1.1 Ort, Verschiebung und mittlere Geschwindigkeit

Eines der Ziele der Physik ist, die Bewegung von Objekten zu beschreiben — z. B. QQ
wie schnell sie sich bewegen oder welche Entfernung sie in einer bestimmten Zeit
zuriicklegen. Die Konstrukteure von Rennautos sind an diesem Aspekt der Physik
besonders interessiert, weil diese Zusammenhénge letztlich tiber Sieg oder Nieder-
lage im Rennen entscheiden. Geologen verwenden diesen Teil der Physik, um die
Bewegungen von tektonischen Platten zu messen und zu versuchen, daraus Erd-
beben vorherzusagen. Mediziner brauchen diese physikalischen Zusammenhénge,
um aus der beobachteten Stromung des Blutes in einem Patienten den Teilver-
schluss einer Arterie zu diagnostizieren, und Autofahrer nutzen sie, um zu brem-
sen, wenn ihr Radarwarner piepst. Natiirlich gibt es noch unzidhlige weitere Bei-
spiele. In diesem Kapitel untersuchen wir zunéchst die Grundlagen der Physik von
Bewegungen, in denen sich ein Objekt (ein Rennwagen, eine tektonische Platte,
rote Blutkorperchen ...) entlang einer einzigen Achse bewegt. Danach beschéfti-
gen wir uns mit der Beschreibung von Bewegungen in zwei und drei Raumdimen-
sionen.

1.1.1 Bewegung

Die Erde — und alles auf ihr — bewegt sich. Selbst scheinbar regungslose Dinge, wie
z. B. eine Straf3e, bewegen sich mit der Erddrehung, der Umlaufbahn der Erde um
die Sonne, der Umlaufbahn des Sonnensystems um das Zentrum der Milchstrafle
und der Bewegung der Galaxis relativ zu anderen Galaxien. Die Klassifizierung und
der Vergleich von Bewegungen — Kinematik genannt — konnen manchmal eine
grofle Herausforderung darstellen. Was genau messen wir dabei und wie werden
die Vergleiche gezogen?

Bevor wir versuchen, diese Fragen zu beantworten, werden wir einige allgemei-
ne Eigenschaften einer ganz bestimmten Art von Bewegung studieren. Diese wird
durch drei Bedingungen eingeschrankt:

1. Die Bewegung erfolgt nur entlang einer geraden Linie. Diese Linie kann senk-
recht (wie bei einem fallenden Stein), waagerecht (wie bei einem Auto auf einer
geraden StrafSe) oder schrég verlaufen, aber sie muss eine Gerade sein.

2. Bewegung wird durch Krifte (,ziehen” und ,schieben®) verursacht — diese wer-
den jedoch erst in Kap. 5 behandelt. In dem vorliegenden Kapitel werden wir
nur die Bewegung an sich sowie Verdnderungen dieser Bewegung untersuchen.
Wird das bewegte Objekt schneller oder langsamer, hilt es an oder wechselt es
die Richtung? Welche Rolle spielt die Zeit bei der Verdnderung der Bewegung?

3. Das bewegte Objekt ist entweder ein Teilchen, d. h. ein punktférmiges Gebilde
wie z. B. ein Elektron, oder ein Objekt, das sich wie ein Teilchen bewegt (der-
art, dass all seine Teile sich mit exakt derselben Geschwindigkeit in dieselbe
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Der Ort bzw. die Position eines Teil-
chens ldsst sich anhand einer Ach-
se bestimmen, die in Einheiten der

Lange gekennzeichnet ist (hier in
Metern) und sich unendlich weit
in entgegengesetzte Richtungen er-
streckt. Die Achsenbeschriftung —
hier x — befindet sich immer auf
der positiven Seite des Ursprungs.

1 Bewegung

Richtung bewegen). Ein Kind, das seinen Korper ganz steif macht und auf dem
Spielplatz eine gerade Rutsche hinunterrutscht, bewegt sich wie ein Teilchen;
ein vom Wind durch die Wiiste getriebener, rollender Steppenldufer dagegen
nicht, da sich verschiedene Punkte in seinem Inneren in verschiedene Richtun-
gen bewegen.

1.1.2  Ortund Verschiebung

Den Ort eines Teilchens zu bestimmen bedeutet, seine Position in Bezug auf ei-
nen bestimmten Referenzpunkt festzulegen, oftmals in Bezug auf den Ursprung
(oder Nullpunkt) einer Achse, wie der x-Achse in Abb. 1.1. Die positive Rich-
tung der Achse ist die Richtung ansteigender Zahlen (Koordinaten), die in Abb. 1.1
nach rechts zeigt. Die entgegengesetzte Richtung wird als negative Richtung be-
zeichnet.

