
2 Resolution Calculus

We start with a general discussion about calculi and their relation to the NP vs.
co-NP problem. Afterwards we specialize to the resolution calculus and analyze its par-
ticular properties. Recall thatSAT is NP-complete, and therefore,SAT as well asTAUT
(the set of propositional tautologies) are co-NP-complete(see appendix).

2.1 Calculi and NP versus co-NP

A calculusis understood as a collection of transformations which manipulate formu-
las or clause sets. A well-known traditional calculus consists of the usual collection of
rules for producing equivalent formulas, like the associative laws, the commutative laws,
the distributive laws, the deMorgan laws, etc. If it is possible to transform formulaF ,
using the calculusC, into the formulaG, we denote this byF ⊢C G.

In general, given some formulaF , there are several possibilities to apply a rule of
the underlying calculus toF . Therefore, a calculus can be considered as anondetermin-

istic process (or algorithm). Given an input formulaF , the nondeterministic algorithm
branches, and each computation branch might yield a different output formulaG (such
thatF ⊢C G).

We say that a calculusC is correct if F ⊢C G implies thatF → G is a tautology.

A calculusC is completeif for all F, G such thatF → G is a tautology, it follows
thatF ⊢C G. For a complete calculusC, this implies that the property thatF is a tau-
tology can be proved by showing that1 ⊢C F . The property ofF being unsatisfiable is
equivalent to the propertyF ⊢C 0.

A sequence of formulasF = F0, F1, F2, . . . , Ft = G such thatFi ⊢C Fi+1 (for
i = 0, 1, . . . , t− 1) is a single application of a calculus rule, is called aproof (of the fact
that F → G is a tautology) within the calculusC. Furthermore,t is the lengthof this
proof.

In the following we will only consider theresolution calculusR. This calculusR is
correct, but it is not complete in the sense defined above. However, the resolution calcu-
lus isrefutation completeas we will show below. This means that for every unsatisfiable
formulaF we haveF ⊢R 0. Actually, compared with completeness, this is not a very
strong restriction. Suppose, the goal is to show thatF → G is a tautology. Then instead,
one can show thatF ∧ ¬G is unsatisfiable which is equivalent to(F ∧ ¬G) ⊢R 0.

38 CHAPTER 2. RESOLUTION CALCULUS

Additionally, notice that the resolution calculusR can only be applied to formulas
in CNF, that is, to clause sets. Instead of0 (for the generic unsatisfiable formula), one
obtains the empty clause✷, therefore we writeF ⊢R ✷.

It is an interesting observation that there is a certain way of certification for both, the
satisfiability as well as the unsatisfiability of a formulaF . Satisfiability can be certified
by a satisfying assignment. This can be done by a nondeterministic, polynomial-time
algorithm which “guesses” such an assignment. This is the bottom line when showing
that SAT∈NP (see appendix about P and NP).

On the other hand, a proofF ⊢C 0 is a certificate for the fact thatF is unsatisfi-
able. Also, such a proof can be found by a nondeterministic algorithm. Put in succinct
mathematical terms:

F ∈ SAT iff ∃α : Fα = 1

F ∈ SAT iff ∃F1, F2, . . . Ft : F ⊢C F1 ⊢C · · · ⊢C Ft = 0

The question remains how many proof steps are necessary to prove that a formulaF
(which is unsatisfiable, or which is a tautology) is indeed unsatisfiable (resp. a tautology).
It may be expected that in the worst case (i.e. for some formulas of a given sizen) this
requires exponentially inn many proof steps. Indeed, for the resolution calculus we will
show this in a moment. The expectation is justified by the following theorem.

Theorem

If there is a correct and refutation-complete calculusC, as well as a polynomialp, such
that for every unsatisfiable formula (or clause set)F it is possible to showF ⊢C 0 by
a proof of length at mostp(n) (wheren is the length, or the number of variables, ofF)
then it follows NP= co-NP.

Proof: The set of unsatisfiable formulas,UNSAT, as well as the set of tautologies.
TAUT, is co-NP-complete. Therefore, it follows NP = co-NP, if we could showUNSAT
∈ NP (resp.TAUT ∈ NP). But this is what the assumption of the theorem claims: there
is a nondeterministic process (given by the calculusC) which, given an unsatisfiable
formula of sizen permits a proof of unsatisfiability which has length at mostp(n). A
nondeterministic Turing machine can “guess” such a proof and verify that all steps are
correct, and if so, accept. ✷

This connection between the question of whether NP = co-NP and the lengths of
proofs for unsatisfiability (or the property of being a tautology) was first observed in
(Cook, Reckhow, 1979).

2.2 Refutation Completeness

In this section we introduce the resolution calculus in detail, and we prove its refuta-
tion completeness.

2.2. REFUTATION COMPLETENESS 39

Definition

Two clausesC1 andC2 are said to beresolvableif there exists a literalu such that
u ∈ C1 and u ∈ C2. In this case a third clauseC3 can be defined, called theresolvent

of C1 andC2, by
C3 = (C1 \ {u}) ∪ (C2 \ {u})

If u or u is the variablex we say thatC3 was derived fromC1 andC2 by resolving on

x. Also,C1 andC2 are called theparent clausesof C3.
The following symbolic notation is used to express the situation as described in this
definition.

❅❅��
C3

C1 C2

When resolvingC3 from C1 andC2, the following semantic property can be easily
verified. If α is an assignment which satisfies bothC1 andC2, that is(C1 ∧ C2) α =

1, thenα satisfiesC3 too, i.e.C3 α = 1. This simple observation is the key for the
correctness of the resolution calculus (see below).

Producing a resolvent is just a single step in a complete resolution proof, which we
define next.

Definition

Let F be a clause set (a formula inCNF). A resolution proof(or resolution refutation)
is a sequence of clausesR = (C1, C2, . . . , Ct) such that the last clause is the empty
clause:Ct = ✷. Furthermore, fori = 1, 2, . . . , t eitherCi is one of the clauses fromF ,
or Ci is a resolvent of two clausesCj andCl which appeared earlier in the sequence,
i.e. j, l < i.

Suppose formulaF consists ofm clauses. Without loss of generality we may assume
in this definition that the firstm clauses of the sequence are the clauses ofF . As the
lengthof the proofR we count the number of clauses which are resolvents, i.e.t − m.

We use this not very suggestive representation of resolution proofs, as a sequence
of clauses according to the definition, mainly for proof-technical reasons. A graphic
description of a resolution proof can be given as follows. Asan example, let

F = (x ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y) ∧ (y ∨ z)

A resolution refutation ofF can be represented as in the figure.

40 CHAPTER 2. RESOLUTION CALCULUS

✷

❩
❩

❩
❩✚

✚
✚

✚
{y} {y}

❜❜❜❜❜❜

{x, y}
❏

❏
❏

❏
❏

✡
✡

✡
✡
✡

{x, z} {x, y, z}

{y, z}

❍❍❍❍❍❍❍❍❍❍❍✔
✔
✔
✔
✔✔

{x, y, z}

✱
✱

✱
✱

✱
✱

✱
✱

✱
✱

✱
✱
{x, y}

❜❜❜❜❜❜�
�

�
�

�
�

�
�

�
�
{y, z}

The next two lemmas will be useful when dealing with resolution proofs. The first
lemma shows how an existing resolution proof can be restricted by a partial assignment
such as{u = 1}. The second lemma shows how a resolution proof can be extended by
adding a literalu into certain clauses.

