IN DIESEM KAPITEL

Die wichtigsten Grundsatze von DevOps im
Uberblick

Die Werte von DevOps verstehen

Die Vorteile fur Ihre Organisation erkennen

Kapitel 1
Einfuhrung in DevOps

und Bereitstellung von Software. Diese breit angelegte, umfassende Philosophie
wirkt branchentibergreifend und in den verschiedensten Anwendungsgebieten in-
spirierend.

D evOps verdndert die Zusammenarbeit von Entwicklungsteams bei der Erstellung

Ich definiere DevOps als Entwicklungskultur der Zusammenarbeit, Eigenverantwortung
und des Lernens, alles mit dem Ziel, den Lebenszyklus der Softwareentwicklung von der
Idee zum fertigen Produkt zu beschleunigen. DevOps kann zwischenmenschliche Rei-
bungsverluste reduzieren, Engpésse beseitigen, die Zusammenarbeit optimieren, die Ar-
beitsmoral der Entwickler durch selbstbestimmte Téatigkeit erhohen und die Produktivitét
der Teams steigern. DevOps ist kein Wundermittel, kann sich aber massiv auf Ihre Organi-
sation und Ihre Produkte auswirken.

In diesem Kapitel betone ich die wichtige Rolle der Unternehmenskultur gegentiber Abldu-
fen und Werkzeugen, diskutiere die Grundsétze und Werte von DevOps und fiihre aus, in-
wiefern Thre Organisation von einem DevOps-Ansatz profitieren wird.

Was ist DevOps?

Dieses Buch liefert Ihnen kein genaues DevOps-Rezept — denn es gibt keins. DevOps ist eine
Philosophie, die Menschen tiber den Prozess stellt und Prozesse tiber Werkzeuge. DevOps
schafft eine Kultur des Vertrauens, der Zusammenarbeit und kontinuierlichen Verbesse-
rung. Der Entwicklungsprozess wird ganzheitlich betrachtet, dabei werden alle Beteiligten
berticksichtigt: Entwickler, Tester, ITler, Sicherheitsleute und Infrastrukturentwickler. Dev-
Ops stellt keine dieser Gruppen iiber die andere, noch wertet es die Bedeutung ihrer Arbeit.
Stattdessen ist flir ein DevOps-Unternehmen das gesamte Entwicklerteam entscheidend,
um dem Kunden die bestmdgliche Erfahrung zu bieten. (In Kapitel 2 erfahren Sie mehr iiber
Unternehmenskultur.)



30 TEIL | DevOps entmystifizieren

DevOps hat sich aus Agile entwickelt

Im Jahr 2001 trafen sich 17 Softwareentwickler und veroffentlichten das »Manifest fiir agi-
le Softwareentwicklung, in dem die 12 Grundsitze des agilen Projektmanagements darge-
legt wurden. (Im Kasten »Die Urspriinge von Agile« in Kapitel 7 erfahren Sie weitere De-
tails dariiber.) Dieser neue Workflow war eine Reaktion auf die Frustration und Inflexibilitat
von Teams, die in einem (linearen) Wasserfallprozess arbeiten. Bei der Arbeit nach agilen
Prinzipien miissen sich Entwickler nicht an die urspriinglichen Anforderungen halten oder
einem linearen Entwicklungsworkflow folgen, bei dem jedes Team Arbeit an das néchste
abgibt. Stattdessen konnen sie sich an die sich stédndig éndernden Erfordernisse des Unter-
nehmens oder des Markts und manchmal sogar an neue Technologien und Tools anpassen.

Obwohl Agile die Softwareentwicklung in vielerlei Hinsicht revolutionierte, konnte es den
Konflikt zwischen Entwicklern und Ops-Team nicht l6sen. Um technische Fahigkeiten und
Spezialitaten bildeten sich immer noch Silos, und die Entwickler gaben den Code weiterhin
an den IT-Betrieb weiter, der ihn bereitstellt und betreut.

