2 Resolution Calculus

We start with a general discussion about calculi and théatios to the NP vs.
co-NP problem. Afterwards we specialize to the resolut@iowlus and analyze its par-
ticular properties. Recall th&AT is NP-complete, and thereforSAT as well asTAUT
(the set of propositional tautologies) are co-NP-complsete appendix).

2.1 Calculiand NP versus co-NP

A calculusis understood as a collection of transformations which malate formu-
las or clause sets. A well-known traditional calculus cstssof the usual collection of
rules for producing equivalent formulas, like the assaogdiws, the commutative laws,
the distributive laws, the deMorgan laws, etc. If it is pbssito transform formula,
using the calculug, into the formulaz, we denote this by . G.

In general, given some formuld, there are several possibilities to apply a rule of
the underlying calculus té'. Therefore, a calculus can be considered asraletermin-
istic process (or algorithm). Given an input formuia the nondeterministic algorithm
branches, and each computation branch might yield a differetput formulaG; (such
thatF' ¢ G).

We say that a calculugis correctif F' ¢ G implies thatF” — G is a tautology.

A calculusC is completef for all F, G such thatt” — G is a tautology, it follows
that F' ¢ G. For a complete calculus, this implies that the property thét is a tau-
tology can be proved by showing thiat-- F'. The property off' being unsatisfiable is
equivalent to the property ¢ 0.

A sequence of formulag’ = Fy, Fy, F», ..., F, = G such thatF; . F;,; (for
1=0,1,...,t— 1) is asingle application of a calculus rule, is callegraof (of the fact
that ' — G is a tautology) within the calculus. Furthermoret is thelengthof this
proof.

In the following we will only consider theesolution calculusk. This calculusR is
correct, but it is not complete in the sense defined above &dexythe resolution calcu-
lus isrefutation completas we will show below. This means that for every unsatisfiable
formula I we haveF' % 0. Actually, compared with completeness, this is not a very
strong restriction. Suppose, the goal is to show that G is a tautology. Then instead,
one can show thaf' A =G is unsatisfiable which is equivalent 6’ A =G % 0.

38 CHAPTER 2. RESOLUTION CALCULUS

Additionally, notice that the resolution calcul@ can only be applied to formulas
in CNF, that is, to clause sets. Instead @ffor the generic unsatisfiable formula), one
obtains the empty clause, therefore we writd” -5 0.

It is an interesting observation that there is a certain wayedification for both, the
satisfiability as well as the unsatisfiability of a formula Satisfiability can be certified
by a satisfying assignment. This can be done by a nondetistiajpolynomial-time
algorithm which “guesses” such an assignment. This is th®ioline when showing
that SAT< NP (see appendix about P and NP).

On the other hand, a prodf’ . 0 is a certificate for the fact that is unsatisfi-
able. Also, such a proof can be found by a nondeterminisgjorghm. Put in succinct
mathematical terms:

F e SAT iff da: Fa=1
FeSAT ifft 3R, F,...F,: FleFibe---Fe F,=0

The question remains how many proof steps are necessargue hrat a formula”
(which is unsatisfiable, or which is a tautology) is indeedatrsfiable (resp. a tautology).
It may be expected that in the worst case (i.e. for some famaf a given size) this
requires exponentially in many proof steps. Indeed, for the resolution calculus wk wil
show this in a moment. The expectation is justified by theofeihg theorem.

Theorem
If there is a correct and refutation-complete calculyas well as a polynomial, such
that for every unsatisfiable formula (or clause gétjt is possible to show’ . 0 by
a proof of length at mosi(n) (wheren is the length, or the number of variables,fof
then it follows NP=co-NP.
Proof: The set of unsatisfiable formulaNSAT, as well as the set of tautologies.
TAUT, is co-NP-complete. Therefore, it follows NP = co-NP, if weutd showUNSAT
€ NP (resp.TAUT € NP). But this is what the assumption of the theorem claimereth
is a nondeterministic process (given by the calcdlyisvhich, given an unsatisfiable
formula of sizen permits a proof of unsatisfiability which has length at mest). A
nondeterministic Turing machine can “guess” such a prodfaenify that all steps are
correct, and if so, accept. O
This connection between the question of whether NP = co-NéPtlaa lengths of
proofs for unsatisfiability (or the property of being a tdagy) was first observed in
(Cook, Reckhow, 1979).

2.2 Refutation Completeness

In this section we introduce the resolution calculus in tledad we prove its refuta-
tion completeness.

2.2. REFUTATION COMPLETENESS 39

Definition
Two clauses”; and C, are said to beesolvableif there exists a literal: such that
u € C; andwu € Cs. In this case a third clausg; can be defined, called thiesolvent
of C; andCs, by

Cs = (C1\ {u}) U (G2 \ {T})
If « orw is the variabler we say thatU; was derived fronC'; and(C', by resolving on
x. Also, C7 and(, are called th@arent clausesf Cs.
The following symbolic notation is used to express the situeas described in this

definition. Ch O
N
Cs

When resolving”; from C; and (s, the following semantic property can be easily
verified. If « is an assignment which satisfies bath and C,, that is(C; A Cs) a =
1, thena satisfiesCs too, i.e.C3a = 1. This simple observation is the key for the
correctness of the resolution calculus (see below).

Producing a resolvent is just a single step in a completdutso proof, which we

define next.

Definition

Let F" be a clause set (a formula @NF). A resolution proof(or resolution refutatioh

is a sequence of claus®& = (C4, (s, ..., C;) such that the last clause is the empty
clauseC; = O. Furthermore, foi = 1,2, ..., t eitherC; is one of the clauses froi,

or C; is a resolvent of two clause&s; andC; which appeared earlier in the sequence,

lLe.j,l <i.

Suppose formul&’ consists ofn clauses. Without loss of generality we may assume
in this definition that the firstn clauses of the sequence are the clauseg.oAs the
lengthof the proofR we count the number of clauses which are resolventg, en.

We use this not very suggestive representation of resolygroofs, as a sequence
of clauses according to the definition, mainly for proofreical reasons. A graphic
description of a resolution proof can be given as followsaAsxample, let

F=(@VOAzVYyV2)AETVIVEAETVY) ATV 2)

A resolution refutation of” can be represented as in the figure.

40 CHAPTER 2. RESOLUTION CALCULUS

{z.z} A{zy,2} {7.7,7} Tyt {y,2}

{y} {y}

The next two lemmas will be useful when dealing with resologproofs. The first
lemma shows how an existing resolution proof can be resttiby a partial assignment
such as{u = 1}. The second lemma shows how a resolution proof can be exddnde
adding a literak: into certain clauses.