Resolution Restriction Lemma

Let R = (C1, C2, . . . , Ct), Ct = ✷, be a resolution proof for a set of clausesF . Let u
be a literal occurring inF . Then there is a resolution proofR′ for F{u = 1}. This new
resolution proof does not contain any clause with literalu or u. Further, the length of
R′ is at most the length ofR minus the number of clauses inF which contain literal
u.

Proof: We construct the desired resolution proofR′ iteratively, fori = 1, . . . , t, from
the proofR. In every step there are several possibilities: either the clauseCi fromR will
be cancelled and does no longer occur inR′. This happens exactly whenu ∈ Ci. The
second possibility is that a clauseC ′

i ⊆ Ci is adopted inR′. In logical terms this means
thatC ′

i impliesCi. This clauseCi is either a clause fromF{u = 1}, or it is a resolvent
of two clausesC ′

j ⊆ Cj andC ′
l ⊆ Cl, which have been listed inR′ before, i.e.j < l < i.

Another possibility is thatC ′
i is a duplicate of another clauseC ′

j from R′ that was listed
before (i.e.j < i, C ′

j = C ′
i).

1. If Ci is a clause fromF and does not containu or u, thenR′ also listsCi at this point,
i.e. C ′

i = Ci.

2. If Ci is a clause fromF and containsu then we letC ′
i = Ci \ {u}.

3. If Ci contains the literalu (whetherCi comes fromF or is a resolvent), then we don’t
have a clause inR′ at this point (i.e. the clause is cancelled).

2.2. REFUTATION COMPLETENESS 41

4. If Ci is the resolvent of two clausesCj , Cl, and there exist respective clausesC ′
j and

C ′
l in R′, and these clauses contain the variable on which they were resolved, thenC ′

i

is the resolvent ofC ′
k andC ′

l .

5. If Ci is the resolvent of two clausesCj andCl, and there exist respective clausesC ′
j

andC ′
l in R′, and one of these clauses, sayC ′

j , no longer contains the variable on
which they were resolved, then we letC ′

i = C ′
j (i.e. a duplication). Observe that in

this case we also haveC ′
i ⊆ Ci, as desired.

6. If Ci is the resolvent of two clausesCj andCl, but one of the parent clauses, sayCj,
was cancelled (according to rule 3) because it containedu, thenCi does not containu
(otherwise rule 3 would have applied). It was the literalu resp.u which was resolved
on in this resolution step. Consequently,C ′

l does no longer containu, and we letC ′
i =

C ′
l (i.e. a duplication). Again, we haveC ′

i ⊆ Ci, as desired.

SinceCt does not containu, a corresponding clauseC ′
t exists inR′. From C ′

t ⊆
Ct = ✷ it follows thatC ′

t = ✷. By renumbering the non-cancelled clauses inR′, and by
listing the duplicate clauses just once, one obtains a resolution refutation forF{u = 1}.
✷

As an example, we take the resolution proof of the formula

F = (x ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y) ∧ (y ∨ z)

as presented above. By settingx = 0 we obtain

F{x = 0} = (z) ∧ (y ∨ z) ∧ (y ∨ z)

The restricted resolution proof, obtained by applying the rules of the lemma, has the
following form, where we indicate duplications by a double line.

✷

❩
❩

❩
❩✚

✚
✚

✚
{y} {y}

❜❜❜❜❜❜

❜❜❜❜❜❜

{y}
❏

❏
❏

❏
❏

✡
✡

✡
✡
✡

{z} {y, z}

{z}

❍❍❍❍❍❍❍❍❍❍❍

❍❍❍❍❍❍❍❍❍❍❍

❜❜❜❜❜❜�
�

�
�

�
�

�
�

�
�
{y, z}

42 CHAPTER 2. RESOLUTION CALCULUS

Resolution Expansion Lemma

Let F be a clause set andu be a literal occurring inF . LetR′ be a resolution refutation
of F ′ = F{u = 1}. Then there exists a sequenceR of resolution steps, based on the
clause setF which either ends with✷, like R′, or ends with the unit clause{u}.

Proof: For each clauseC ∈ F which contains the literalu there exists inR′ a
corresponding clauseC ′ = C \ {u}. By reinstallingu in such clauses – as well as in
all subsequent resolvents – this modification can have the effect that the final clause✷
becomes the unit clause{u}. ✷

Resolution Theorem

The resolution calculus for clause sets iscorrect and refutation complete, that is, a
clause setF is unsatisfiableif and only if there exists a resolution refutation ofF .

Proof: (Correctness) If there exists a resolution refutation ofF , and if we assume that
F is satisfiable with some assignmentα, then, by the remark given after the definition of
resolution, this assignment also satisfies each resolvent,especially the last clause which
is the empty clause. But this is impossible. Therefore,F must be unsatisfiable.

(Refutation completeness) Conversely, letF be unsatisfiable. We show by induction
onn = |Var(F)|, the number of variables, thatF has a resolution refutation.

If n = 0, we haveF = {✷}, and we are done.
If n > 0, let x be an arbitrary variable inF . Then both clause setsF0 := F{x = 0}

andF1 := F{x = 1} are unsatisfiable, too. These clause sets contain at mostn − 1

variables. Therefore,F0 andF1, by the induction hypothesis, have resolution refutations,
sayR0 andR1.

By reestablishing the original clauses ofF in R0 andR1, as in the resolution expan-
sion lemma, one obtains two resolution sequences ending in the two unit clauses{x}
and{x} (or with ✷). In a last resolution step

❅❅��
✷

{x} {x}

the empty clause can be obtained. ✷

It can be observed that the lengthl(n) of the resolution refutation constructed in this
proof satisfies

l(n) ≤
{

0, n = 0

2 · l(n − 1) + 1, n > 0

wheren is the number of variables inF . This recursion results inl(n) ≤ 2n−1. Further-
more, the resolution proof constructed has a tree structure, a so calledtree resolution, in
the sense that every resolvent is used in at most one further resolution step. In many cases
resolution proofs can be much shorter, especially when theydo not have a tree structure.

2.2. REFUTATION COMPLETENESS 43

Next, we present an alternative proof for the refutation completeness of resolution
(from a personal communication with Volker Diekert). We assume that all potential re-
solvents derivable fromF have been constructed (which form a finite set). Let us denote
this set of clauses (i.e.F and all conceivable resolvents) asG. This is,G is the closure
of F under resolution. We will show that under the precondition✷ 6∈ G, a satisfying
assignment forF can be constructed. This assignment naturally also satisfiesG since all
clauses inG follow from the clauses inF . We start with the empty assignmentα = ∅,
and successively add an assignment to each variable. Letx ∈ Var(F) be an as yet unas-
signed variable. If the unit clause{x} occurs inG (which prevents{x} from being inG,
otherwise also✷ ∈ G), then we setα := α ∪ {x = 1}, otherwise, if{x} 6∈ G, we set
α := α ∪ {x = 0}.

In the next step we setG := G{x = a} wherea = 1 in the former case, anda = 0

in the latter case.
Before we continue with the discussion, let us verify that this modification ofα and

of G satisfies the following invariants:
First,G{x = a} is also closed under resolution. Whenever two clauses inG{x = a}

are resolvable, then the original clauses inG neither containx nor x (otherwise at least
one of these clauses will be deleted inG{x = a}). Therefore, the resolvent is also present
in G{x = a}.