Im Jahr 2008 machte Andrew Clay Shafer in einem Gesprich mit Patrick Debois seinen Arger
tiber den standigen Konflikt zwischen Entwicklern und operativen Mitarbeitern deutlich. Ge-
meinsam organisierten sie die ersten DevOpsDays in Belgien, um eine bessere und flexiblere
Vorgehensweise bei der Softwareentwicklung zu etablieren. Diese Weiterentwicklung von
Agile konnte sich durchsetzen und DevOps erméglicht es mittlerweile Unternehmen auf der
ganzen Welt, schneller (und meist auch kostengiinstiger) bessere Software zu produzieren. Dev-
Ops ist kein kurzlebiger Trend, sondern eine weithin akzeptierte Entwicklungsphilosophie.

DevOps stellt Menschen in den Mittelpunkt

Wer sagt, dass es bei DevOps nur um Werkzeuge geht, will Ihnen etwas verkaufen. DevOps
ist vor allem eine Philosophie, die sich auf Entwickler und die Verbesserung der Zusam-
menarbeit zwischen ihnen konzentriert — mit dem Ziel, grof3artige Software zu entwickeln.
Sie konnten Millionen in alle DevOps-Tools der Welt investieren und wéren trotzdem kei-
nen Schritt weiter in Richtung DevOps-Nirvana. Konzentrieren Sie sich stattdessen auf Ihr
wichtigstes Entwicklungsinstrument: die Entwickler. Gliickliche Entwickler produzieren
grofdartige Software. Wie bekommen Sie gliickliche Entwickler? Nun, Sie schaffen eine kol-
laborative Arbeitsumgebung, in der gegenseitiger Respekt, gemeinsames Wissen und die
Anerkennung harter Arbeit gedeihen konnen. In den Kapiteln 2 und 15 erfahren Sie mehr
dartiiber, wie Sie Teams aus gliicklichen, eigenverantwortlichen Entwicklern bilden konnen,
die stolz auf ihre Arbeit sind und wachstumsorientiert denken.

Unternehmenskultur ist die Grundlage von DevOps

Ihr Unternehmen verfiigt tiber eine Kultur, selbst wenn sich diese durch Trégheit entwi-
ckeln musste. Diese Kultur hat mehr Einfluss auf die Arbeitszufriedenheit, Produktivitat
und Teamgeschwindigkeit, als Sie es wahrscheinlich fir méglich halten.

Unternehmenskultur ldsst sich am besten als die unausgesprochenen Erwartungen, das Ver-
halten und die Werte eines Unternehmens beschreiben. Sie signalisiert Ihren Mitarbeitern



KAPITEL 1 Einfilhrung in DevOps 31

auch, ob die Unternehmensfithrung offen fiir neue Ideen ist, und beeinflusst die Entschei-
dung des Einzelnen, ob er ein Problem ansprechen oder doch lieber unter den Teppich keh-
ren soll.

Kultur mochte gestaltet und verfeinert werden und sollte nicht dem Zufall iiberlassen wer-
den. Auch wenn die tatsdchliche Definition von Unternehmen zu Unternehmen und von
Person zu Person variiert, ist DevOps im Grunde eine kulturelle Herangehensweise an die
Produktentwicklung.

Eine vergiftete Unternehmenskultur wird Ihre DevOps-Reise ruinieren, bevor sie iiber-
haupt beginnt. Selbst wenn Ihr Entwicklungsteam sich eine DevOps-Mentalitit zu eigen
macht, werden die Haltungen und Schwierigkeiten der iibergeordneten Organisation in
Ihre Arbeitsumgebung einflief3en.