Resolution Restriction Lemma

Let R = (C1,Cy, ..., Cy), C; = O, be a resolution proof for a set of claugésLet u
be a literal occurring irf". Then there is a resolution proff for F'{u = 1}. This new
resolution proof does not contain any clause with literak =. Further, the length of
R’ is at most the length oR minus the number of clauses Mwhich contain literal
U.

Proof: We construct the desired resolution pr@dfiteratively, fori = 1, ..., ¢, from
the proofR. In every step there are several possibilities: either ldugseC; from R will
be cancelled and does no longer occufdif This happens exactly whene C;. The
second possibility is that a claugg C C; is adopted ifR’. In logical terms this means
thatC! implies C;. This clause”; is either a clause fromi'{u = 1}, or it is a resolvent
of two cIausesCJ’. C C; andC; C (), which have been listed iR’ before, i.ej <[<.
Another possibility is thaC’; is a duplicate of another clausg from R’ that was listed
before (i.ej < i, C} = C)).

1. If C;is a clause fronF’ and does not contaimor =, thenR’ also listsC; at this point,
i.e. Cz/ = C;.

2. If C; is a clause fronf" and containg then we letC! = C; \ {u}.

3. If C; contains the literak (whetherC; comes fromF or is a resolvent), then we don’t
have a clause iR’ at this point (i.e. the clause is cancelled).

2.2. REFUTATION COMPLETENESS 41

4. If C; is the resolvent of two claus€s;, C;, and there exist respective claugésand
C]inR’, and these clauses contain the variable on which they weotves, therC;
is the resolvent of’;, and(.

5. If C; is the resolvent of two clausé&s; and(, and there exist respective clauiéj{s
and (7 in R’, and one of these clauses, @, no longer contains the variable on
which they were resolved, then we lef = C’ (i.e. a duplication). Observe that in
this case we also have/ C), as desired.

6. If C; is the resolvent of two claus&s; andC;, but one of the parent clauses, sy
was cancelled (according to rule 3) because it containégenC; does not contaim
(otherwise rule 3 would have applied). It was the literaiesp.w which was resolved
on in this resolution step. Consequendy,does no longer contaim, and we leC! =
C] (i.e. a duplication). Again, we havw& C C;, as desired.

Since C; does not contain, a corresponding claugg; exists inR'. FromC; C
Cy = O itfollows thatC; = O. By renumbering the non-cancelled clause®Rinand by
listing the duplicate clauses just once, one obtains au#ealrefutation forF'{u = 1}.
O

As an example, we take the resolution proof of the formula
F=@@VOAVyV2))AETVIVEIAETVY) ATV 2)
as presented above. By setting= 0 we obtain
Fla=0} = (2)AlyV2) A GV 2)

The restricted resolution proof, obtained by applying thies of the lemma, has the
following form, where we indicate duplications by a doubfesl

{z} {y, 2} {7,2}

{y} {z}

{y} {y}

42 CHAPTER 2. RESOLUTION CALCULUS

Resolution Expansion Lemma

Let I be a clause set andbe a literal occurring irF'. Let’R’ be a resolution refutation
of F' = F{u = 1}. Then there exists a sequerikeof resolution steps, based on the
clause sef” which either ends witl, like R’, or ends with the unit clausg:}.

Proof: For each claus€' € [F which contains the literaii there exists iR’ a
corresponding claus€’ = C'\ {u}. By reinstallingwz in such clauses — as well as in
all subsequent resolvents — this modification can have fleetehat the final clause
becomes the unit claude}. O

Resolution Theorem

The resolution calculus for clause setsc@rect and refutation completethat is, a
clause sef’ is unsatisfiabléf and only if there exists a resolution refutation bf

Proof: (Correctness) If there exists a resolution refutatiof’p&nd if we assume that
F is satisfiable with some assignmentthen, by the remark given after the definition of
resolution, this assignment also satisfies each resolespécially the last clause which
is the empty clause. But this is impossible. Thereférenust be unsatisfiable.

(Refutation completeness) Conversely,Adbe unsatisfiable. We show by induction
onn = |Var(F)|, the number of variables, thathas a resolution refutation.

If » =0, we havel’ = {0}, and we are done.

If n > 0, letz be an arbitrary variable if". Then both clause set§ := F{x = 0}
andF}; := F{x = 1} are unsatisfiable, too. These clause sets contain atmest
variables. Thereford;, andF7, by the induction hypothesis, have resolution refutations
sayR, andR;.

By reestablishing the original clausesioin R, andR 1, as in the resolution expan-
sion lemma, one obtains two resolution sequences endirtgeitwto unit clausesz}
and{z} (or with O). In a last resolution step {2} {7}

O
the empty clause can be obtained. O
It can be observed that the lendtlh) of the resolution refutation constructed in this

proof satisfies
0, n=>0
I(n) <
2-lln—1)+1, n>0

wheren is the number of variables ifi. This recursion results ilin) < 2" —1. Further-
more, the resolution proof constructed has a tree struciuse calledree resolutionin
the sense that every resolventis used in at most one fugbelution step. In many cases
resolution proofs can be much shorter, especially whendbeayot have a tree structure.

2.2. REFUTATION COMPLETENESS 43

Next, we present an alternative proof for the refutation plateness of resolution
(from a personal communication with Volker Diekert). Wewase that all potential re-
solvents derivable frond” have been constructed (which form a finite set). Let us denote
this set of clauses (i.¢< and all conceivable resolvents) @s This is, G is the closure
of F under resolution. We will show that under the preconditiorg G, a satisfying
assignment foF' can be constructed. This assignment naturally also sat(sfgnce all
clauses inG follow from the clauses if. We start with the empty assignment= (),
and successively add an assignment to each variable. Eevar(F') be an as yet unas-
signed variable. If the unit clauge:'} occurs inG (which preventdz} from being inG,
otherwise alsal € G), then we setv := o U {z = 1}, otherwise, if{z} ¢ G, we set
a:=aU{xr=0}.

In the next step we sé&t := G{z = a} wherea = 1 in the former case, and= 0
in the latter case.

Before we continue with the discussion, let us verify tha thodification ofo: and
of GG satisfies the following invariants:

First, G{z = a} is also closed under resolution. Whenever two clauségin= a}
are resolvable, then the original clauses-imeither contain: nor = (otherwise at least
one of these clauses will be deletedifiz = a}). Therefore, the resolventis also present
in G{z = a}.

Second, it holds thatl ¢ G{x = a}. The empty clause could only appear if, in
the case ofi = 1, the unit-clausdz} was present irfz. But this is impossible, by the
discussion above. The other case 0 is symmetric.