Second, it holds that✷ 6∈ G{x = a}. The empty clause could only appear if, in
the case ofa = 1, the unit-clause{x} was present inG. But this is impossible, by the
discussion above. The other casea = 0 is symmetric.

We continue by fixing assignments for variables and pluggingthese assignments into
the clause setG. Finally,G = ∅ which corresponds to a tautology. This means thatF is
satisfied by the determined assignment to the variables.

Example:Consider the given clause set

F = { {x}, {x, z}, {x, y, z}, {y, z} }

We construct every possible resolvent, starting out fromF , and obtain the following set:

G = F ∪ { {z}, {y, z}, {x, y}, {x, z, z}, {x, y, y}, {y}, {z, z}, {y, y}, {x, y, z} }

Since{x} ∈ G we let the assignment tox be1, and in the next step we get

G{x = 1} = { {z}, {y, z}, {y, z}, {y}, {z, z}, {y, y} }

Since{y} 6∈ G{x = 1} we sety to 0, and we get

G{x = 1, y = 0} = { {z}, {z, z} }

Since{z} ∈ G{x = 1, y = 0} we setz to 1, and we finally get

G{x = 1, y = 0, z = 1} = ∅ (tautology)

44 CHAPTER 2. RESOLUTION CALCULUS

This means that{x = 1, y = 0, z = 1} is a satisfying assignment forF .

We have presented both proofs for refutation completeness since each proof provides
a different constructive argument. Under the assumption thatF is unsatisfiable, we have
constructed a resolution refutation forF in the first proof. Under the assumption that the
empty clause cannot be resolved fromF , we have constructed a satisfying assignment
for F in the second proof.

Finally, observe that there is an interesting connection between resolution refutations
and BDD’s (see the appendix). If one turns a resolution refutation “upside-down” so that
it starts with the empty clause, the resulting graph can be interpreted as a BDD. Each
node in this graph is assigned the variable which was used forthe respective resolution
step. Each path in this graph corresponds to an assignmentα, and it ends in a clause from
F which is falsified by this particular assignment. This connection between resolution
proofs and BDD’s can be used to transform lower bound proofs for the size of BDD’s to
lower bound proofs for the length of resolution refutations, and vice versa.

2.3 Unit Clauses, Subsumption and Pure Literals

Inspecting the proof of the resolution completeness theorem, it should be clear that
in general it is not possible to remove the parent clauses once they have been used for a
resolution step. It is still possible that such a parent clause needs to be used for another
resolution step. In this section several forms of possible simplifications will be discussed,
in the sense of an equivalent or a sat-equivalent transformation.

Example: The clause setF = {{x}, {x, y}, {x, y}} is unsatisfiable. By resolving the
first two clauses one obtains{y}. After this, it is not possible to remove{x} since this
clause has to be used for another resolution together with the third clause ofF .

In contrast, it is possible to remove the second clause ofF since this parent clause
{x, y} is a logical consequence of the resolvent{y}.

Definition

If we have two clausesC1, C2 such thatC1 ⊂ C2, it is said that the clauseC1 subsumes

the clauseC2 (in logical terms, this simply means thatC1 → C2 is true).

Theorem

If C1 subsumesC2, i.e.C1 ⊂ C2, and both clauses occur in a clause setF , thenF and
F \ {C2} are equivalent. That is,C2 can be eliminated fromF .

Proof: If F \ {C2} is satisfied by some assignmentα, thenα also satisfiesC1 which
occurs inF \{C2}, and sinceC1 ⊂ C2, the clauseC2 is also satisfied byα, and therefore
alsoFα = 1. ✷

2.3. UNIT CLAUSES, SUBSUMPTION AND PURE LITERALS 45

So it is possible to remove a clause from a clause set without harm if it is subsumed
by another clause. On the other hand, searching for a clause set for pairwise subsumption
is relatively expensive. Therefore, often such a test is notimplemented. Often it turns out
that the fact of one clause subsuming another clause comes about “automatically”, as a
side effect, for example during a resolution step with a unitclause as resolvent. In this
case (as in the example above) the resolvent subsumes one of its parent clauses, and this
parent clause can be removed.

Usually we are content with transformations which are sat-equivalent. There are
more possibilities to achieve sat-equivalence than to achieve equivalence. The above
example contains the unit clause{x}. Using unit propagation (cf. page 18) it is pos-
sible to apply the assignmentx = 1 and to obtain the sat-equivalent formulaF{x =

1} = {{y}, {y}}. Now, {y} is also a unit clause (as well as{y}). After another unit
propagation one obtainsF{x = 1, y = 1} = F{x = 1, y = 0} = {✷}, henceF is
unsatisfiable. So we could show unsatisfiability by applyingunit propagation only, with-
out resolution. Later we will see that unit propagation is always successful in the case of
(renamable) Horn formulas.

Another possibility for formula simplification was alreadymentioned in the section
on autark assignments. Suppose we have apure literalu which occurs inF (possibly at
several places), but the complementary literalu does not occur anywhere inF . In this
case the formulaF can be simplified toF{u = 1}. The formulasF andF{u = 1} are
sat-equivalent.

Finally, to discuss the case in which a resolution step involves atautology, that is,
a clause which contains a variable together with its complement. This concerns both a
tautology as parent clause, as well as a tautology as resolvent.

Consider the following example:{x1, x2, x3} and {x2, x3, x4}. It is possible to re-
solve these two clauses using the variablex2 producing the resolvent{x1, x3, x3, x4}.
Another possibility is to use the variablex3 for resolution and obtain the resolvent
{x1, x2, x2, x4}. Note that the resolution rule, as defined, does not allow us to resolve
to {x1, x4}. Actually, this would be logically incorrect. Indeed, bothresolvents are tau-
tologies. In order to achieve the final goal to derive the empty clause, there is no progress
in deriving or using a tautology in the resolution proof. Actually, the number of resolu-
tion steps increases unnecessarily. There is no harm, no loss of refutation completeness,
if the use of tautologies in resolution proofs is forbidden.This can be considered as a
simple form of complete resolution restriction, a notion that is considered in the next
section.

Formally, it is not hard to see that “resolution without tautologies” is still a refutation
complete calculus. The statement and the proof of the resolution theorem (page 42) can
be easily adapted, essentially by changing everywhere “resolution proof” to “resolution

46 CHAPTER 2. RESOLUTION CALCULUS

proof without tautologies”. Another way to see this is by wayof the last theorem: a
tautology is subsumed by any other clause, and thus, can be eliminated.

2.4 Strategies and Restrictions

Resolution is anondeterministiccalculus. By fixing a particular sequential arrange-
ment of the resolution steps one obtains adeterministicalgorithm. The ordering of res-
olution steps in a particular way, thereby obtaining a deterministic process, is called a
(resolution)strategy. Since every possible resolution step is performed sooner or later,
a strategy still has the property of being refutation complete. The hope is that doing the
resolution steps in a particular order will lead to the emptyclause somewhat faster.

An example for a strategy is theunit preference strategywhereby resolution steps
involving unit clauses are always done whenever possible. Applying this strategy does
not lead to a deterministic algorithm since there are still nondeterministic choices if
no unit resolution step is available, but still, the amount of nondeterminism is certainly
restricted.