Ein Teilchen befindet sich z. B. am Ort x = 5m, d. h., es befindet sich 5m in po-
sitiver Richtung vom Ursprung entfernt. Lage es bei x = —5m, so befinde es sich
genauso weit vom Ursprung entfernt, allerdings in der entgegengesetzten Rich-
tung. Auf der Achse liegt eine Koordinate von —5 m weiter links — also zu kleineren
Zahlen hin — als eine von —1 m, und beide Koordinaten befinden sich weiter links
als eine Koordinate von +5 m. Das Pluszeichen einer Koordinate muss man nicht
ausschreiben, das Minuszeichen dagegen muss immer aufgefiithrt werden.

Ein Wechsel von einem Ort x; zu einem anderen Ort x, wird eine Verschiebung
Ax genannt, wobei

Ax =x9 — %7 . (1.1)

(Das Symbol A, der griechische Grofibuchstabe Delta, steht fiir eine Verdnderung
einer Grof3e, also die Differenz von Endwert und Anfangswert dieser Groéfle.) Wenn
fiir die Ortsangaben x; und x, Zahlenwerte eingesetzt werden, so ergibt eine Ver-
schiebung in die positive Richtung (nach rechts in Abb. 1.1) immer einen positiven
Wert, eine Verschiebung in die entgegengesetzte Richtung (nach links in der Abbil-
dung) einen negativen Wert. Bewegt sich das Teilchen beispielsweise von x; = 5m
nach x, = 12m, dann ist Ax = (12m) — (5 m) = +7 m. Der positive Wert gibt an,
dass die Bewegung in die positive Richtung erfolgt. Kehrt das Teilchen dann zu
x = 5m zuriick, so ist die Verschiebung fiir die ganze Bewegung gleich null. Die
tatsachliche Anzahl von Metern, die auf der gesamten Strecke zuriickgelegt wur-
de, ist irrelevant. Verschiebungen beriicksichtigen nur den Anfangs- und den End-
punkt einer Bewegung.

Auch bei einer Verschiebung muss ein Pluszeichen nicht aufgefiihrt werden, ein
Minuszeichen dagegen immer. Ignorieren wir das Vorzeichen (und damit die Rich-
tung) einer Verschiebung, so erhalten wir den Betrag (oder Absolutbetrag) der
Verschiebung. Im vorangehenden Beispiel ist der Betrag von Ax gleich 7 m.

Eine Verschiebung ist ein Beispiel fiir eine Vektorgrofle, d. h., eine Grofle, die
sowohl iiber eine Richtung als auch iiber einen Betrag verfiigt. Uber Vektoren wer-
den wir in Anhang D mehr erfahren; an dieser Stelle gentigt die Feststellung, dass
eine Verschiebung zwei Eigenschaften besitzt: (1) Ihr Betrag ist der Abstand (wie
z.B. eine Zahl von Metern) zwischen Anfangs- und Endpunkt. (2) Die Richtung
der Verschiebung zwischen Anfangs- und Endpunkt wird einfach mit einem Plus-
oder Minuszeichen angegeben, falls die Bewegung nur entlang einer einzigen Ach-
se erfolgt.

|.- Was an dieser Stelle folgt, ist die erste einer Vielzahl von ,Kontrollfra-
gen®, die Thnen in diesem Buch begegnen werden. Sie bestehen aus einer
oder mehreren Fragen, deren Beantwortung gewisse Argumentationsket-
ten oder Kopfrechnungen erfordert und die Ihnen die Moglichkeit geben,
Ihr Verstdndnis rasch zu iiberpriifen. Die Antworten finden Sie am Schluss
dieses Buchs.



1.1 Ort, Verschiebung und mittlere Geschwindigkeit

Hier sind drei Paare von Anfangs- und Endpunkten einer Bewegung gegeben, die
entlang einer x-Achse erfolgt. Welche Paare ergeben eine negative Verschiebung:
(a) =3 m, 5m; (b) —3m, =7 m; (c) 7m, —3 m?

1.1.3  Durchschnittsgeschwindigkeit

Die Position eines Teilchens ldsst sich auf kompakte Weise anhand der Ort-Zeit-
Kurve x(t) beschreiben. Dabei wird der Ort x als Funktion der Zeit ¢ aufgetragen.
(Dabei steht der Ausdruck ,x(¢)“ fiir ,,x als Funktion von ¢ nicht fiir das Produkt x
mal ¢.) Abb. 1.2 zeigt als einfaches Beispiel die Ortsfunktion x(¢) eines ruhenden
Gurteltiers (das wir wie ein Teilchen behandeln) bei x = —2 m.

Abbildung 1.3a ist interessanter, da sich das Giirteltier hier bewegt. Das Tier wird
offensichtlich zum ersten Mal zum Zeitpunkt ¢t = 0 gesichtet, als es sich am Ort
x = —5m befindet. Es bewegt sich bis x = 0, iiberquert diesen Punkt bei ¢ = 3 s
und strebt dann nach immer gréfSer werdenden positiven Werten von .