We continue by fixing assignments for variables and plugtiege assignments into
the clause sef. Finally, G = () which corresponds to a tautology. This means fhag
satisfied by the determined assignment to the variables.

Example: Consider the given clause set

F = {{I}, {§7 Z}, {§7y72}7 {yvz}}

We construct every possible resolvent, starting out ffomand obtain the following set:

G =FU{{z}{y. 2} {z v} {z.2, 2} {z.y, 9} {v}. {=. z}. {v, 0} {7. 7. 2} }
Since{z} € G we let the assignment tobe 1, and in the next step we get
Gz =1} = {{h{v. 2} .20 W} {=. 2h {y. 5}
Since{y} ¢ G{x = 1} we sety to 0, and we get
Glr =1Ly=0} = {{z},{z7}}
Since{z} € G{z =1,y = 0} we setz to 1, and we finally get

Glr=1,y=0,2=1} = (0 (tautology)

44 CHAPTER 2. RESOLUTION CALCULUS

This means thafx = 1, y = 0, z = 1} is a satisfying assignment fa.

We have presented both proofs for refutation completeness sach proof provides
a different constructive argument. Under the assumptianAhs unsatisfiable, we have
constructed a resolution refutation tBrin the first proof. Under the assumption that the

empty clause cannot be resolved fragmwe have constructed a satisfying assignment
for F' in the second proof.

Finally, observe that there is an interesting connectidawéen resolution refutations
and BDD'’s (see the appendix). If one turns a resolution ation “upside-down” so that
it starts with the empty clause, the resulting graph can texpreted as a BDD. Each
node in this graph is assigned the variable which was useithéorespective resolution
step. Each path in this graph corresponds to an assignmant it ends in a clause from
F which is falsified by this particular assignment. This cartie between resolution
proofs and BDD'’s can be used to transform lower bound prawfiie size of BDD’s to
lower bound proofs for the length of resolution refutaticgrsd vice versa.

2.3 Unit Clauses, Subsumption and Pure Literals

Inspecting the proof of the resolution completeness thmepiteshould be clear that
in general it is not possible to remove the parent clauses they have been used for a
resolution step. It is still possible that such a parents#anteeds to be used for another
resolution step. In this section several forms of possibhpkfications will be discussed,
in the sense of an equivalent or a sat-equivalent transtooma

Example: The clause set’ = {{z},{7,y},{Z,y}} is unsatisfiable. By resolving the
first two clauses one obtaidg}. After this, it is not possible to remover} since this
clause has to be used for another resolution together wetthird clause of.

In contrast, it is possible to remove the second clausk since this parent clause
{Z,y} is alogical consequence of the resolvént.

Definition
If we have two clause§';, C5 such that”; C O, itis said that the claus@; subsumes
the clause”; (in logical terms, this simply means that — C; is true).

Theorem

If C; subsumesg),, i.e.C; C (5, and both clauses occur in a clauseBethenF and
F\ {C,} are equivalent. That i€/, can be eliminated fron#".

Proof: If F\ {C,} is satisfied by some assignmentthena also satisfies’; which
occurs inf'\ {Cy}, and sinc&”; C Cs, the claus&’; is also satisfied by, and therefore
alsoFa = 1. O

2.3. UNIT CLAUSES, SUBSUMPTION AND PURE LITERALS 45

So it is possible to remove a clause from a clause set witheru fif it is subsumed
by another clause. On the other hand, searching for a clatiéa pairwise subsumption
is relatively expensive. Therefore, often such a test ismptemented. Often it turns out
that the fact of one clause subsuming another clause comoes ‘@utomatically”, as a
side effect, for example during a resolution step with a glatise as resolvent. In this
case (as in the example above) the resolvent subsumes dagafent clauses, and this
parent clause can be removed.

Usually we are content with transformations which are sgiiv@lent. There are
more possibilities to achieve sat-equivalence than toeaehequivalence. The above
example contains the unit clauge}. Using unit propagation (cf. page 18) it is pos-
sible to apply the assignment= 1 and to obtain the sat-equivalent formulgz =
1} = {{y},{"w}}. Now, {y} is also a unit clause (as well 45}). After another unit
propagation one obtaing{x = 1,y = 1} = F{z = 1,y = 0} = {d}, henceF is
unsatisfiable. So we could show unsatisfiability by applying propagation only, with-
out resolution. Later we will see that unit propagation wals successful in the case of
(renamable) Horn formulas.

Another possibility for formula simplification was alreathentioned in the section
on autark assignments. Suppose we hapara literal v which occurs inF’ (possibly at
several places), but the complementary literaloes not occur anywhere ifi. In this
case the formuld’ can be simplified t&"'{u = 1}. The formulasF’ and F'{u = 1} are
sat-equivalent.

Finally, to discuss the case in which a resolution step we®ktautology that is,
a clause which contains a variable together with its complanirhis concerns both a
tautology as parent clause, as well as a tautology as regolve

Consider the following examplefz,, zo, 73} and {73, x3, z4}. It is possible to re-
solve these two clauses using the variabjgroducing the resolven{xy, 73, x3, x4 }.
Another possibility is to use the variablg for resolution and obtain the resolvent
{z1, 29,732, 24}. Note that the resolution rule, as defined, does not allowouggolve
to {x1,z4}. Actually, this would be logically incorrect. Indeed, battsolvents are tau-
tologies. In order to achieve the final goal to derive the grofatuse, there is no progress
in deriving or using a tautology in the resolution proof. Aally, the number of resolu-
tion steps increases unnecessarily. There is no harm, s@fesfutation completeness,
if the use of tautologies in resolution proofs is forbidd@his can be considered as a
simple form of complete resolution restriction, a notioatts considered in the next
section.

Formally, it is not hard to see that “resolution without @alogies” is still a refutation
complete calculus. The statement and the proof of the régnltheorem (page 42) can
be easily adapted, essentially by changing everywhereltreasn proof” to “resolution

46 CHAPTER 2. RESOLUTION CALCULUS

proof without tautologies”. Another way to see this is by wafythe last theorem: a
tautology is subsumed by any other clause, and thus, canrbieaied.

2.4 Strategies and Restrictions

Resolution is anondeterministicalculus. By fixing a particular sequential arrange-
ment of the resolution steps one obtaindederministicalgorithm. The ordering of res-
olution steps in a particular way, thereby obtaining a deteistic process, is called a
(resolution)strategy Since every possible resolution step is performed soonkter,

a strategy still has the property of being refutation congl&he hope is that doing the
resolution steps in a particular order will lead to the enghtyuse somewhat faster.