The DPLL-type algorithms discussed in chapter 4 can be considered as certain types
of resolution strategies since the algorithmic transformations done by these algorithms
can be understood as resolution steps.

In contrast, aresolution restrictionmeans that certain resolution steps, if they do not
satisfy certain criteria, are simply forbidden. The advantage is, again, that the scope of
nondeterministic alternatives is restricted. On the negative side, it can be observed that
the proof length might increase as compared to the general case.

The following diagram outlines this effect.
F

∗

∗
The grey area indicates the restricted nondeterministic search space; the stars indicate

solutions (i.e. the possibility of deriving the empty clause).
Even worse than lengthening the proof is possible: a strong restriction of a calculus

might result in the loss of the (refutation) completeness. In the above picture this means
there is no star at all in the grey area. Later we will see an example of a restriction that
makes resolution incomplete.

2.4. STRATEGIES AND RESTRICTIONS 47

Definition

We define several resolution restrictions:P-resolution(or, thepositiveresolution re-
striction) means that in each resolution step it is requiredthat one of the parent clauses
has to be positive (i.e. consists of positive literals only).
Similarly, N-resolution(or, thenegativeresolution restriction) means that one of the
parent clauses must consist of negative literals only.
The linear resolution restriction(or, linear resolution, for short) requires that the res-
olution proof forms a linear chain. First, a so-calledbase clausehas to be selected
from F . It forms the first element of the chain. From then on each resolution step uses
the last element of the chain as one of the parent clauses. After the resolution step the
resolvent forms the new last element of the chain.

We show that these resolution restrictions are still refutation complete.

Theorem

P-resolution is refutation complete.

Proof: Let F be an unsatisfiable clause set. We show by induction onn = |Var(F)|
that it is possible to obtain the empty clause by P-resolution steps only.

(Casen = 0): In this case we haveF = {✷}, and there is nothing to prove.

(Casen > 0): Let x ∈ Var(F). SinceF{x = 1} andF{x = 0} are unsatisfiable
and contain at mostn − 1 variables, the induction hypothesis can be applied and yields
P-resolution proofs starting fromF{x = 0} as well as fromF{x = 1}. By re-entering
the variablex into the P-refutation ofF{x = 0} we obtain a sequence of resolution
steps starting from clauses inF which lead to the unit clause{x} (cf. the resolution
expansion lemma). Notice that this is still a P-resolution sincex is a positive literal. Next
we add resolution steps which resolve the resulting unit clause{x} with each clause in
F that containsx. Again, these are P-resolution steps. We obtain the clausesin F{x =

1}. Finally, the P-resolution proof ofF{x = 1} can be attached which exists by the
induction hypothesis. ✷

Theorem

N-resolution is refutation complete.

Proof: Interchange the roles of positive and negative,x andx, as well asF{x = 0}
andF{x = 1} in the previous proof. ✷

48 CHAPTER 2. RESOLUTION CALCULUS

Theorem

Linear resolution is refutation complete.
More precisely: for every unsatisfiable clause setF there exists a clauseC ∈ F such
that the empty clause can be derived by a linear chain of resolution steps, starting with
the base clauseC.

Proof: Let F be unsatisfiable and letF ′ ⊆ F be a minimally unsatisfiable subset
(i.e. F ′ is also unsatisfiable, but for every clauseC ∈ F ′ the clause setF ′ \ {C} is
satisfiable). We claim that every clauseC in F ′ can be used as the base clause in a linear
resolution proof. The proof of this claim proceeds again by induction on the numbern
of variables,n = |Var(F ′)|.

Induction base(n = 0):
In this case we haveF ′ = {✷} andC = ✷. There is nothing to prove.

Induction step(n > 0):
Case 1:|C| = 1, henceC = {u} for some literalu. The formulaF ′ must have a clause
C ′ with u ∈ C ′. The clause setF ′{u = 1} is unsatisfiable and contains at mostn − 1

variables. LetF ′′ be a minimally unsatisfiable subset ofF ′{u = 1}. In F ′′ there exists
the clauseC ′\{u}. Consider an assignmentα which satisfies all clauses inF ′ exceptC ′.
This assignment exists sinceF is minimally unsatisfiable. Sinceuα = 1, the assignment
α also satisfies all clauses inF ′{u = 1} exceptC ′ \ {u}. Therefore, this clause must be
contained inF ′′.

By the induction hypothesis there is a linear resolution refutation ofF ′{u = 1},
based on the clauseC ′ \ {u}. The desired linear refutation, based onC = {u}, is now
constructed as follows. The first step resolvesC with C ′. The obtained resolvent isC ′ \
{u}. Afterwards we take the linear resolution based onC ′ \ {u} given by the induction
hypothesis. Each time, in this resolution proof, where in the initial clauses the literalu
was eliminated, we re-insert this literal in the proof and obtain as the last clause the unit
clause{u} (cf. resolution expansion lemma). In a last step, we resolve{u} against the
base clause{u} and obtain the empty clause.

Case 2:|C| > 1.
In this case we choose an arbitrary literalu ∈ C and letC ′ = C \ {u}. The clause
setF ′{u = 0} is unsatisfiable and it containsC ′ as a clause. Letα be an assignment
which satisfies all clauses inF ′ exceptC. This assignment exists sinceF is minimally
unsatisfiable. Sinceuα = 0, the assignmentα also satisfies all clauses inF ′{u = 0}
exceptC ′. Therefore, this clause must be contained in a minimally unsatisfiable subset
F ′′ of F ′{u = 0}. Applying the induction hypothesis onF ′′ gives a linear resolution of
F ′{u = 0} based on the clauseC ′. By re-inserting the literalu (cf. resolution expan-
sion lemma) we obtain a linear resolution ofF based onC which ends with the unit
clause{u}.

2.4. STRATEGIES AND RESTRICTIONS 49

Now (F ′ \ {C}) ∪ {{u}} is unsatisfiable (observe that{u} subsumesC) andF ′ \
{C} is satisfiable. Therefore, Case 1 can be used which implies that a linear resolution
refutation of(F ′ \ {C})∪ {{u}} exists based on{u}. By attaching this refutation to the
one obtained earlier which leads to{u} we obtain the desired linear resolution refutation
for F based on the clauseC. ✷

In the following we define and analyzeDavis-Putnam resolution(cf. (Davis, Putnam,
1960),DP-resolutionfor short), which can be used and extended to define an algorithm,
calledDavis-Putnam algorithmor DP algorithm for short. The particular use of reso-
lution here has both the character of a strategy and a restriction. It is partly a strategy
because one needs to fix a particular order of the variables and apply the basic steps of
DP-resolution in this order. The order can be dynamically fixed during the process.

In a basic step in DP-resolution we first produce all resolvents from a given clause
set F which can be derived by a particular fixed variablex (as resolution variable).
Afterwards all parent clauses of these resolvents are eliminated resulting in a new clause
set which does no longer contain the variablex.

Let us describe this process more formally. LetFx ⊆ F be those clauses inF which
containx or its complementx. LetRx(F) be the set of resolvents which can be obtained
from Fx by using variablex for resolution. Observe that no clause inRx(F) contains
x anymore. The set of clausesF from which we started will now be replaced by(F ∪
Rx(F)) \ Fx.