Abbildung 1.3b zeigt die tatsidchliche geradlinige Bewegung des Giirteltiers. Sie
entspricht dem, was Sie in etwa sehen wiirden. Die Kurve in Abb. 1.3a ist abstrakter
und weiter von dem entfernt, was Sie beobachten wiirden, doch sie enthélt mehr
Information. Sie macht auch deutlich, wie schnell sich das Giirteltier bewegt.

Tatséchlich hingt der Ausdruck ,wie schnell“ mit mehreren Grofien zusammen.
Eine von ihnen ist die Durchschnittsgeschwindigkeit oder mittlere Geschwin-
digkeit vg,. Sie wird durch das Verhéltnis der Verschiebung Ax, die in einem
bestimmten Zeitintervall At stattfindet, zu diesem Zeitintervall gegeben:

Ax _ % =%

Veem = A L=t (1.2)
Diese Schreibweise bedeutet, dass die Position zum Zeitpunkt ¢; gleich x; ist und
entsprechend zum Zeitpunkt ¢, gleich x,. Eine gebrauchliche Einheit fur vgep, ist
Meter pro Sekunde (m/s oder m - s71). In den Aufgaben werden Ihnen eventuell
auch andere Einheiten begegnen, diese haben jedoch immer die Form Lange/Zeit.

Wird x gegen ¢ aufgetragen, so ist Vge,, durch die Steigung der Geraden gegeben,
welche zwei bestimmte Punkte der Kurve x(¢) verbindet: Einer dieser Punkte ent-
spricht x, und t,, der andere x; und ¢;. Genau wie eine Verschiebung besitzt auch
Vgem €inen Betrag und eine Richtung — es ist ebenfalls eine Vektorgréfie. Der Be-
trag von v, entspricht dem Betrag der Steigung der Geraden. Ist vgep,, (und damit
die Steigung der Geraden) positiv, so steigt die Gerade nach rechts hin an; ist vgep,
negativ (negative Steigung), so verlduft die Gerade von links oben nach rechts un-
ten. Die Durchschnittsgeschwindigkeit vy, besitzt immer das gleiche Vorzeichen
wie die Verschiebung Ax, da At in Gl. 1.2 immer positiv ist.
Abbildung 1.4 zeigt, wie man v, im Falle des Giirteltiers aus Abb. 1.3 fiir das
Zeitintervall zwischen ¢ = 1s und ¢ = 4 s ermitteln kann. Dazu zeichnen wir die
Gerade, die den Punkt auf der Bahnkurve am Anfang des Zeitintervalls mit dem-
jenigen am Ende des Zeitintervalls verbindet. Dann ermitteln wir die Steigung
Ax /At der Geraden. Fiir das gegebene Zeitintervall ist die Durchschnittsgeschwin-
digkeit damit:

Vgem = 63—21 =2m/s.

»Wie schnell” sich ein Teilchen bewegt, lédsst sich auch durch die in einem Zeit-
intervall insgesamt zuriickgelegte Entfernung (z. B. die zuriickgelegte Anzahl von
Metern), unabhingig von der Richtung ausdriicken:

gesamte Entfernung
Veff = AL :

(1.3)
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Abb. 1.2
Die Kurve x(¢) fiir ein Giirteltier, das
sich unbewegt bei x = —2 m aufhalt.

Fiir alle Zeiten ¢ ist der Wert von
x gleich —2m.

Abb. 1.3

(a) Die x(#)-Kurve eines sich bewe-
genden Girteltiers. (b) Die Bahn, die
dieser Kurve entspricht. Die Skala
unterhalb der x-Achse gibt die Zeiten
an, zu denen das Giirteltier bestimmte
Werte von x erreicht.
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Berechnung der Durchschnitts-
geschwindigkeit zwischen ¢ = 1s
und ¢ = 4s: Die Durchschnitts-
geschwindigkeit entspricht der
Steigung der Geraden, welche die
Punkte verbindet, die diesen Zei-
ten auf der x(£)-Kurve entsprechen.
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1 Bewegung

Diese Grof3e, die wir auch als Effektivgeschwindigkeit bezeichnen konnen, be-
sitzt kein Vorzeichen, da die insgesamt zuriickgelegte Entfernung keine Angaben
tiber die Richtung der Bewegung macht. Manchmal entspricht die Effektivge-
schwindigkeit v, (bis auf das Vorzeichen) der Durchschnittsgeschwindigkeit
Vgem- Wie in der Beispielaufgabe 1.1 im Ubungsbuch gezeigt wird, konnen sich die
beiden Groflen allerdings deutlich voneinander unterscheiden, wenn ein Objekt
auf seinem Weg umkehrt.