An example for a strategy is thenit preference strategywhereby resolution steps
involving unit clauses are always done whenever possihiglying this strategy does
not lead to a deterministic algorithm since there are solhaeterministic choices if
no unit resolution step is available, but still, the amoumandeterminism is certainly
restricted.

The DPLL-type algorithms discussed in chapter 4 can be densi as certain types
of resolution strategies since the algorithmic transfdroms done by these algorithms
can be understood as resolution steps.

In contrast, aesolution restrictiormeans that certain resolution steps, if they do not
satisfy certain criteria, are simply forbidden. The adegetis, again, that the scope of
nondeterministic alternatives is restricted. On the negaide, it can be observed that
the proof length might increase as compared to the genesal ca

The following diagram outlines this effect.

F

X

The grey area indicates the restricted nondeterministichespace; the stars indicate
solutions (i.e. the possibility of deriving the empty clajs

Even worse than lengthening the proof is possible: a stresgiction of a calculus
might result in the loss of the (refutation) completenesghé above picture this means
there is no star at all in the grey area. Later we will see amgka of a restriction that
makes resolution incomplete.

2.4. STRATEGIES AND RESTRICTIONS a7

Definition

We define several resolution restrictiomsresolution(or, the positiveresolution re-
striction) means that in each resolution step it is requiinetl one of the parent clauses
has to be positive (i.e. consists of positive literals only)

Similarly, N-resolution(or, thenegativeresolution restriction) means that one of the
parent clauses must consist of negative literals only.

Thelinear resolution restriction(or, linear resolution, for short) requires that the res-
olution proof forms a linear chain. First, a so-calledse clauséras to be selected
from F'. It forms the first element of the chain. From then on eachluésn step uses
the last element of the chain as one of the parent clauses. thé resolution step the
resolvent forms the new last element of the chain.

We show that these resolution restrictions are still réfoitecomplete.

Theorem
P-resolution is refutation complete.

Proof: Let I’ be an unsatisfiable clause set. We show by induction en|Var(F')|
that it is possible to obtain the empty clause by P-resaiugieps only.

(Casen = 0): In this case we have = {O}, and there is nothing to prove.

(Casen > 0): Letx € VarnF). SinceF{z = 1} and F'{z = 0} are unsatisfiable
and contain at most — 1 variables, the induction hypothesis can be applied andyiel
P-resolution proofs starting froth{z = 0} as well as fromF¥{z = 1}. By re-entering
the variabler into the P-refutation of'{z = 0} we obtain a sequence of resolution
steps starting from clauses i which lead to the unit clausgr} (cf. the resolution
expansion lemma). Notice that this is still a P-resolutioesz is a positive literal. Next
we add resolution steps which resolve the resulting unitsgéx} with each clause in
F that containg. Again, these are P-resolution steps. We obtain the clansééz =
1}. Finally, the P-resolution proof of' {x = 1} can be attached which exists by the
induction hypothesis. O

Theorem
N-resolution is refutation complete.

Proof: Interchange the roles of positive and negativandz, as well asF'{z = 0}
andF'{z = 1} in the previous proof. O

48 CHAPTER 2. RESOLUTION CALCULUS

Theorem

Linear resolution is refutation complete.

More precisely: for every unsatisfiable clause Bahere exists a clausé € F such
that the empty clause can be derived by a linear chain ofugsnlsteps, starting with
the base clausé.

Proof: Let F' be unsatisfiable and |16’ C F be a minimally unsatisfiable subset
(i.e. F' is also unsatisfiable, but for every clauSec F’ the clause set” \ {C'} is
satisfiable). We claim that every clauSen F’ can be used as the base clause in a linear
resolution proof. The proof of this claim proceeds againnmuiction on the number
of variablesyp = |Var(F’)|.

Induction basén = 0):

In this case we have’ = {0} andC = 0. There is nothing to prove.

Induction stegn > 0):

Case 1:|C| = 1, henceC' = {u} for some literak.. The formulaF” must have a clause
C’ with w € C’. The clause set”{u = 1} is unsatisfiable and contains at mast- 1
variables. LetF"” be a minimally unsatisfiable subset Bf{u = 1}. In F” there exists
the clause””\ {u}. Consider an assignmentvhich satisfies all clauses i except’".
This assignment exists sinééis minimally unsatisfiable. Sincen = 1, the assignment
« also satisfies all clauses if{u = 1} exceptC’ \ {u}. Therefore, this clause must be
contained inf".

By the induction hypothesis there is a linear resolutiomtafon of F"{u = 1},
based on the clause \ {u}. The desired linear refutation, based@n= {u}, is now
constructed as follows. The first step resol¢éewith C’. The obtained resolvent &' \
{u}. Afterwards we take the linear resolution based’8n {} given by the induction
hypothesis. Each time, in this resolution proof, where mittitial clauses the literal
was eliminated, we re-insert this literal in the proof antbaias the last clause the unit
clause{u} (cf. resolution expansion lemma). In a last step, we resfideagainst the
base clauséu} and obtain the empty clause.

Case 2:|C| > 1.

In this case we choose an arbitrary litetale C and letC’ = C \ {u}. The clause
set F/{u = 0} is unsatisfiable and it contairfg’ as a clause. Let be an assignment
which satisfies all clauses i’ exceptC. This assignment exists sinééis minimally
unsatisfiable. Sincea = 0, the assignment also satisfies all clauses i {u = 0}
exceptC’. Therefore, this clause must be contained in a minimallyatisfable subset
F” of F'{u = 0}. Applying the induction hypothesis afi” gives a linear resolution of
F'{u = 0} based on the clausé’. By re-inserting the literal: (cf. resolution expan-
sion lemma) we obtain a linear resolution Bfbased onC' which ends with the unit
clause{u}.

2.4. STRATEGIES AND RESTRICTIONS 49

Now (F'\ {C}) U {{u}} is unsatisfiable (observe thét} subsumeg’) and /"’ \
{C} is satisfiable. Therefore, Case 1 can be used which implasathinear resolution
refutation of(£” \ {C'}) U {{u}} exists based ofw}. By attaching this refutation to the
one obtained earlier which leads{te} we obtain the desired linear resolution refutation
for F' based on the clause. O

In the following we define and analyBavis-Putnam resolutiofcf. (Davis, Putnam,
1960),DP-resolutionfor short), which can be used and extended to define an digurit
called Davis-Putnam algorithnor DP algorithmfor short. The particular use of reso-
lution here has both the character of a strategy and a rasitriclt is partly a strategy
because one needs to fix a particular order of the variabspply the basic steps of
DP-resolution in this order. The order can be dynamicallgdiduring the process.