Mit DevOps vermeiden Sie Schuldzuweisungen, Sie schaffen Vertrauen und konzentrieren
sich auf den Kunden. Sie lassen Thren Entwicklern freie Hand, das zu tun, was sie am besten
konnen: Losungen ausarbeiten. Wenn Sie mit der Umsetzung von DevOps beginnen, geben
Sie Ihren Entwicklern Zeit und Raum, sich darauf einzustellen. Lassen Sie ihnen die M6g-
lichkeit, sich gegenseitig besser kennenzulernen und Kontakte zu Leuten mit unterschied-
lichen Fachkenntnissen aufzubauen. Zudem messen Sie den Fortschritt und belohnen Leis-
tungen. Geben Sie niemals Einzelpersonen die Schuld an Misserfolgen. Stattdessen sollte
sich das Team gemeinsam kontinuierlich verbessern, und Erfolge sollten gefeiert und be-
lohnt werden.

Sie lernen, indem Sie den Prozess uberwachen und
Daten sammeln

Die unvoreingenommene Beobachtung des Arbeitsablaufs ist eine leistungsstarke Tech-
nik, mit der Sie die Erfolge und Herausforderungen Ihres Workflows realistisch einschétzen
konnen. Dies ist die einzige Moglichkeit, die richtige Losung fiir Problembereiche zu finden,
die Engpésse in Ihren Abldufen verursachen. Genau wie bei Software besteht die Losung
nicht immer darin, einfach Kubernetes (oder ein anderes neues Tool) einzusetzen. Sie miis-
sen erkennen, wo die Probleme liegen, bevor Sie sie beheben. Wihrenddessen sammeln Sie
Daten — nicht, um Erfolg oder Misserfolg zu messen, sondern um die Leistung des Teams
zu verfolgen. Sie ermitteln, was funktioniert und was nicht und was Sie beim néchsten Mal
versuchen sollten. In Kapitel 3 erfahren Sie, wie Sie Engpédsse in Threm Entwicklungsprozess
identifizieren konnen.

Uberzeugungskraft ist der Schliissel zur Umsetzung von
DevOps

Esist nicht einfach, DevOps an Ihre Fithrungskrifte, Kollegen und Mitarbeiter zu verkaufen.
Auch fir Entwickler ist der Ablauf nicht immer intuitiv. Sollte sich eine gute Idee nicht von
selbst verkaufen? Wenn es doch nur so einfach wire! Als Schliisselkonzept bei der Umset-
zung von DevOps sollten Sie jedoch immer daran denken, dass es die Menschen in den Vor-
dergrund stellt. Die sogenannten »Soft Skills«, also Kommunikation und Zusammenarbeit,



32 TEIL | DevOps entmystifizieren

sind fiir die Einfithrung von DevOps von zentraler Bedeutung. Andere Leute in Ihrem Team
und in Ihrem Unternehmen vom Einsatz von DevOps zu iberzeugen, erfordert gute Kom-
munikationsfihigkeiten. Frithe Gesprache mit Kollegen tiber DevOps konnen Wegberei-
ter fiir den spdteren Erfolg sein — besonders wenn Sie auf unerwartete Hindernisse stoflen.

Kleine, inkrementelle Anderungen sind unbezahlbar

Der Aspekt von DevOps, der darauf abzielt, immer nur kleine, graduelle Anderungen
durchzufiihren, hat seine Wurzeln in der schlanken Fertigung, die auf schnelles Feedback,
kontinuierliche Verbesserung und kiirzere Time-to-Market setzt. Wenn ich iiber die Ein-
fithrung von DevOps spreche, verwende ich als Metapher gerne das Wasser. Wasser ist ei-
nes der machtigsten Elemente der Welt. Wenn es nicht gerade eine Hochwasserkatastrophe
gibt, halten wir es fiir relativ harmlos. Der Colorado River hat den Grand Canyon geformt.
Langsam, iiber Millionen von Jahren, schnitt sich das Wasser durch den Stein, um fast zwei
Milliarden Jahre alte Bodenschichten und Felsen freizulegen.