Ebenfalls in Beispielaufgabe 1.1 im Ubungsbuch fahren Sie gleich nach dem Auf-
tanken Ihres Fahrzeugs mit 35km/h zum Punkt x; zuriick. Wie grof ist Ihre
Durchschnittsgeschwindigkeit fiir die gesamte Strecke?

Strategie 1: Verstehen Sie das Problem? Wenn man im Aufgabenlésen noch un-
erfahren ist, passiert es hdufig, dass man die gestellte Aufgabe einfach nicht ver-
steht. Der beste Test fiir Ihr Verstdndnis ist folgender: Kénnen Sie die Aufgabe in
Ihren eigenen Worten erkldren?

Schreiben Sie die vorgegebenen Daten mit den dazugehorigen Einheiten auf, in-
dem Sie die Symbole aus diesem Kapitel benutzen. (In der Beispielaufgabe 1.1 im
Ubungsbuch erlauben Ihnen die vorgegebenen Daten, in Teil (a) Ihre Verschiebung
Ax und in Teil (b) das entsprechende Zeitintervall At herauszufinden.) Identifizie-
ren Sie die Unbekannte und das dazugehorige Symbol. (In der gleichen Aufgabe
ist die Unbekannte in Teil (c) Ihre Durchschnittsgeschwindigkeit vy, ) Finden Sie
dann die Verbindung zwischen der Unbekannten und den gegebenen Daten. (Die
Verbindung ist hier Gl. 1.2, also die Definition der Durchschnittsgeschwindigkeit.)

Strategie 2: Stimmen die Einheiten? Stellen Sie sicher, dass Sie ein konsistentes
System von Einheiten benutzen, wenn Sie die Zahlen in die Gleichungen einsetzen.
In der Beispielaufgabe 1.1 im Ubungsbuch sind die Einheiten durch die vorgegebe-
nen Daten bestimmt: Kilometer fiir Entfernungen, Stunden fiir Zeitintervalle und
Kilometer pro Stunde fiir Geschwindigkeiten. Eventuell miissen Sie ab und zu eine
Einheit in eine andere umformen.

Strategie 3: Ist Ihre Antwort plausibel? Ist [hre Antwort sinnvoll? Ist der Wert
viel zu grofd oder viel zu klein? Stimmt das Vorzeichen? Sind die Einheiten kor-
rekt? In Teil (c) der Beispielaufgabe 1.1 im Ubungsbuch z. B. ist die richtige Ant-
wort 17 km/h. Erhalten Sie an dieser Stelle 0,000 17 km/h, —17 km/h, 17 km/s oder
17 000 km/h, so sollte Ihnen sofort klar sein, dass Sie etwas falsch gemacht haben.
Der Fehler liegt moglicherweise in Threr Vorgehensweise, in Thren Rechnungen
oder in Tippfehlern beim Eingeben der Zahlen in Thren Taschenrechner.

Strategie 4: Eine Kurvelesen Die Abb.1.2,1.3aund 1.4 sind Kurven, die Sie leicht
lesen konnen sollten. In jeder Kurve ist die Variable auf der horizontalen Achse die
Zeit t mit nach rechts hin ansteigenden Werten. In allen Kurven gibt die vertikale
Achse den Ort x des sich bewegenden Teilchens relativ zum Ursprung an, die po-
sitive x-Richtung zeigt nach oben. Achten Sie immer auf die Einheiten (Sekunden
oder Minuten; Meter oder Kilometer), in denen die Variablen angegeben werden.

1.2  Momentangeschwindigkeit

Nach dem Durcharbeiten dieses Abschnitts sollten Sie in der Lage sein, ...

« aus dem Ort eines Teilchens als Funktion der Zeit seine Momentangeschwin-
digkeit zu jedem Zeitpunkt zu berechnen,

o aus der Auftragung des Ortes eines Teilchens als Funktion der Zeit seine Mo-
mentangeschwindigkeit zu jedem Zeitpunkt zu bestimmen,



1.3 Beschleunigung

« zwischen der vektoriellen Geschwindigkeit (die gerichtet bzw. im eindimensio-
nalen Fall vorzeichenbehaftet ist) und ihrem Betrag (einer skalaren und vor-
zeichenlosen Grof3e, die im allgemeinen Sprachgebrauch auch einfach als ,Ge-
schwindigkeit“ bezeichnet wird) zu unterscheiden.

« Die Momentangeschwindigkeit (oder einfach Geschwindigkeit) v eines sich be-
wegenden Teilchens ist
. Ax dx
v=lim — = —
At—0 At dt
mit Ax = xy —x; und At =ty — ¢;.

o Die zu einem bestimmten Zeitpunkt geltende Momentangeschwindigkeit kann
aus der Steigung der Kurve von x als Funktion von ¢ zu diesem Zeitpunkt be-
stimmt werden.