In a basic step in DP-resolution we first produce all resdlvéom a given clause
set I’ which can be derived by a particular fixed variablgas resolution variable).
Afterwards all parent clauses of these resolvents are mdited resulting in a new clause
set which does no longer contain the variable

Let us describe this process more formally. E&tC F' be those clauses il which
containz or its complement. Let R,.(F') be the set of resolvents which can be obtained
from F, by using variabler for resolution. Observe that no clause/if(F') contains
x anymore. The set of clausésfrom which we started will now be replaced k¥ U
Ro(F))\ F.

Theorem (completeness of DP-resolution)
The clause sef' is satisfiable if and only i " U R, (F)) \ F, is satisfiable.

Proof: If F'is satisfiable, then so 8 U R, (F'), by the correctness of the resolution
calculus. Therefore, als@F' U R,.(F')) \ F, is satisfiable.

Conversely, supposeF' U R,(F)) \ F, is satisfiable by some assignmenfwhich
does not involver). Suppose there is a clauseu {z} in F, not being satisfied by.
Let I’ C F, be the set of clauses ifi, which contain the literaf. The clause” U {x}
can be resolved with every clausefih(using variabler) and the resolvent then belongs
to R, (F'). By assumption, all these resolvents are satisfied.bjhereforeall clauses
in I are satisfied by (without an assignment to— otherwisex would satisfyC'). By
settingl = a U {z = 1}, we obtain an assignment that satisfiés

An analogous argument holds if there is a cladse {z} in F) that is not satisfied
by a. O

Let us consider an example. A formuladnCNF has100 variables and consists of
400 clauses, each with literals. Therefore, there ai00 occurrences of literals in the
formula. On average, a variable occurd #90/100 = 12 clauses. Suppose thahas6
positive instances anginegative instances in the clauses. Then we haye= 12 and

50 CHAPTER 2. RESOLUTION CALCULUS

|R.(F)| =6 -6 = 36. After a basic DP-stef’ is replaced by(F' U R,(F)) \ F, . This
new clause set ha¥) variables andl00 + 36 — 12 = 424 clauses of which at most
clauses might be in-CNF.

It might happen that some of the clausedi(F') coincide with each other or with
clauses being already i, so we do not actually need to add these clauses. Furthermore
it is possible that a clause iR, (') contains complementary literals stemming from its
two parent clauses. This is a tautology clause and can bénelied without harm (cf.
page 45). Therefore, it might happen (not so seldom) that btaim a clause set with
fewer variables than befo@nd with no more clauses than before. Because of this, this
procedure has been adapted foeprocessinglause sets before they become input to
SOMeSAT solver.

It remains to present the DP algorithm in pseudo code. Hesegims advantageous
to insert unit propagation (cf. page 18) between each baBistep.

proc DavisPutnam ' : clause set)bool

/l'yields1, if F'is satisfiable, and otherwise

if O € F thenreturn 0

if I’ =(then return 1

while (£ contains a unit-clausgu}) do F := F{u =1}
Select a variable € Var(F')

return DavisPutnam (F U R.(F)) \ F.)

Although the number of clauses might decrease during a Bp-tte above exam-
ple shows that it might also happen that the number of clanmeesases dramatically.
Therefore, heuristics for deciding which variable to seteext play an important role
here. On the other hand, once the last variables have to béetea)| it is clear that the
number of clauses (which can just contain the remainingaées) will decrease again,
just as rapidly. It seems very difficult to prove theoretibaunds on the number of
clauses which have to be handled during the course of a Diutes). Computer exper-
iments show that other approaches like DPLL and its successe more efficient than
Davis-Putnam.

Next we define two resolution restrictions which lose thefutation completeness.
Nevertheless they can be useful, especially in the confiebdioon formulas as can be
seen in the next chapter.

Definition

Input resolutiorrequires that at least one of the parent clauses in a resolstep is an
input clause, that is, it comes from the original clause/set

Theunit resolutionrestriction requires that at least one of the parent claunsaseso-
lution step is a unit clause.

2.4. STRATEGIES AND RESTRICTIONS 51

These both resolution restrictions are incomplete as caseba by the following
example.

{zw} {zyy {7yt {79}

N/

{7}

——
&<
—

O

This resolution proof of length is the shortest possible, but it does not satisfy any
of the defined restrictions. The following proof

{zyy Azyy {Zyr {739}

N\

{z}

O

is a P-resolution, as well as a linear resolution, but it hexu resolution steps.
It is easy to check that neither a unit resolution nor an impsolution is possible.
But we observe the following.

Theorem

A clause set” has a refutation with the unit resolution restrictiband only if it has
a resolution refutation obeying the input resolution riestn.

Proof: We show by induction on the number of variablesFirthat every unit res-
olution proof can be transformed into an input resolutioogbr and vice versa. This is
obvious forn = 0 andn = 1.

Letn > 1. First we argue from unit to input. We assume that a unit tesmi proof
exists. Therefore, in the clause géthere must exist a unit clauge:}. We restrict the
clause set and its resolution proof ¥« = 1} according to the resolution restriction
lemma. The restricted proof is still a unit resolution prd®y the induction hypothesis
there is an input resolution proof féf{u = 1}. By re-inserting the litera&; which was
removed before, into the clauses and their respectivevests (cf. resolution expanding

52 CHAPTER 2. RESOLUTION CALCULUS

lemma) we obtain a sequence of input resolution stepsifgdrom F') which ends with
the clausgu}. Finally, a last input resolution step wif} yields the empty clause.
Now, conversely, suppose we have an input resolution pof’f In the very last
resolution step, two unit clauses are resolved produciagthpty clause as resolvent.
At least one of these, sdy:}, has to stem from the input. Again, consider'{u = 1}
and the restricted resolution proof which is still an inpegalution. By the induction
hypothesis this proof can be transformed to a unit resalytimof for F'{u = 1}. We
obtain the desired unit resolution proof for the originahhalla F' as follows. First, we
start by resolving each clause in which containsz with the unit-clause{«}. Now
we have all clauses i#'{u = 1} available and can add the unit resolution proof of
F{u = 1} which leads to the empty clause. O

2.5 Exponential Lower Bounds for the Length of Reso-
lution Proofs

In this chapter we show that the length of the refutationseofaen formulas must be
exponential with respect to the formula size. The clause’$ét is especially difficult
to refute for the resolution calculus. This set of clause®das thepigeonhole principle
from Dirichlet as a Boolean formula: if + 1 pigeons are placed im pigeonholes, then
at least one pigeonhole must contain at least two pigeonsdéfiee an unsatisfiable
formula when we postulate that thet 1 pigeons can be placed in such a way that each
pigeonhole contains at most one pigeon. We use for this thi@blasz; ; in the formula,
interpreting that the variable takes the valughen pigeon is placed in pigeonholg.