Sie konnen wie Wasser sein, der langsame, unerbittliche Wandel in Ihrem Unternehmen.
Hier zu Threr Inspiration das berithmte Zitat aus einem Bruce-Lee-Interview (https://
www . youtube . com/watch?v=cJMwBwWF j5nQ):

Werde formlos, gestaltlos — wie Wasser. Wenn man Wasser in eine Tasse gief3t, wird
es die Tasse. Gieft man Wasser in eine Teekanne, wird es die Teekanne. Wasser kann
flielen, kriechen, tropfen, stiirzen und schmettern. Sei Wasser, mein Freund.

Inkrementelle Anderungen anzuwenden, bedeutet beispielsweise, dass Sie ein Problem fin-
den und dieses beheben. Dann beheben Sie das nichste. Sie gehen nicht zu schnell zu viel an
und Sie stellen sich auch nicht unmittelbar jedem Kampf. Sie begreifen, dass einige Kémpfe
nicht die Energie oder das soziale Kapital wert sind, die sie Sie kosten konnen.

Von DevOps profitieren

Das gesamte Buch befasst sich damit, wie Sie und Ihr Team vom Einsatz von DevOps in Th-
rem Unternehmen profitieren konnen. Neben der menschlichen Komponente, die schnel-
lere Auslieferung, verbesserte Funktionalitit und furchtlose Innovation ermdglicht, bietet
DevOps auch technische Vorteile.

Kontinuierliche Integration und kontinuierliche Bereitstellung (CI/CD) sind eng mit Dev-
Ops verkniipft. Durch die kontinuierliche Softwarebereitstellung werden viele der Engpés-
se beseitigt, die haufig in Teams auftreten, die nur selten liefern. Wenn Sie automatisierte
Pipelines erstellen, um neuen Code durch eine robuste Testsuite zu leiten, konnen Sie sich
mit Ihren Implementierungen sicherer fithlen. (Mehr zu CI/CD erfahren Sie Kapitel 11.)

DevOps erméglicht auch eine schnellere Regeneration nach Zwischenfillen. Sie werden ir-
gendwann unweigerlich eine Ihre Kunden beeintrachtigende Unterbrechung Ihres Diens-
tes erleben, egal wie gut Ihr Code getestet ist. Aber Teams, die nach der DevOps-Methode
arbeiten, finden durch bessere Koordination und Zugénglichkeit, gemeinsames Lernen und
bessere Leistungsiiberwachung schnellere Losungen.



KAPITEL 1 Einfilhrung in DevOps 33

Nicht nur die Entwicklungsabteilung Ihrer Organisation profitiert von DevOps. Die ge-
schiftliche Seite wird weniger Kundenreklamationen, schnellere Bereitstellung neuer Funk-
tionen und eine hohere Zuverlassigkeit der bestehenden Dienste verzeichnen.

Mit Hilfe von DevOps konnen Sie mit den bereits vorhandenen Ressourcen mehr erreichen.
Die Methode akzeptiert die realen Einschrankungen und zeigt Ihnen, wie Sie in Ihrer spezi-
ellen Umgebung erfolgreich sein konnen.

Das CALMS-Modell

Wihrend Sie sich mit DevOps vertraut machen, stoflen Sie wahrscheinlich auch auf das
CALMS-Modell. Es steht fiir Kultur, Automatisierung, Schlankheit, Messung und Aus-
tausch und bietet einen hilfreichen Rahmen, um die DevOps-Prinzipien zu verstehen und
Ihren DevOps-Erfolg bei der Anwendung dieser Prinzipien in IThrem Unternehmen zu be-
werten.