« Invielen Fillen, in denen es nicht auf die Richtung des Geschwindigkeitsvektors
ankommt, bezeichnet man den Betrag dieses Vektors als ,Geschwindigkeit".

1.2.1  Momentangeschwindigkeit

Bisher haben Sie zwei Wege kennengelernt, anhand derer man beschreiben kann,
wie schnell sich etwas bewegt: die Durchschnittsgeschwindigkeit und die Effektiv-
geschwindigkeit. Beide werden tiber ein Zeitintervall At gemessen. Der Ausdruck
»wie schnell” bezieht sich meist jedoch darauf, wie schnell sich ein Teilchen zu ei-
nem gegebenen Zeitpunkt bewegt — damit ist die Momentangeschwindigkeit v
gemeint, oft auch einfach nur Geschwindigkeit genannt.

Die Geschwindigkeit zu einem beliebigen Zeitpunkt erhilt man aus der Durch-
schnittsgeschwindigkeit, indem man das Zeitintervall At immer weiter verkiirzt
und gegen null gehen ldsst. Je kleiner At wird, desto mehr néhert sich die Durch-
schnittsgeschwindigkeit einem Grenzwert, der der Momentangeschwindigkeit zu
diesem Zeitpunkt entspricht:

. Ax  dx

iy v (4
Diese Gleichung macht zwei Charakteristika der Momentangeschwindigkeit v
deutlich: Erstens ist v die Rate, mit der sich der Ort x des Teilchens zu einem
bestimmten Zeitpunkt in Abhédngigkeit von der Zeit verdndert. Das heif3t, v ist die
Ableitung von x nach t. Zweitens entspricht v zu jedem gegebenen Zeitpunkt der
Steigung der Ort-Zeit-Kurve des Teilchens zu diesem bestimmten Zeitpunkt. Die
Geschwindigkeit ist eine Vektorgrofie und beinhaltet deshalb eine entsprechen-
de Richtung. Der Betrag der Geschwindigkeit entspricht dem Zahlenwert ohne
das Vorzeichen: Eine Geschwindigkeit von +5m/s und eine Geschwindigkeit
von —5m/s haben damit beide den gleichen Betrag von 5m/s. Der Geschwin-
digkeitsmesser in einem Auto misst den Betrag der Geschwindigkeit, nicht die
Geschwindigkeit selbst, da er die Richtung nicht bestimmen kann.

1.3 Beschleunigung

Nach dem Durcharbeiten dieses Abschnitts sollten Sie in der Lage sein, ...

o eine Beziehung zwischen der mittleren Beschleunigung, die auf ein Teilchen
wirkt, der daraus resultierenden Anderung seiner Geschwindigkeit und dem fiir
diese Anderung erforderlichen Zeitintervall anzugeben,

o aus der gegebenen Geschwindigkeit eines Teilchens als Funktion der Zeit die zu
jedem Zeitpunkt wirkende Momentanbeschleunigung zu berechnen,

-4



Abb. 1.5

Colonel J.P. Stapp in einem Rake-
tenschlitten, der auf sehr hohe Ge-
schwindigkeiten gebracht wird (da-
bei zeigt die Beschleunigung aus der
Buchseite heraus) und dann ruck-
artig wieder abgebremst wird (die
Beschleunigung weist dabei in die
Buchseite hinein) [Quelle: Mit freund-
licher Erlaubnis der US Air Force].

1 Bewegung

o aus der Auftragung der Geschwindigkeit eines Teilchens als Funktion der Zeit
die zu jedem Zeitpunkt wirkende Momentanbeschleunigung sowie die in einem
beliebigen Zeitintervall wirkende mittlere Beschleunigung zu ermitteln.

+ Die mittlere Beschleunigung ist das Verhéltnis aus der Anderung Av einer Ge-
schwindigkeit und dem Zeitintervall A¢, in dem diese Anderung erfolgt:

Av
agem = E .
Das Vorzeichen von a,,,, gibt die Richtung der Beschleunigung an.

+ Die Momentanbeschleunigung (oder einfach Beschleunigung) ist die erste Ab-
leitung der Geschwindigkeit v(¢) bzw. die zweite Ableitung des Ortes x(¢) nach
der Zeit:

_dv &
feem =4 T A

» Ineiner Auftragungvon v gegen ¢ ist die Beschleunigung a zu einem Zeitpunkt ¢

gleich der Steigung der Kurve am Punkt ¢.