Definition
The pigeonhole set of clausé¥7,, is defined for every. > 0 as follows: On the one
hand fori =0, 1, ...,n the clauses

(i1 VgV Va,)

indicate that “pigeorn must be placed in pigeonholeor 2 or ... orn.”
On the other hand, we have for every= 1,2, ..., n the set of("}") clauses

(Tog V T1j), (Tog vV T25), .-, (Tac1j V Tnj)
indicating that “in pigeonholg at most one pigeon can be placed.”

It is clear that one cannot plage+ 1 pigeons inn pigeonholes in this way, and
therefore the set of clausé¥7,, is unsatisfiable. We observe thati,, contains: - (n +
1) = O(n?) Boolean variables and hés + 1) + n - ("}') = O(n®) clauses.

2.5 LOWER BOUNDS FOR RESOLUTION PROOFS 53

The following is a resolution refutation aP H, (that is,3 pigeons do not fit ir2
pigeonholes):

(Toz V T12) (w01 V @02) (11 V 212) (Tox V711)

O

From this example one already can get the feeling that suefutation is (and has
to be) complex. The following theorem proves this.

Theorem

The length of every resolution refutation BfH,, is at leas™/?°.

Let £ be the number of variables amd the number of clauses IR H,,. This result
says that the length of a resolution refutation fok,, is at leas2(VE), respectively
9Q(Ym)_

Proof: Let us suppose that there is a resolution refutafor (K, Ky, ..., K;),
K, = 0O, of PH, with s < 2"/?9, We associate with every claugé in R a clause
K, by substituting ink every negative literat; ; by the set of positive literals; ; for
k # 7. In the following we will call a clausd{ in R large, if the associated clauseé
contains at least(n + 1)/10 (positive) literals. Let- be the number of large clauses in
the resolution refutatiof®. Of course; < s holds. There must be at least(n +1)/10
literals in ther many clauses associated with the large clauses. Therdfere, has to
be a literalz; ;, that appears in at least10 such clauses. This is also a consequence of
the pigeonhole principle. By applying step by step the feitgy partial assignment to
R, according to the Resolution Restriction Lemma,

{rij =1 U{zip, =0k #j}U{z; =0|1+#1}

54 CHAPTER 2. RESOLUTION CALCULUS

we obtain a resolution refutation fd?H,,_, since the assignments mentioned above
“freeze” the correspondence from pigeio pigeonholej, and only a resolution refuta-
tion of a PH,,_,-formula remains. Pigeoinand pigeonholg do no longer appear in this
PH,_,-formula. Besides, because of this action, as one can irder the Resolution
Restriction Lemma, at leasf 10 large clause# are eliminated from the new resolution
refutation for PH,,_;. This is because from this assignment either the positteeali
x;; was set tal in K, or a negative literal of the form, i, £ # j, was set o). After
such a restriction step, the obtained resolution refutafit P H,,_; contains at most
9r/10 < 9s/10 large clauses. Continuing in this way, eliminate in eachp sté&action
of at least one tenth of the remaining large clauses, so fteatat mostiog,,,, s many
restriction steps, no large clauses are left. At this pomtave to deal with a resolution
refutation forP H,,, satisfying

n' > n—1logyyes >n—1logyg 2720 > 0.671-n.

This means that all (associated) clauBem the resulting resolution refutation fétH,,,
have fewer tham(n + 1)/10, and therefore also fewer than'(n’ 4 1)/9 literals. The
following lemma shows that this is a contradiction. This liep that our hypothesis
s < 2"/ is wrong, and the theorem is proven. 0

Lemma

In every resolution refutation faP H,,, there must be a claug&, so that the associated
clauseC, contains at leastm(m + 1)/9 many literals.

Proof. LetR be a resolution refutation faP H,,,.

An assignmenty is called k-critical, when it assigns to every pigeon except for
pigeonk exactly one pigeonhole and no two pigeons are assigned mhe Isale. More
formally: « is k-critical, if there is a bijective functiorf from {0,1,...,m} \ {k} to
{1,2,...,m}, so that we have

o(zs,) = { 1, if f(i)=

0, otherwise

We define thesignificanceof a clause” in R, abbreviated by (C'), as follows:

NE

o(C) = [there is a&-critical assignment, that falsifies |

b
Il

0

The square brackets express an indicator function: whempribygosition between the
brackets holds, then its valuelisotherwise it i9. It is clear, that the initial clauses in
PH,, have significancé or 0. The empty clause, at the end of the resolution refutation
R, has significancen + 1. Moreover, wher(' is the resolvent of two clausé&s,, C5,

2.5 LOWER BOUNDS FOR RESOLUTION PROOFS 95

having significance; ands,, then the significance df' is at mosts; + s3, since every
assignment that falsifieS, falsifies alsoC; or 5. In other words: there can be no as-
signment that falsifie§’, while satisfying bothC'; andC5. From this it follows that there
must be a clausé€, in R with significances e [, @]. One can choose far,
the first claus& in R with o(C) > ™. Consider an/zirbitrary-critical assignment,
falsifying C, (and therefore also the associated clafige According to the definition
of o(C), one can choose such an assignmentdiifferent ways, or in other words, for
s manyk’s. Let ;7 be such thaall j-critical assignments satisfy the clausg(and there-
fore alsof?;). Such aj can be chosen im + 1 — s different ways; there are therefore
s+ (m+ 1 — s) many such(k, j) combinations. We modifyx in one position, so that
it mutates to g-critical assignment’: instead of not assigning pigednany hole and
assigningj one pigeonhole, sal o’ assigns the holéto the pigeonk, while ; does
not receive any pigeonhole; apart from this modificatiorréhis no other difference be-
tweena’ anda. As a consequence of the modificatieri,satisfies the claus€,. This
implies that the literal:,; must occur in@. On can prove in this way the existence
of s - (m + 1 — s) many literals inC. Observe that for a fixe#-critical assignment
and changing values gf also the values for are different. Froms € [T”T“, 2(’”—3“)] it

follows, thats - (m + 1 — s) > 2201 and this proves the lemma. m

This exponential lower bound for the set of clauged,, applies, of course, also
to all algorithms proceeding in a way that can be interpretethe implementation of
resolution steps (for example the DP algorithm). Such @gms require exponential
running time when the input i® H,,. Because of thisPH,, is frequently used as an
input benchmark for testin§AT solvers.