Theorem (completeness of DP-resolution)

The clause setF is satisfiable if and only if(F ∪ Rx(F)) \ Fx is satisfiable.

Proof: If F is satisfiable, then so isF ∪ Rx(F), by the correctness of the resolution
calculus. Therefore, also(F ∪ Rx(F)) \ Fx is satisfiable.

Conversely, suppose(F ∪ Rx(F)) \ Fx is satisfiable by some assignmentα (which
does not involvex). Suppose there is a clauseC ∪ {x} in Fx not being satisfied byα.
Let F ′ ⊆ Fx be the set of clauses inFx which contain the literalx. The clauseC ∪ {x}
can be resolved with every clause inF ′ (using variablex) and the resolvent then belongs
to Rx(F). By assumption, all these resolvents are satisfied byα. Therefore,all clauses
in F ′ are satisfied byα (without an assignment tox – otherwiseα would satisfyC). By
settingβ = α ∪ {x = 1}, we obtain an assignment that satisfiesF .

An analogous argument holds if there is a clauseC ∪ {x} in Fx that is not satisfied
by α. ✷

Let us consider an example. A formula in3-CNF has100 variables and consists of
400 clauses, each with3 literals. Therefore, there are1200 occurrences of literals in the
formula. On average, a variable occurs in1200/100 = 12 clauses. Suppose thatx has6

positive instances and6 negative instances in the clauses. Then we have|Fx| = 12 and

50 CHAPTER 2. RESOLUTION CALCULUS

|Rx(F)| = 6 · 6 = 36. After a basic DP-step,F is replaced by(F ∪ Rx(F)) \ Fx . This
new clause set has99 variables and400 + 36 − 12 = 424 clauses of which at most36

clauses might be in4-CNF.

It might happen that some of the clauses inRx(F) coincide with each other or with
clauses being already inF , so we do not actually need to add these clauses. Furthermore,
it is possible that a clause inRx(F) contains complementary literals stemming from its
two parent clauses. This is a tautology clause and can be eliminated without harm (cf.
page 45). Therefore, it might happen (not so seldom) that we obtain a clause set with
fewer variables than beforeandwith no more clauses than before. Because of this, this
procedure has been adapted forpreprocessingclause sets before they become input to
someSAT solver.

It remains to present the DP algorithm in pseudo code. Here, it seems advantageous
to insert unit propagation (cf. page 18) between each basic DP-step.

proc DavisPutnam (F : clause set) :bool

// yields1, if F is satisfiable, and0 otherwise

if ✷ ∈ F then return 0

if F = ∅ then return 1

while (F contains a unit-clause{u}) do F := F{u = 1}
Select a variablex ∈ Var(F)

return DavisPutnam ((F ∪ Rx(F)) \ Fx)

Although the number of clauses might decrease during a DP-step, the above exam-
ple shows that it might also happen that the number of clausesincreases dramatically.
Therefore, heuristics for deciding which variable to select next play an important role
here. On the other hand, once the last variables have to be selected, it is clear that the
number of clauses (which can just contain the remaining variables) will decrease again,
just as rapidly. It seems very difficult to prove theoreticalbounds on the number of
clauses which have to be handled during the course of a DP-resolution. Computer exper-
iments show that other approaches like DPLL and its successors are more efficient than
Davis-Putnam.

Next we define two resolution restrictions which lose their refutation completeness.
Nevertheless they can be useful, especially in the context of Horn formulas as can be
seen in the next chapter.

Definition

Input resolutionrequires that at least one of the parent clauses in a resolution step is an
input clause, that is, it comes from the original clause setF .
Theunit resolutionrestriction requires that at least one of the parent clausesin a reso-
lution step is a unit clause.

2.4. STRATEGIES AND RESTRICTIONS 51

These both resolution restrictions are incomplete as can beseen by the following
example.

{x, y} {x, y}

{x}✡
✡
✡

❏
❏

❏
{x, y} {x, y}

{x}✡
✡
✡

❏
❏

❏

✷
✑

✑
✑

✑✑

◗
◗

◗
◗◗

This resolution proof of length3 is the shortest possible, but it does not satisfy any
of the defined restrictions. The following proof

{x, y} {x, y} {x, y} {x, y}

{x}✑
✑

✑
✑✑

{y}✑
✑

✑
✑

✑
✑

✑
✑

✑
✑✑

{x}✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑✑

✷

❏
❏❏

✡
✡✡

is a P-resolution, as well as a linear resolution, but it requires4 resolution steps.

It is easy to check that neither a unit resolution nor an inputresolution is possible.
But we observe the following.

Theorem

A clause setF has a refutation with the unit resolution restrictionif and only if it has
a resolution refutation obeying the input resolution restriction.

Proof: We show by induction on the number of variables inF that every unit res-
olution proof can be transformed into an input resolution proof, and vice versa. This is
obvious forn = 0 andn = 1.

Let n > 1. First we argue from unit to input. We assume that a unit resolution proof
exists. Therefore, in the clause setF there must exist a unit clause{u}. We restrict the
clause set and its resolution proof toF{u = 1} according to the resolution restriction
lemma. The restricted proof is still a unit resolution proof. By the induction hypothesis
there is an input resolution proof forF{u = 1}. By re-inserting the literalu which was
removed before, into the clauses and their respective resolvents (cf. resolution expanding

52 CHAPTER 2. RESOLUTION CALCULUS

lemma) we obtain a sequence of input resolution steps (starting fromF) which ends with
the clause{u}. Finally, a last input resolution step with{u} yields the empty clause.

Now, conversely, suppose we have an input resolution proof for F . In the very last
resolution step, two unit clauses are resolved producing the empty clause as resolvent.
At least one of these, say{u}, has to stem from the inputF . Again, considerF{u = 1}
and the restricted resolution proof which is still an input resolution. By the induction
hypothesis this proof can be transformed to a unit resolution proof forF{u = 1}. We
obtain the desired unit resolution proof for the original formulaF as follows. First, we
start by resolving each clause inF which containsu with the unit-clause{u}. Now
we have all clauses inF{u = 1} available and can add the unit resolution proof of
F{u = 1} which leads to the empty clause. ✷

2.5 Exponential Lower Bounds for the Length of Reso-
lution Proofs

In this chapter we show that the length of the refutations of certain formulas must be
exponential with respect to the formula size. The clause setPHn is especially difficult
to refute for the resolution calculus. This set of clauses encodes thepigeonhole principle
from Dirichlet as a Boolean formula: ifn + 1 pigeons are placed inn pigeonholes, then
at least one pigeonhole must contain at least two pigeons. Wedefine an unsatisfiable
formula when we postulate that then + 1 pigeons can be placed in such a way that each
pigeonhole contains at most one pigeon. We use for this the variablesxi,j in the formula,
interpreting that the variable takes the value1 when pigeoni is placed in pigeonholej.

Definition

The pigeonhole set of clausesPHn is defined for everyn > 0 as follows: On the one
hand fori = 0, 1, . . . , n the clauses

(xi,1 ∨ xi,2 ∨ · · · ∨ xi,n)

indicate that “pigeoni must be placed in pigeonhole1 or 2 or . . . orn.”
On the other hand, we have for everyj = 1, 2, . . . , n the set of

(
n+1

2

)
clauses

(x0,j ∨ x1,j), (x0,j ∨ x2,j), . . . , (xn−1,j ∨ xn,j)

indicating that “in pigeonholej at most one pigeon can be placed.”