Kultur (Culture)

Ihre Kultur muss auf Zusammenarbeit und Kundenorientierung ausgerichtet sein. Ihre
Entwickler sollten begreifen, dass die Technologie dafiir da ist, den Kunden das Leben zu
erleichtern. Wenn die Kunden im Produkt keinen Wert erkennen, wird es versagen. Die
Technologie ist diesem Ziel untergeordnet. Die besten DevOps-Kulturen sind extrem
kollaborativ und funktionsiibergreifend; Menschen aus verschiedenen Teams und mit
unterschiedlichen Féhigkeiten arbeiten zusammen an einem besseren Produkt. Zuhoren
ist ein wichtiger Aspekt der Kommunikation, und wenn Sie sich Gespriche anhoren,
bekommen Sie einen einfachen Lackmustest der Kultur. Fallen sich die Leute standig
gegenseitig ins Wort? Wenn ja, dann konnen Sie die Kultur mit Sicherheit noch wesent-
lich verbessern.

Automatisierung (Automation)

Routinetatigkeiten sind der schlimmste Albtraum eines Entwicklers, denn sie sind nicht
nur, na ja, langweilig, sondern auch ineffizient. Entwickler sprechen Computersprache, da-
mit sie Computern beibringen konnen, die Aufgaben zu erledigen, die die Menschen nicht
tibernehmen wollen. Normalerweise sind Code Builds, Testroutinen, Implementierungen
und Infrastrukturbereitstellungen am einfachsten zu automatisieren. In Kapitel 3 werde ich
noch genauer darauf eingehen, welche Anderungen sich besonders niederschwellig umset-
zen lassen.

Schlank (Lean)

Schlank bezieht sich nicht nur auf die schlanke Fertigung. Das Prinzip ldsst sich
auch auf die Natur von DevOps-Teams iibertragen, die agil und schlagkréftig sind.
Lean-Teams vermeiden Aktivititen mit geringen Auswirkungen, da sie fiir den Kunden
keinen Mehrwert bieten. Ein weiterer Aspekt von Schlankheit ist die konsequente kon-
tinuierliche Verbesserung. Jeder arbeitet wachstumsorientiert und will sich ernsthaft
verbessern.



34 TEIL | DevOps entmystifizieren

Die Geschichte einer Entwicklerin: Was mich zu DevOps
gefiihrt hat

Ich will Ihnen ein kleines Geheimnis verraten. Ich bin aus Versehen auf DevOps gesto-
Ben. Ja! Absolut zufillig. Aber ich denke, meine Geschichte spricht Biande tiber die Be-
deutung der DevOps-Bewegung und ihrer Community.

Ich war Java-Backend-Entwicklerin in einem kleinen Betrieb mit einem traditionellen
Entwicklerteam. Das Team bestand aus einem Dutzend Entwicklern und zwei Adminis-
tratoren. (Klingt nach dem tiblichen Verhéltnis, oder?)

Der Code hatte einen Fehler. Ich hatte den Code daraufhin aktualisiert, der Vorschau-
bilder in der Anwendung ausgewihlt hat. Die Anderungen wurden auf der Homepage
aber nicht sichtbar, und die Administratoren gaben mir die Schuld. Ich untersuchte den
Fehler und kam zu dem Schluss, dass es sich um ein Problem mit dem Content Delivery
Network (CDN) handelte. Aufgrund der Zugangsbeschrankungen des Entwicklerteams
konnte ich das Problem nicht selbst beheben. Ich brauchte das Team aus dem operati-
ven Geschift.

Der Ops-Experte war der Uberzeugung, dass es sich um ein Code-Problem handelte,
und weigerte sich, mir zu helfen. Das ging dreimal hin und her, bevor ich mich in ei-
nen Raum einschloss und verdrgert eine Zusammenfassung tippte. »Humpty Dumpty:
A Story of DevOps Gone Wrong« war mein erster Tech-Talk, und er war inspiriert von
meinen personlichen Erfahrungen und Frustrationen mit Entwicklern, die sich gegen
Ops-Leute behaupten.

