for MEMS modeling and design 501-515

- concepts of web-based design 503-504
- design community constitution 504-505
- - discussion forums 505
- online simulation tools 505
- - open source philosophy 504
- - wiki-style collaborative authoring 505

- encoding MEMS behavioral models 508-515
- -- nonlinear beam 509-511
- leveraging web-based communities 502-505
- -- Designer's Guide Community 502
- -- Nanohub 502
- -- Serendi-CDI 502
- MEMS modeling and design online
- system-level modeling of MEMS 506-507
- web-based community conventions 507-508

White Noise block 381

Wireless autonomous sensor nodes

314 - 315

Wireless sensor network (WSN) 357