1.3.1 Beschleunigung

Wenn sich die Geschwindigkeit eines Teilchens dndert, so sagt man, das Teilchen
unterliegt einer Beschleunigung bzw. es wird beschleunigt. Erfolgt die Bewegung
entlang einer Achse, so ist die Durchschnittsbeschleunigung 4, in dem Zeit-
intervall At gleich

_ V= Av
gem 4t At
wobei das Teilchen zum Zeitpunkt ¢; die Geschwindigkeit v; und zum Zeitpunkt ¢,
die Geschwindigkeit v, hat. Die Momentanbeschleunigung (oder einfach nur Be-
schleunigung) ist die Ableitung der Geschwindigkeit nach der Zeit:

dv
a= TR (1.6)
In Worten ausgedriickt ist die Beschleunigung eines Teilchens zu jedem Zeit-
punkt gleich der Rate, mit der sich seine Geschwindigkeit zu diesem Zeitpunkt
andert. Grafisch entspricht die Beschleunigung an jedem Punkt der Steigung der
v(t)-Kurve an diesem Punkt.

Kombinieren wir Gl. 1.6 und Gl. 1.4, so erhalten wir:

2
a—dV— d <dx> dx‘ (L.7)

a (1.5)

T A de\de) a2




1.3 Beschleunigung

In Worten ausgedriickt ist die Beschleunigung eines Teilchens zu jedem Zeitpunkt
gleich der zweiten Ableitung seines Ortes x(¢) nach der Zeit.

Eine tibliche Einheit fiir die Beschleunigung ist Meter pro Sekunde pro Sekunde
bzw. Meter pro Quadratsekunde: m/(s - s) oder m/s? bzw. m - s72. In den Aufga-
ben werden IThnen noch andere Einheiten begegnen, sie werden jedoch immer die
Form Linge/(Zeit - Zeit) oder Linge/Zeit? haben. Die Beschleunigung besitzt so-
wohl einen Betrag als auch eine Richtung, sie ist eine weitere Vektorgrofie. Genau
wie bei der Verschiebung und der Geschwindigkeit gibt das Vorzeichen der Be-
schleunigung ihre Richtung entlang einer Achse an. Besitzt die Beschleunigung
einen positiven Wert, so erfolgt sie in positiver Richtung der Achse; ist sie negativ,
erfolgt sie entsprechend in negativer Richtung.

In Abb. Ul.2c im Ubungsbuch ist die Beschleunigung der Aufzugkabine aus der
dortigen Beispielaufgabe 1.2 dargestellt. Vergleichen Sie die Kurve a(t) mit derjeni-
gen von v(t). a(t) gibt die Ableitung (Steigung) der Kurve v(¢) zum entsprechenden
Zeitpunkt wieder. Ist v konstant (bei 0 oder 4 m/s), so ist die Ableitung gleich null
und die Beschleunigung demzufolge auch. Wihrend der Zeit, in der sich der Auf-
zug in Bewegung setzt, ist die Ableitung der v(¢)-Kurve positiv (die Steigung ist
positiv), d. h., auch die Beschleunigung ist positiv. Wihrend des Abbremsens sind
Ableitung und Steigung der v(¢)-Kurve negativ; entsprechend ist a(£) ebenfalls ne-
gativ.

Vergleichen Sie als Néchstes die Steigung der v(£)-Kurve wéhrend der beiden
Beschleunigungsvorgénge. Die Steigung, die dem Abbremsen bzw. der Verzoge-
rung des Aufzugs entspricht, ist steiler, da die Kabine zum Anhalten nur halb so
viel Zeit bendtigt, wie sie gebraucht hatte, um ihre tibliche Fahrtgeschwindigkeit
zu erreichen. Die steilere Steigung sagt aus, dass der Betrag der Verzogerung, wie
in Abb. U1.2c im Ubungsbuch dargestellt, grofier ist als derjenige der Beschleuni-
gung.

Das Gefiihl, das Sie wihrend der Fahrt mit diesem Aufzug verspiiren wiirden,
ist anhand der skizzierten Figuren angedeutet. Wahrend der Aufzug beschleunigt,
fithlen Sie sich, als wiirden Sie nach unten gedriickt; wihrend des Bremsvorgangs
wirkt es so, als wiirden Sie nach oben in die Lange gezogen. Dazwischen spiiren Sie
nichts Besonderes. Ihr Korper reagiert auf Beschleunigungen (er ist ein guter Be-
schleunigungssensor), jedoch nicht auf Geschwindigkeiten (er ist kein Geschwin-
digkeitsmesser). Ob Sie sich in einem Auto befinden, das sich mit 90 km/h bewegt,
oder in einem mit 900 km/h fliegenden Flugzeug — Thr Korper spiirt diese Bewe-
gung nicht. Verdndern Auto oder Flugzeug jedoch abrupt ihre Geschwindigkeit,
so werden Sie sich dieser Verdnderung nur allzu deutlich bewusst. Der Reiz eines
Freizeitparks liegt zum grofSen Teil in den schnellen Geschwindigkeitsinderungen,
denen Sie auf den Achterbahnen ausgesetzt sind. Ein extremeres Beispiel zeigt die
Fotoserie von Abb. 1.5, die aufgenommen wurde, wihrend ein Raketenschlitten
entlang einer Schiene ruckartig beschleunigt und wieder abgebremst wurde.