In diesem Unternehmen und so vielen anderen war das Operations-Team ein Engpass.
Sie hinderten mich an meiner Arbeit. Es war aber nicht ihre Schuld. Die beteiligten Per-
sonen machten das Problem nur sichtbar, aber eigentlich handelte es sich um ein Ab-
laufproblem.

Meine Erfahrung in diesem Job hatte mein Interesse an DevOps geweckt. Wahrend ich
tiber DevOps dazulernte, wurde mir klar, dass es bei den Problemen, die ich erlebt hatte,
nicht nur um mich ging! Das war eine Riesenerleichterung. Ich war keine schlechte Ent-
wicklerin. Ich war nur ein Mensch und andere Entwickler waren genauso frustriert von
ihrer Arbeit. Es ist mein grofiter Wunsch, dass Ihnen dieses Buch einerseits die Sicher-
heit gibt, dass Ihre Erfahrungen berechtigt und normal sind, und es [hnen andererseits
einige Ansitze zeigt, die Ihren Job noch ein wenig toller machen konnen.

Messung (Measurement)

Daten sind fiir DevOps von entscheidender Bedeutung. Messdaten zum Fortschritt
beeinflussen nahezu jeden Aspekt der Umgestaltung Ihres Unternehmens. Denken Sie aber
daran, dass Fortschritte niemals an individuelle Leistung gebunden sein sollten. Betrachten
Sie sie eher als die Beobachtung Ihrer Fortschritte bei einem endlosen Marathon denn als
eine Moglichkeit zu wissen, wann Sie »fertig« sind. Sie sind niemals fertig. Niemand ist das
jemals.



KAPITEL 1 Einfilhrung in DevOps 35

Statt aus den gesammelten Daten herauszulesen, wie schlecht Sie es machen, sehen Sie da-
rin lieber eine Messung Ihrer Fortschritte. Feiern Sie die Siege. Dieser Ansatz stiarkt das ge-
samte Team und Ihre Entwickler bleiben gliicklich, motiviert und produktiv. Ich garantiere
Ihnen, dass Sie einiges gut machen, und es ist wichtig, das Gute herauszustellen. In Kapitel 5
spreche ich dariiber, was Sie messen konnen.

Austausch (Sharing)

DevOps wurde ins Leben gerufen, weil Geschiftstatigkeit und Entwicklung in einem Kon-
flikt standen. Es fehlte an Gemeinsamkeiten und beide Bereiche erhielten Anreize auf un-
terschiedlichen Grundlagen. Das operative Geschift wird typischerweise an der Zuver-
lassigkeit und Verfiigbarkeit einer Anwendung gemessen, wihrend Entwickler meist dazu
motiviert werden, neue Funktionen fiir die Anwendung zu entwickeln. (Ich spreche im
ndchsten Abschnitt ausfiihrlicher dariiber, wie betriebliche Abldufe und die Entwicklung
gemessen werden.) Wissen Sie, was die grofite Bedrohung fiir die Systemverfigbarkeit ist?
Deployments. Entwickler initiieren Deployments mit neuen Code-Versionen. Demzufolge
hassen die Leute aus dem Geschiftsbetrieb die Entwickler. Ganz so schlimm ist es meistens
zwar nicht, aber es steckt ein Fiinkchen Wahrheit drin. Diese Reibung macht die Problem-
l6sung fast unmoglich und am Ende stehen nur noch Schuldzuweisungen. DevOps moch-
te diese Atmosphire grundlegend verdndern und eine Umgebung schaffen, in der sich bei-
de Teams gegenseitig unterrichten und sich bestarkt fithlen — und so letztlich ein einziges
Team bilden, zu dem alle etwas beitragen.

Das Problem der Interessenskonflikte losen

In traditionellen Teams stehen sich Entwickler (die den Code schreiben) und IT-Verant-
wortliche (die die Systeme einsetzen und die Infrastruktur warten) als Gegner eines endlo-
sen Krieges gegeniiber. Okay, das stimmt nicht ganz. Aber sie kommen nicht miteinander
klar, und das liegt daran, dass sie nach unterschiedlichen Kriterien beurteilt werden.