The clause sétH,, contains clauses of size One may wonder whether this fact was
necessary to derive the exponential proof-length lowendpar whether the result can
still be obtained when the original clause set has only esws size at mosi, instead.
Notice that clauses of sizeare certainly not sufficient because the number of potential
resolvents is polynomial in this case, cf. page 64.

A clause of sizer > 3, like (z; Vx5 V - -+ V x,,), can be split into several clauses of
size3 by introducing new auxiliary variableg:

(x1 Ve Vy) ANV asVy) AV eaVys) A A Un—aVEn_oVYn_3)AUn_—3VTn_1VTy,)

This construction leads to a sat-equivalent formula andit also be applied in the
case of theP H,, clauses. This is nothing else as a reduction flGMF-SAT to 3-SAT.
For the above proof still to go through, one needs to redeffiaedncept of &-critical
assignment. Apart from the assignment of theariables which is still defined as before,
the assignment of the auxiliagyvariables is chosen such that a maximum number of the
3-CNF clauses above are satisfied. Notice thaBt#@&\F clauses which can be obtained
from the original clause

(ig VgV - Vx,)

56 CHAPTER 2. RESOLUTION CALCULUS

are all satisfied by &-critical assignment, if # k. Therefore, the property tha{C') <
1 for all initial clause' is still valid. This property is crucial for the proof.

A different method, based on Craig interpolants, is considienext for obtaining
lower bounds for the length of resolution refutations. §sainterpolation Theorem says
that for every tautology of the kind' — G there must be a formuls, containing only
the variables common té' and G, so that both# — [and/ — G hold. We show
that it is possible to construct a circuit férfrom a given resolution refutatioR for
-(F — @), that is, theCNF version of this formula. This circuit has approximately
the same size aR. From a lower bound for the circuit size o6fit follows then a lower
bound for the length of a resolution refutation fefF' — G). The formula—(F — G)
is equivalent toF’ A —~G. We can interpret an interpolant fér — G as a circuitC' over
the variablesvar(F') N Var(G), which for every possible input decides whethéror
-G are falsified (at least one of both formulas must be false) dérete byA and B
the CNF for F and—G respectively. The gates of circuit are functions from the set
{0,1,V, A, sel}. We recall that the selector function (also caliethen-else€unction or
ite function) sel : {0,1}* — {0,1} is defined as

y ifz=0

sel(z,y,z) = { i1
Theorem
Let R be a resolution refutation of the set of claugkes B (defined as described above
from a tautologyF" — G). There is then a Boolean circuit over the set of variables
Var(A) N Var(B), which for every assignment with Var(o) = Var(A) N Van B)
satisfies the following conditions:

Ca =0 = Aais unsatisfiable, and

Ca =1 = Bais unsatisfiable.
Moreover, the circuit” has at mosO(|R|) many gates.

Proof: In order to construct the circuif’, we use the structure of the resolution
refutationR = (K;,...,K;) for the set of clausesl U B. Let Var(A) N VarB) =
{z1,...,2,}, Van(A) \ VarB) = {v1,...,y,}, and VanB) \ VarnA) = {z,...,2}.
We denote these sets awvariablesy-variables, and-variables.

We denote by the conjunction of the clauses iU B. We know as a consequence
of the Resolution Restriction Lemma that for each assignmen { z; = ay,...,z, =
a,} of thez-variables, there is a resolution refutati®n for Ha. The clauses ifR,, do
not contain any-variables. Moreover, a single clauseRp can contain only-variables
or z-variables, but not both. This holds because a clause tmios at the same time
bothy-variables and-variables, can only happen after a resolution of-arariable, and
such resolution steps cannot exist/,. Considering this, we call a claug€ € R,

2.5 LOWER BOUNDS FOR RESOLUTION PROOFS 57

a y-clause, if it only containg-variables, or ifK; = O and K can be reached from

a y-clause. Thex-clauses are defined in a similar way. The empty clakisen R is
transformed into a clausk; in R,,: it is either ay-clause or a-clause. In the first case
we have a refutation afla as part froniR,, and in the second case a refutationff.

In other words, the decision of wheth&?, is ay-clause or &-clause can be used as an
interpolant forA U B. The circuitC' will be constructed based on this idea. The clause
C has ther-variables{x, ..., z,} as inputs, and for each claugg in R a gatey; in C

is defined. The following properties hold for each assignmeof the z-variables:

1. If K is ay-clause inR,,, theng; gets valud in C« and
2. If K] is az-clause inR,,, theng; gets valuel in Ca.

The circuitC then has exactly gates over the bade/, A, sel} (see the appendix on
circuits) and when these conditions hold apds the output gate, thefi computes an
interpolant. The gates @f are constructed as follows:

For the initial clauses iR, if K; € A, theng; is the constani, and if K; € B then
g; 1S the constant.

In casek; is the resolvent of two clausés;, K, and the variable which is resolved
for is anz-variablezy, theng; = sel(zy, g;, 91)-

In casek; is the resolvent of two clausds;, K;, and the variable which is resolved
for is ay-variable, thery; = g; A g;.

In casek; is the resolvent of two clausds;, K;, and the variable which is resolved
for is az-variable, thery, = g, V g;.

Let o be an assignment of thevariables and lek’! be ay-clause inR,,. We prove
by induction overi that g; takes the valu@. If K; is an initial clause, thep; takes the
value(for each assignment. In casg is obtained by resolution of the variahbig from
the parent clause&; and K, (j,! < i) andz;, € Kj, then, depending on whether the
assignmeniv assigns variable;, with 1 or with 0, so isK; = Kj or Kj = K, (cf. Rule
6 in the Resolution Restriction Lemma). We are dealing irhlmatses with g-clause
(otherwiseK’; and K; were noty-clauses) and because of the induction hypothesis, the
value of g, (respectivelyy;) is 0. Thesel function computes the correct value fgr In
casek; is obtained by resolution of the variabjefrom the parent clauses; and &,
sinceK; is ay-clause, at least one of the clauges K; must be ay-clause. The value
of g; = g; A g, under the assignmentis then0. The case for the-clauses is similar]

If the x-variables only appear positively in the clausesdinor only negatively in
the clauses imB, then the construction af’ in the previous theorem can be modified
in such a way, that’ is a monotone circuit (that is, it contains only gates from $let
{0,1, A, V}). This is very useful since there exist strong lower bouratsnionotone
circuits. Such lower bounds can then be transformed intetdunds for the length of
resolution refutations for certain formulas.

