Hans-Otto Georgii

Gibbs Measures and Phase Transitions

Contents

Introduction		
Part I.	General theory and basic examples	9
Chapte	er 1 Specifications of random fields	11
1.1	Preliminaries	11
1.2	Prescribing conditional probabilities	15
1.3	λ -specifications	18
Chapte	er 2 Gibbsian specifications	25
2.1	Potentials	26
2.2	Quasilocality	30
2.3	Gibbs representation of pre-modifications	35
2.4	Equivalence of potentials	39
Chapte	er 3 Finite state Markov chains as Gibbs measures	44
3.1	Markov specifications on the integers	44
3.2	The one-dimensional Ising model	49
3.A	Appendix. Positive matrices	54
Chapte	er 4 The existence problem	57
4.1	Local convergence of random fields	58
4.2	Existence of cluster points	60
4.3	Continuity results	66
4.4	Existence and topological properties of Gibbs measures	71
4.A	Appendix. Standard Borel spaces	73
Chapte	er 5 Specifications with symmetries	81
5.1	Transformations of specifications	81
5.2	Gibbs measures with symmetries	85
Chapte	er 6 Three examples of symmetry breaking	94
6.1	Inhomogeneous Ising chains	95

XII Contents

6.2 The Ising ferromagnet in two dimensions	99
6.3 Shlosman's random staircases	106
Charter 7 Feeting Cibbs manning	114
Chapter 7 Extreme Gibbs measures	114
7.1 Tail triviality and approximation	115
7.2 Some applications	125
7.3 Extreme decomposition	129
7.4 Macroscopic equivalence of Gibbs simplices	136
Chapter 8 Uniqueness	140
8.1 Dobrushin's condition of weak dependence	140
8.2 Further consequences of Dobrushin's condition	153
8.3 Uniqueness in one dimension	164
Chapter 9 Absence of symmetry breaking. Non-existence	168
9.1 Discrete symmetries in one dimension	169
9.2 Continuous symmetries in two dimensions	178
Part II. Markov chains and Gauss fields as Gibbs measures	189
Chapter 10 Markov fields on the integers I	190
10.1 Two-sided and one-sided Markov property	191
10.2 Markov fields which are Markov chains	196
10.3 Uniqueness of the shift-invariant Markov field	204
Chapter 11 Markov fields on the integers II	209
11.1 Boundary laws, uniqueness, and non-existence	210
11.2 The Spitzer-Cox example of phase transition	221
11.3 Kalikow's example of phase transition	228
11.4 Spitzer's example of totally broken shift-invariance	233
Chapter 12 Markov fields on trees	238
12.1 Markov chains and boundary laws	238
12.2 The Ising model on Cayley trees	247
12.2 The Ising model on Cayley trees	
Chapter 13 Gaussian fields	256
13.1 Gauss fields as Gibbs measures	257
13.2 Gibbs measures for Gaussian specifications	267
13.3 The homogeneous case	273
13.A Appendix. Some tools of Gaussian analysis	284

		Contents	XIII
Part III.	Shift-invariant Gibbs measures		289
Chapter	14 Ergodicity		290
14.1	Ergodic random fields		290
	Ergodic Gibbs measures		296
	Appendix. The multidimensional ergodic theorem	•	302
Chapter	15 A variational characterization of Gibbs measure	s	308
15.1	Relative entropy		309
15.2	Specific entropy		312
15.3	Specific energy and free energy		319
15.4	The variational principle		323
Chapter	16 Convex geometry and the phase diagram		328
16.1	The pressure and its tangent functionals		328
	A geometric view of Gibbs measures		333
	Phase transitions with prescribed order parameters		338
	Ubiquity of pure phases		349
Part IV.	Phase transitions in reflection positive models		355
Chapter	17 Reflection positivity		357
17.1	The chessboard estimate		357
17.2	Gibbs distributions with periodic boundary condition	on	364
Chapter	18 Low energy oceans and discrete symmetry break	ing	372
18.1	Percolation of spin patterns		373
	Discrete symmetry breaking at low temperatures		384
	Examples		388
Chapter	19 Phase transitions without symmetry breaking		398
19.1	Potentials with degenerated ground states,		
	and perturbations thereof		398
19.2	Exploiting Sperner's lemma		405
19.3	Models with an entropy-energy conflict		410
19.A	Appendix. Sperner's lemma		421
Chapter	20 Continuous symmetry breaking in N-vector mode	≀ls	423
20.1	Some preliminaries		424
20.2	Spin wave analysis, and spontaneous magnetization	1	429

XIV Contents

Bibliographical Notes	443
References	481
List of Symbols	519
Index	521