Entwickler werden typischerweise an der Anzahl der Features gemessen, die sie veroffentli-
chen oder an der Anzahl der von ihnen behobenen Fehler. (Die Bewertung von Entwicklern
nach geschriebenen Codezeilen ist eine schreckliche Idee. Die besten Entwickler 16schen
hdufig mehr Codezeilen, als sie hinzuftigen.)

Leider werden Qualitat und Zuverléssigkeit des Codes meist nicht gemessen. Daher prio-
risieren Entwickler natiirlich die Arbeit, die sie produktiv wirken lésst. Sie verbringen kei-
ne Zeit mit der Uberarbeitung des Codes, um ihn lesbarer zu machen, oder der Tilgung der
technischen Schuld, die durch die letzte grofSe Produktoffensive entstanden ist.

Im Gegensatz zur Bewertung von Entwicklern werden Ops-Teams typischerweise an der
Zuverlassigkeit und Verfiigbarkeit der Website gemessen. Wahrscheinlich kennen Sie die
funf Neuner: 99,999 Prozent Verfiigbarkeit. Das lduft darauf hinaus, dass Ihre Website nur
finf Minuten pro Jahr offline sein darf. Fiinf Minuten ... pro Jahr. Das ist ziemlich viel ver-
langt. Es verursacht auch enorme Betriebskosten aufgrund der grofien Speicher- und Com-
puterressourcen, die [hnen zur Verfiigung stehen miissen, ganz zu schweigen vom Personal-
aufwand, um die Verfiigbarkeit auf diesem Niveau zu halten. Den Verantwortlichen werden



36 TEIL | DevOps entmystifizieren

oft heroische Anstrengungen abverlangt, um auf Probleme zu reagieren, unabhéngig von
Tag, Zeit, vorhandener Arbeitsbelastung oder personlichen Verpflichtungen.

Um den Konflikt zu verdeutlichen: In traditionellen Softwareunternehmen miissen Ent-
wickler neuen Code ausrollen, um neue Funktionen freizugeben. Aber Deployments sind
die haufigste Ursache fiir Dienstunterbrechungen und Website-Ausfille.

Aus dieser Situation ergeben sich zwei Probleme:

¢/ Die Verantwortung ist siloisiert: Entwickler wissen nicht, wie sie ihren Code verof-
fentlichen oder unterstiitzen sollen, und es fehlt ihnen an Systemkenntnissen, die sie
die Anforderungen an die Infrastruktur verstehen lassen. Die meisten Entwickler wis-
sen nicht (oder interessieren sich nicht dafiir), wie ihr Code tatsiachlich lauft. Sie ha-
ben ihren Job erledigt.

¢/ Ziele und Anreize stehen zueinander im Widerspruch: Entwickler iiberschiitten
das Operations-Team mit Code und erwarten, dass dieses den Code bereitstellt und
fiir seine einwandfreie Funktion sorgt. Die operativen Mitarbeiter werden durch Up-
time, Verfiigbarkeit und Zuverlassigkeit motiviert. Sie gehen oft davon aus, dass der
Code schlecht geschrieben ist und werden wegen eines nicht von ihnen verschuldeten
Vorfalls angeschrien (oder gefeuert).

Verstehen Sie, warum Sie horbare Seufzer vernehmen, wenn Entwickler und Betriebsper-
sonal zusammenarbeiten? Mit DevOps versucht man, die Herausforderungen, die durch si-
loisierte Verantwortung und widerspriichliche Ziele entstehen, zu eliminieren. Durch An-
passung von Anreizen, Wissensaustausch, Beseitigung von Barrieren und Berticksichtigung
verschiedener Rollen kann DevOps die zwischenmenschliche Kommunikation und Zusam-
menarbeit in Ihrem Team erheblich verbessern.