It is clear that one cannot placen + 1 pigeons inn pigeonholes in this way, and
therefore the set of clausesPHn is unsatisfiable. We observe thatPHn containsn · (n +

1) = O(n2) Boolean variables and has(n + 1) + n ·
(

n+1
2

)
= O(n3) clauses.

2.5 LOWER BOUNDS FOR RESOLUTION PROOFS 53

The following is a resolution refutation ofPH2 (that is,3 pigeons do not fit in2
pigeonholes):

(x0,2 ∨ x1,2) (x0,1 ∨ x0,2) (x1,1 ∨ x1,2) (x0,1 ∨ x1,1)

(x0,1 ∨ x1,2) (x1,2 ∨ x0,1)
✑

✑
✑

✑✑◗
◗

◗
◗◗

✑
✑

✑
✑✑◗

◗
◗

◗◗

(x0,1 ∨ x1,1)(x0,1 ∨ x2,1) (x0,2 ∨ x1,2) (x0,2 ∨ x2,2)
❅

❅
❅✟✟✟✟✟✟�

�
�❍❍❍❍❍❍

❅
❅

❅✚
✚

✚
✚

✚
✚

✚
✚

✚

�
�

�❩
❩

❩
❩

❩
❩

❩
❩

❩

(x1,1 ∨ x2,1) (x1,2 ∨ x2,2) (x1,2 ∨ x2,2)(x1,1 ∨ x2,1)
�

�
�❍❍❍❍❍❍ ❅

❅
❅✟✟✟✟✟✟

x2,1 x2,2(x2,1 ∨ x2,2)

x2,2

�
�

�❍❍❍❍❍❍

PPPPPPPPPPPPPPP✱
✱

✱
✱

✱
✱

✱
✱

✱
✱✱

✷

From this example one already can get the feeling that such a refutation is (and has
to be) complex. The following theorem proves this.

Theorem

The length of every resolution refutation ofPHn is at least2n/20.
Let k be the number of variables andm the number of clauses inPHn. This result
says that the length of a resolution refutation forPHn is at least2Ω(

√
k), respectively

2Ω(3
√

m).

Proof: Let us suppose that there is a resolution refutationR = (K1, K2, . . . , Ks),
Ks = ✷, of PHn with s < 2n/20. We associate with every clauseK in R a clause
K̂, by substituting inK every negative literalxi,j by the set of positive literalsxi,k for
k 6= j. In the following we will call a clauseK in R large, if the associated clausêK
contains at leastn(n + 1)/10 (positive) literals. Letr be the number of large clauses in
the resolution refutationR. Of course,r ≤ s holds. There must be at leastrn(n +1)/10

literals in ther many clauses associated with the large clauses. Therefore,there has to
be a literalxi,j , that appears in at leastr/10 such clauses. This is also a consequence of
the pigeonhole principle. By applying step by step the following partial assignment to
R, according to the Resolution Restriction Lemma,

{xi,j = 1} ∪ {xi,k = 0 | k 6= j} ∪ {xl,j = 0 | l 6= i}

54 CHAPTER 2. RESOLUTION CALCULUS

we obtain a resolution refutation forPHn−1, since the assignments mentioned above
“freeze” the correspondence from pigeoni to pigeonholej, and only a resolution refuta-
tion of aPHn−1-formula remains. Pigeoni and pigeonholej do no longer appear in this
PHn−1-formula. Besides, because of this action, as one can infer from the Resolution
Restriction Lemma, at leastr/10 large clausesK are eliminated from the new resolution
refutation forPHn−1. This is because from this assignment either the positive literal
xi,j was set to1 in K, or a negative literal of the formxi,k, k 6= j, was set of0. After
such a restriction step, the obtained resolution refutation for PHn−1 contains at most
9r/10 ≤ 9s/10 large clauses. Continuing in this way, eliminate in each step a fraction
of at least one tenth of the remaining large clauses, so that after at mostlog10/9 s many
restriction steps, no large clauses are left. At this point we have to deal with a resolution
refutation forPHn′ satisfying

n′ ≥ n − log10/9 s > n − log10/9 2n/20 > 0.671 · n .

This means that all (associated) clausesK̂ in the resulting resolution refutation forPHn′

have fewer thann(n + 1)/10, and therefore also fewer than2n′(n′ + 1)/9 literals. The
following lemma shows that this is a contradiction. This implies that our hypothesis
s < 2n/20 is wrong, and the theorem is proven. ✷

Lemma

In every resolution refutation forPHm there must be a clauseC0, so that the associated
clausêC0 contains at least2m(m + 1)/9 many literals.

Proof: Let R be a resolution refutation forPHm.
An assignmentα is calledk-critical, when it assigns to every pigeon except for

pigeonk exactly one pigeonhole and no two pigeons are assigned the same hole. More
formally: α is k-critical, if there is a bijective functionf from {0, 1, . . . , m} \ {k} to
{1, 2, . . . , m}, so that we have

α(xi,j) =

{
1, if f(i) = j

0, otherwise

We define thesignificanceof a clauseC in R, abbreviated byσ(C), as follows:

σ(C) =

m∑

k=0

[there is ak-critical assignment, that falsifiesC]

The square brackets express an indicator function: when theproposition between the
brackets holds, then its value is1, otherwise it is0. It is clear, that the initial clauses in
PHm have significance1 or 0. The empty clause, at the end of the resolution refutation
R, has significancem + 1. Moreover, whenC is the resolvent of two clausesC1, C2,

2.5 LOWER BOUNDS FOR RESOLUTION PROOFS 55

having significances1 ands2, then the significance ofC is at mosts1 + s2, since every
assignment that falsifiesC, falsifies alsoC1 or C2. In other words: there can be no as-
signment that falsifiesC, while satisfying bothC1 andC2. From this it follows that there
must be a clauseC0 in R with significances ∈ [m+1

3
, 2(m+1)

3
]. One can choose forC0

the first clauseC in R with σ(C) ≥ m+1
3

. Consider an arbitraryk-critical assignmentα,
falsifying C0 (and therefore also the associated clauseĈ0). According to the definition
of σ(C), one can choose such an assignment ins different ways, or in other words, for
s manyk’s. Let j be such thatall j-critical assignments satisfy the clauseC0 (and there-
fore alsoĈ0). Such aj can be chosen inm + 1 − s different ways; there are therefore
s · (m + 1 − s) many such(k, j) combinations. We modifyα in one position, so that
it mutates to aj-critical assignmentα′: instead of not assigning pigeonk any hole and
assigningj one pigeonhole, sayl, α′ assigns the holel to the pigeonk, while j does
not receive any pigeonhole; apart from this modification, there is no other difference be-
tweenα′ andα. As a consequence of the modification,α′ satisfies the clauseC0. This
implies that the literalxk,l must occur inĈ0. On can prove in this way the existence
of s · (m + 1 − s) many literals inĈ. Observe that for a fixedk-critical assignmentα
and changing values ofj, also the values forl are different. Froms ∈ [m+1

3
, 2(m+1)

3
] it

follows, thats · (m + 1 − s) ≥ 2m(m+1)
9

, and this proves the lemma. ✷

This exponential lower bound for the set of clausesPHn applies, of course, also
to all algorithms proceeding in a way that can be interpretedas the implementation of
resolution steps (for example the DP algorithm). Such algorithms require exponential
running time when the input isPHn. Because of this,PHn is frequently used as an
input benchmark for testingSAT solvers.