Abb. 1.5

Fortsetzung
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1 Bewegung

Grof3e Beschleunigungen werden oft in Einheiten von g ausgedriickt, wobei
1g=9,8m/s>  (Einheitg). (1.8)

(Wie wir in Abschn. 2.5 sehen werden, ist g der Betrag der Beschleunigung ei-
nes fallenden Objekts in der Nahe der Erdoberfldche.) Auf einer Achterbahn erle-
ben Sie kurzfristig Beschleunigungen von bis zu 3g, d.h. (3)(9,8 m/s2), also etwa
29 m/s? — mehr als genug, um den teuren Fahrpreis zu rechtfertigen.

Strategie 5: Das Vorzeichen einer Beschleunigung In der Umgangssprache hat
das Vorzeichen einer Beschleunigung eine nichtwissenschaftliche Bedeutung: Po-
sitive Beschleunigung bedeutet, dass der Geschwindigkeitsbetrag eines Objekts
grofler wird, negative Beschleunigung sagt aus, dass das Objekt langsamer wird
(der Betrag der Geschwindigkeit wird kleiner). In diesem Buch bezieht sich das
Vorzeichen einer Beschleunigung jedoch auf eine Richtung und nicht etwa darauf,
ob die Geschwindigkeit eines Objekts grofler oder kleiner wird.

Wird ein Fahrzeug mit einer urspriinglichen Geschwindigkeit v = —25m/s
z.B. innerhalb von 5,0s vollstindig abgebremst, so ist dge, = +5,0 m/s2. Die
Beschleunigung ist positiv, doch der Betrag der Geschwindigkeit des Fahrzeugs
nimmt ab. Der Grund liegt in den unterschiedlichen Vorzeichen: Die Richtung der
Beschleunigung ist derjenigen der Geschwindigkeit entgegengesetzt.

So interpretieren Sie die Vorzeichen korrekt:

|.- Sind die Vorzeichen der Geschwindigkeit und der Beschleunigung eines
Teilchens gleich, so nimmt der Betrag der Geschwindigkeit zu, das Teil-
chen wird schneller. Sind die Vorzeichen unterschiedlich, so nimmt der Ge-
schwindigkeitsbetrag ab, das Teilchen wird langsamer.

Ein Teilchen bewegt sich entlang einer x-Achse. Was ist das Vorzeichen seiner
Beschleunigung, wenn es sich (a) mit ansteigendem Geschwindigkeitsbetrag
in positive x-Richtung, (b) mit abfallendem Geschwindigkeitsbetrag in positive
x-Richtung, (c) mit ansteigendem Geschwindigkeitsbetrag in negative x-Richtung
und (d) mit abfallendem Geschwindigkeitsbetrag in negative x-Richtung bewegt?

1.4  Konstante Beschleunigung

Nach dem Durcharbeiten dieses Abschnitts sollten Sie in der Lage sein, ...

+ die Beziehungen zwischen Ort, Verschiebung, Geschwindigkeit, Beschleuni-
gung und Zeit (Tab. 1.1) firr konstante Beschleunigungen anzuwenden,

« die Anderung der Geschwindigkeit eines Teilchens zu berechnen, indem Sie sei-
ne Beschleunigung iiber die Zeit integrieren,

o die Anderung des Ortes eines Teilchens zu berechnen, indem Sie seine Ge-
schwindigkeit iiber die Zeit integrieren.

+ Die folgenden fiinf Gleichungen beschreiben die Bewegung eines Teilchens un-
ter dem Einfluss einer konstanten Beschleunigung:

1
V=V0+ﬂt, x—xOZVOt"'Eﬂtz,
2

1 1
14 =v3+2a(x—xo), x—xozi(v+vo)t, x—xozvt—gatz.

Sie gelten nur fiir den Fall einer konstanten Beschleunigung.
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1.4.1 Konstante Beschleunigung: Ein Sonderfall

Bei vielen Arten von Bewegungen ist die Beschleunigung entweder konstant oder
zumindest anndhernd gleichmifig. Sie konnen z. B. ein Auto anndhernd gleich-
maif3ig beschleunigen, wenn die Ampel von Rot auf Griin springt. Die Kurven Ihrer
Position, Ihrer Geschwindigkeit und Ihrer Beschleunigung wiirden dann denen aus
Abb. 1.6 dhneln. (Beachten Sie, dass a(t) in Abb. 1.6¢ konstant ist, was bedeutet,
dass v(¢) in Abb. 1.6b eine konstante Steigung besitzt.) Wenn Sie das Auto danach
abbremsen, um anzuhalten, so ist die Verzogerung dabei moglicherweise ebenfalls
anndhernd konstant.