58 CHAPTER 2. RESOLUTION CALCULUS

Theorem
Let R be a resolution refutation of the set of clauses B. If the variablesvar(A) N
Var(B) appear only positively in the clauses 4f respectively only negatively in the
clauses ofB, then there is a monotone Boolean ciratiibver the variableyan A) N
Var(B) such that for every assignmenbf Var(C') satisfies the following conditions:
Ca =0 = Aais unsatisfiable, or
Ca =1 = Bais unsatisfiable.
Moreover, circuitC' has at mosfR | gates from the setv, A}.

Proof: Assume that the-variables appear only positively in the clausesioiVhen
a negatedc-variable appears in a clauge, then we get for every assignmemtthat
K| cannot be a-clause. Theel gates from the previous proof are not monotone: they
are introduced in one of the cases in the constructiofi.ofVe transform this case in
the following way: if K; is obtained by resolution of variablg, from the two clauses
K;, K, andzy, is anz-variable andr;, € K, theng;, = x;, V g;.

Let o be an assignment of thevariables. Assume thdt! is ay-clause or a-clause
in R, (thatisK was not eliminated ifR,). Whenz,, is assigned valug, thenk! = K]
(cf. Rule 6 in the Resolution Restriction Lemma). Singee K, K| cannot be &-
clause and<! is then az-clause. The value af; is defined as;, VV g; = 1. Whenz, is
assigned value, thenK} = K. Accordingly we have thaj; equalsy;.

The case in which the-variables only appear negated in thelauses, is symmetric.

O

We give as an example two families of formuldsandG, satisfying thatr” — G is a
tautology, for which there can be only monotone interpdarfitexponential size. These
formulas are based on the clique function defined next.

We say that an undirected graphwith n vertices is an(n, k)-clique if G contains
a single clique withk vertices and does not have any further edges. Théatgsn — k
isolated vertices.

We say that? is an(n, k — 1)-coloring, if the vertices of7 can be partitioned ik — 1
disjoint sets, so that no edges join vertices from the samdseall the edges between
the vertices of different sets are present.

It can be easily observed that for evéryif GG is an(n, k)-clique, thenGG cannot be
an(n, k — 1)-coloring.

Let Clique,,; : {0, 1}(3) — {0,1} be the Boolean function with variables ;,

1 <i < j < n, taking valuel if the values of the variables encode an undirected graph
G containing a clique of sizk (and taking valu® otherwise).

The way in which the input variables encode a graph shouldtieegreted as; ; = 1
if and only if there is an edge between the verticasd; in G. We observe thatlique,, ;.
is a monotone function.

2.5 LOWER BOUNDS FOR RESOLUTION PROOFS 59

In (Razborov, 1985) an exponential lower bound for the sizevery monotone
circuit for the clique functiorClique,, ,,1,» was proven. The proof of this lower bound can
be extended to other functions in the following way:dgt . be any monotone Boolean
function on the variables = (z; ;)1<i<j<», €ncoding a graply, with n vertices, and
satisfying @, »(G.) = 1, if G, is an(n, k)-clique, and@,, x(G.) = 0, if G, is an
(n, k—1)-coloring (the value of the function is irrelevant in all thémer cases). It follows
then fork = n'/* and some > 0, that every monotone Boolean circuit computifig.
must have at leagf*(") gates.

We consider two types of formulds, (=, y) andG,, x(z, z), respectively, expressing
that a graphy, encoded in the:-variables contains a clique of sizeand is(k — 1)-
colorable. The formuld, . (z,y) — =G, x(z, 2) is a tautology and because of the In-
terpolation Theorem there must be an interpolant for theéda. The existence af;, ;.
and G, follows from the Cook-Levin Theorem (NP-completenessS@{T). We give
nevertheless an explicit definition of the formulas in ortdelbe able to estimate its size
and that of the interpolant.

The formulaF;, ;(z,y) contains the variables = {z; ; | 1 <i < j<n} andy =
{yis |1 <i<n,1<I[<Ek}. Thez-variables encode the graph and variapleis 1, if
vertex: is thel-th vertex in thek-clique. £, ;, is the conjunction of the following sub-
formulas:

\/(y“ ANYjm) = xij 1<i<j<n

I,m
expressing that in case the verticeend; are both in the clique, then there must be an
edge between them:

Vi 1<i<k

“(yaNy) 1<i<ji<n1<I<k

1<
Wit ANYim) 1<i<n1<l<m<k

These formulas express that exactly one vertex ig-thevertex in the clique, and that
every vertex appears in the clique at most once.

The formulaG,, ;(x, z) has the variables = {z;; | 1 <i < j < n}in the same
way asF, ;, and besides = {z;; | 1 < i < n,1 <[< k — 1}. Thex-variables
encode the graph and the variableis 1 if and only if vertex: has colorl. G, is the
conjunction of the following sub-formulas:

Tij — /\(Zz',l —z) 1<i<j<n
I

expressing that in case there is an edge betwesamd 7, then: and j have different
colors, and

\/Zi,l 1<1<n
1

60 CHAPTER 2. RESOLUTION CALCULUS

“(zigNzim) 1<i<n, 1<l<m<k-1

Ve 1<1<k—1
These formulas express that every vertex has exactly ooe ewmid that there is at least
one vertex for each color.

The formulaF, x(z,y) A G,x(z, 2) is unsatisfiable. This formula can be written
in CNF, without becoming much larger. Its length can be boundednby= O(n?).
Moreover, it can be observed that theariables only appear positively in t&formula.
This formula satisfies the conditions of the theorem for thestruction of monotone
interpolants out of resolution refutations.

It follows from the lower bound for monotone circuits, thaeey monotone circuit
computing an interpolant for the formulds ,(z,y) andG,, x(z, 2) for k = n'/*, must
have siz&®(™") for some= > 0. From the previous theorem it follows then, tB&t™) is
also a lower bound for the size of a resolution refutatio®pf/+(z, y) A G,, ,1/4(z, 2).

The first exponential size lower bound for resolution retfotss was proven by
(Haken, 1985). The proof given here is an adaptation of thek wb(Beame and Pitassi,
1996). The proof using Craig interpolants follows from therks of (Pudlak, 1997) and
(Krajicek, 1994), which rely on a lower bound for the sizensbnotone circuits from
(Razborov, 1985). More constructions for formulas havixgamentially long resolution
refutations have been given, based for example on expamdphg (Urquhart, 1987),
(Schoning, 1997), or on random formulas (as in chapter f7)CGhvatal, Szemerédi,
1988).