The clause setPHn contains clauses of sizen. One may wonder whether this fact was
necessary to derive the exponential proof-length lower bound, or whether the result can
still be obtained when the original clause set has only clauses of size at most3, instead.
Notice that clauses of size2 are certainly not sufficient because the number of potential
resolvents is polynomial in this case, cf. page 64.

A clause of sizen > 3, like (x1 ∨ x2 ∨ · · · ∨ xn), can be split into several clauses of
size3 by introducing new auxiliary variablesyi:

(x1∨x2∨y1)∧(y1∨x3∨y2)∧(y2∨x4∨y3)∧· · ·∧(yn−4∨xn−2∨yn−3)∧(yn−3∨xn−1∨xn)

This construction leads to a sat-equivalent formula and it can also be applied in the
case of thePHn clauses. This is nothing else as a reduction fromCNF-SAT to 3-SAT.
For the above proof still to go through, one needs to redefine the concept of ak-critical
assignment. Apart from the assignment of thex-variables which is still defined as before,
the assignment of the auxiliaryy-variables is chosen such that a maximum number of the
3-CNF clauses above are satisfied. Notice that the3-CNF clauses which can be obtained
from the original clause

(xi,1 ∨ xi,2 ∨ · · · ∨ xi,n)

56 CHAPTER 2. RESOLUTION CALCULUS

are all satisfied by ak-critical assignment, ifi 6= k. Therefore, the property thatσ(C) ≤
1 for all initial clausesC is still valid. This property is crucial for the proof.

A different method, based on Craig interpolants, is considered next for obtaining
lower bounds for the length of resolution refutations. Craig’s Interpolation Theorem says
that for every tautology of the kindF → G there must be a formulaI, containing only
the variables common toF andG, so that bothF → I and I → G hold. We show
that it is possible to construct a circuit forI from a given resolution refutationR for
¬(F → G), that is, theCNF version of this formula. This circuit has approximately
the same size asR. From a lower bound for the circuit size ofI it follows then a lower
bound for the length of a resolution refutation for¬(F → G). The formula¬(F → G)

is equivalent toF ∧ ¬G. We can interpret an interpolant forF → G as a circuitC over
the variablesVar(F) ∩ Var(G), which for every possible input decides whetherF or
¬G are falsified (at least one of both formulas must be false). Wedenote byA andB

the CNF for F and¬G respectively. The gates of circuitC are functions from the set
{0, 1,∨,∧, sel}. We recall that the selector function (also calledif-then-elsefunction or
ite function) sel : {0, 1}3 → {0, 1} is defined as

sel(x, y, z) =

{
y if x = 0

z if x = 1

Theorem

LetR be a resolution refutation of the set of clausesA∪B (defined as described above
from a tautologyF → G). There is then a Boolean circuitC over the set of variables
Var(A) ∩ Var(B), which for every assignmentα with Var(α) = Var(A) ∩ Var(B)

satisfies the following conditions:
Cα = 0 ⇒ Aα is unsatisfiable, and
Cα = 1 ⇒ Bα is unsatisfiable.

Moreover, the circuitC has at mostO(|R|) many gates.

Proof: In order to construct the circuitC, we use the structure of the resolution
refutationR = (K1, . . . , Kt) for the set of clausesA ∪ B. Let Var(A) ∩ Var(B) =

{x1, . . . , xp}, Var(A) \ Var(B) = {y1, . . . , yq}, and Var(B) \ Var(A) = {z1, . . . , zr}.
We denote these sets asx-variables,y-variables, andz-variables.

We denote byH the conjunction of the clauses inA∪B. We know as a consequence
of the Resolution Restriction Lemma that for each assignment α = {x1 = a1, . . . , xp =

ap} of thex-variables, there is a resolution refutationRα for Hα. The clauses inRα do
not contain anyx-variables. Moreover, a single clause inRα can contain onlyy-variables
or z-variables, but not both. This holds because a clause that contains at the same time
bothy-variables andz-variables, can only happen after a resolution of anx-variable, and
such resolution steps cannot exist inRα. Considering this, we call a clauseK ′

i ∈ Rα

2.5 LOWER BOUNDS FOR RESOLUTION PROOFS 57

a y-clause, if it only containsy-variables, or ifK ′
i = ✷ andK ′

i can be reached from
a y-clause. Thez-clauses are defined in a similar way. The empty clauseKt in R is
transformed into a clauseK ′

t in Rα: it is either ay-clause or az-clause. In the first case
we have a refutation ofAα as part fromRα and in the second case a refutation ofBα.
In other words, the decision of whetherK ′

t is ay-clause or az-clause can be used as an
interpolant forA ∪ B. The circuitC will be constructed based on this idea. The clause
C has thex-variables{x1, . . . , xp} as inputs, and for each clauseKi in R a gategi in C

is defined. The following properties hold for each assignment α of thex-variables:

1. If K ′
i is ay-clause inRα, thengi gets value0 in Cα and

2. If K ′
i is az-clause inRα, thengi gets value1 in Cα.

The circuitC then has exactlyt gates over the base{∨,∧, sel} (see the appendix on
circuits) and when these conditions hold andgt is the output gate, thenC computes an
interpolant. The gates ofC are constructed as follows:

For the initial clauses inR, if Ki ∈ A, thengi is the constant0, and ifKi ∈ B then
gi is the constant1.

In caseKi is the resolvent of two clausesKj, Kl, and the variable which is resolved
for is anx-variablexk, thengi = sel(xk, gj, gl).

In caseKi is the resolvent of two clausesKj, Kl, and the variable which is resolved
for is ay-variable, thengi = gj ∧ gl.

In caseKi is the resolvent of two clausesKj, Kl, and the variable which is resolved
for is az-variable, thengi = gj ∨ gl.

Let α be an assignment of thex-variables and letK ′
i be ay-clause inRα. We prove

by induction overi thatgi takes the value0. If Ki is an initial clause, thengi takes the
value0 for each assignment. In caseKi is obtained by resolution of the variablexk from
the parent clausesKj andKl (j, l < i) andxk ∈ Kj , then, depending on whether the
assignmentα assigns variablexk with 1 or with 0, so isK ′

i = K ′
l or K ′

i = K ′
j (cf. Rule

6 in the Resolution Restriction Lemma). We are dealing in both cases with ay-clause
(otherwiseK ′

j andK ′
l were noty-clauses) and because of the induction hypothesis, the

value ofgl (respectivelygj) is 0. Thesel function computes the correct value forgi. In
caseKi is obtained by resolution of the variabley from the parent clausesKj andKl,
sinceK ′

i is ay-clause, at least one of the clausesK ′
j, K

′
l must be ay-clause. The value

of gi = gj ∧ gl under the assignmentα is then0. The case for thez-clauses is similar.✷

If the x-variables only appear positively in the clauses inA, or only negatively in
the clauses inB, then the construction ofC in the previous theorem can be modified
in such a way, thatC is a monotone circuit (that is, it contains only gates from the set
{0, 1,∧,∨}). This is very useful since there exist strong lower bounds for monotone
circuits. Such lower bounds can then be transformed into lower bounds for the length of
resolution refutations for certain formulas.

58 CHAPTER 2. RESOLUTION CALCULUS

Theorem

Let R be a resolution refutation of the set of clausesA ∪ B. If the variablesVar(A) ∩
Var(B) appear only positively in the clauses ofA, respectively only negatively in the
clauses ofB, then there is a monotone Boolean circuitC over the variablesVar(A) ∩
Var(B) such that for every assignmentα of Var(C) satisfies the following conditions:

Cα = 0 ⇒ Aα is unsatisfiable, or
Cα = 1 ⇒ Bα is unsatisfiable.

Moreover, circuitC has at most|R| gates from the set{∨,∧}.

Proof: Assume that thex-variables appear only positively in the clauses ofA. When
a negatedx-variable appears in a clauseKi, then we get for every assignmentα that
K ′

i cannot be ay-clause. Thesel gates from the previous proof are not monotone: they
are introduced in one of the cases in the construction ofC. We transform this case in
the following way: ifKi is obtained by resolution of variablexk from the two clauses
Kj , Kl, andxk is anx-variable andxk ∈ Kj, thengi = xk ∨ gj .

Let α be an assignment of thex-variables. Assume thatK ′
i is ay-clause or az-clause

in Rα (that isK ′
i was not eliminated inRα). Whenxk is assigned value1, thenK ′

i = K ′
l

(cf. Rule 6 in the Resolution Restriction Lemma). Sincexk ∈ Kl, K ′
l cannot be ay-

clause andK ′
i is then az-clause. The value ofgi is defined asxk ∨ gj = 1. Whenxk is

assigned value0, thenK ′
i = K ′

j . Accordingly we have thatgi equalsgj .

The case in which thex-variables only appear negated in theB clauses, is symmetric.
✷

We give as an example two families of formulasF andG, satisfying thatF → G is a
tautology, for which there can be only monotone interpolants of exponential size. These
formulas are based on the clique function defined next.

We say that an undirected graphG with n vertices is an(n, k)-clique, if G contains
a single clique withk vertices and does not have any further edges. That is,G hasn − k

isolated vertices.

We say thatG is an(n, k−1)-coloring, if the vertices ofG can be partitioned ink−1

disjoint sets, so that no edges join vertices from the same set, but all the edges between
the vertices of different sets are present.

It can be easily observed that for everyk, if G is an(n, k)-clique, thenG cannot be
an(n, k − 1)-coloring.

Let Cliquen,k : {0, 1}(n
2) → {0, 1} be the Boolean function with variablesxi,j,

1 ≤ i < j ≤ n, taking value1 if the values of the variables encode an undirected graph
G containing a clique of sizek (and taking value0 otherwise).

The way in which the input variables encode a graph should be interpreted asxi,j = 1

if and only if there is an edge between the verticesi andj in G. We observe thatCliquen,k

is a monotone function.

2.5 LOWER BOUNDS FOR RESOLUTION PROOFS 59

In (Razborov, 1985) an exponential lower bound for the size of every monotone
circuit for the clique functionCliquen,n1/4 was proven. The proof of this lower bound can
be extended to other functions in the following way: letQn,k be any monotone Boolean
function on the variablesx = (xi,j)1≤i<j≤n, encoding a graphGx with n vertices, and
satisfyingQn,k(Gx) = 1, if Gx is an (n, k)-clique, andQn,k(Gx) = 0, if Gx is an
(n, k−1)-coloring (the value of the function is irrelevant in all theother cases). It follows
then fork = n1/4 and someε > 0, that every monotone Boolean circuit computingQn,k

must have at least2Ω(nǫ) gates.
We consider two types of formulasFn,k(x, y) andGn,k(x, z), respectively, expressing

that a graphGx encoded in thex-variables contains a clique of sizek and is(k − 1)-
colorable. The formulaFn,k(x, y) → ¬Gn,k(x, z) is a tautology and because of the In-
terpolation Theorem there must be an interpolant for the formula. The existence ofFn,k

andGn,k follows from the Cook-Levin Theorem (NP-completeness ofSAT). We give
nevertheless an explicit definition of the formulas in orderto be able to estimate its size
and that of the interpolant.

The formulaFn,k(x, y) contains the variablesx = {xi,j | 1 ≤ i < j ≤ n} and y =

{yi,l | 1 ≤ i ≤ n, 1 ≤ l ≤ k}. Thex-variables encode the graph and variableyi,l is 1, if
vertexi is thel-th vertex in thek-clique.Fn,k is the conjunction of the following sub-
formulas: ∨

l,m

(yi,l ∧ yj,m) → xi,j 1 ≤ i < j ≤ n

expressing that in case the verticesi andj are both in the clique, then there must be an
edge between them: ∨

i

yi,l 1 ≤ l ≤ k

¬(yi,l ∧ yj,l) 1 ≤ i < j ≤ n, 1 ≤ l ≤ k

¬(yi,l ∧ yi,m) 1 ≤ i ≤ n, 1 ≤ l < m ≤ k

These formulas express that exactly one vertex is thel-th vertex in the clique, and that
every vertex appears in the clique at most once.

The formulaGn,k(x, z) has the variablesx = {xi,j | 1 ≤ i < j ≤ n} in the same
way asFn,k, and besidesz = {zi,l | 1 ≤ i ≤ n, 1 ≤ l ≤ k − 1}. The x-variables
encode the graph and the variablezi,l is 1 if and only if vertexi has colorl. Gn,k is the
conjunction of the following sub-formulas:

xi,j →
∧

l

(zi,l → ¬zj,l) 1 ≤ i < j ≤ n

expressing that in case there is an edge betweeni and j, then i and j have different
colors, and ∨

l

zi,l 1 ≤ i ≤ n

60 CHAPTER 2. RESOLUTION CALCULUS

¬(zi,l ∧ zi,m) 1 ≤ i ≤ n, 1 ≤ l < m ≤ k − 1
∨

i

zi,l 1 ≤ l ≤ k − 1

These formulas express that every vertex has exactly one color, and that there is at least
one vertex for each color.

The formulaFn,k(x, y) ∧ Gn,k(x, z) is unsatisfiable. This formula can be written
in CNF, without becoming much larger. Its length can be bounded bym = O(n4).
Moreover, it can be observed that thex-variables only appear positively in theF formula.
This formula satisfies the conditions of the theorem for the construction of monotone
interpolants out of resolution refutations.

It follows from the lower bound for monotone circuits, that every monotone circuit
computing an interpolant for the formulasFn,k(x, y) andGn,k(x, z) for k = n1/4, must
have size2Ω(mε) for someε > 0. From the previous theorem it follows then, that2Ω(mǫ) is
also a lower bound for the size of a resolution refutation ofFn,n1/4(x, y)∧Gn,n1/4(x, z).

The first exponential size lower bound for resolution refutations was proven by
(Haken, 1985). The proof given here is an adaptation of the work of (Beame and Pitassi,
1996). The proof using Craig interpolants follows from the works of (Pudlák, 1997) and
(Krajiček, 1994), which rely on a lower bound for the size ofmonotone circuits from
(Razborov, 1985). More constructions for formulas having exponentially long resolution
refutations have been given, based for example on expander graphs (Urquhart, 1987),
(Schöning, 1997), or on random formulas (as in chapter 7), cf. (Chvátal, Szemerédi,
1988).