Diese Fille treten so haufig auf, dass ein spezieller Satz von Gleichungen aufge-
stellt wurde, um sie zu behandeln. Ein moglicher Weg, diese Gleichungen herzulei-
ten, wird in diesem Abschnitt beschrieben. Einen weiteren finden Sie im nichsten
Abschnitt. Sowohl beim Studium dieser beiden Abschnitte als auch spéter, wenn
Sie zu Hause Aufgaben losen, sollten Sie im Hinterkopf behalten, dass diese Glei-
chungen nur fiir konstante Beschleunigungen gelten (oder fiir Situationen, in denen
Sie die Beschleunigung niherungsweise gleich einer Konstante setzen konnen).

Ist die Beschleunigung konstant, so sind Durchschnittsbeschleunigung und Mo-
mentanbeschleunigung gleich. Mit kleinen Anderungen in der Schreibweise wird
Gl 1.5 damit zu:

V=V
gem = 0

a=a

Hierbei ist v, die Geschwindigkeit zur Zeit t = 0 und v die Geschwindigkeit zu
jedem beliebigen spdteren Zeitpunkt ¢. Diese Gleichung lasst sich umschreiben zu:
v=vy+at. (1.9)
Beachten Sie, dass diese Gleichung bei t = 0 wie gefordert v = v, ergibt. Um
die Richtigkeit des Ganzen nochmals zu tiberpriifen, bilden Sie die Ableitung von
Gl. 1.9. Damit erhalten Sie dv/dt = a, was der Definition von a entspricht. In
Abb. 1.6b ist eine Kurve von GL. 1.9, also von der Geschwindigkeitsfunktion v(z),
aufgezeichnet; die Funktion ist linear, die Kurve damit eine Gerade.
Auf dhnliche Art und Weise konnen wir Gl. 1.2 (mit ein paar Veranderungen in
der Schreibweise) zu

X — Xo
Vv =
gem t_o

umschreiben und erhalten dann

X =%0+ Vgem!> (1.10)
wobei x,, die Position des Teilchens bei ¢ = 0 und vy, die Durchschnittsgeschwin-
digkeit zwischen ¢ = 0 und einem spéteren Zeitpunkt ¢ bezeichnet.

Fir die lineare Geschwindigkeitsfunktion von Gl. 1.9 ist die Durchschnittsge-
schwindigkeit in einem beliebigen Zeitintervall (z. B. von ¢ = 0 bis zu einem spé-
teren Zeitpunkt ¢) der Mittelwert zwischen der Geschwindigkeit am Anfang des
Intervalls (= v,;) und der Geschwindigkeit am Ende des Intervalls (= v). Fiir das
Intervall von ¢ = 0 zu einer spéteren Zeit ¢ ist die Durchschnittsgeschwindigkeit
damit:

1
Vgem = 5("0 +v). (1.11)
Ersetzt man v durch die rechte Seite von Gl. 1.9, so erhilt man nach kleinen Um-
formungen:

(1.12)

1
Vgem = Vo T Eat .

=
S
2
A Steigung variiert
X0
0 t
(a)
v
3
i)
en
e
g
2 .
5 Steigung = a
5
]
Yo
0 t
(b)
en a
% Steigung = 0
=
2 !
a0
(©
Abb. 1.6

(a) Der Ort x(¢) eines Teilchens, das
sich unter dem Einfluss einer kon-
stanten Beschleunigung bewegt.

(b) Seine Geschwindigkeit v(¢), die
in jedem Punkt durch die Steigung
der x(¢)-Kurve aus (a) gegeben wird.
(c) Seine (konstante) Beschleuni-
gung, die der (konstanten) Steigung
der v(t)-Kurve entspricht.



10

1 Bewegung
Einsetzen von Gl. 1.12 in GI. 1.10 ergibt dann schliefSlich:
1 2
X —xg = vyt + Eat . (1.13)

Beachten Sie, dass das Einsetzen von ¢ = 0 wie gefordert x = x, ergibt. Aufler-
dem liefert die Ableitung von GI. 1.13 genau Gl. 1.9 — ebenfalls wie gefordert. Ab-
bildung 1.6a stellt Gl. 1.13 grafisch dar: Die Funktion ist quadratisch, die Kurve
verlduft daher gekrimmt.

Die GlIn. 1.9 und 1.13 sind die grundlegenden Gleichungen der gleichmdifSig be-
schleunigten Bewegung. Sie konnen sie benutzen, um jede beliebige Aufgabe in die-
sem Buch zu l9sen, in der eine konstante Beschleunigung angenommen wird. Zu-
sitzlich werden wir jedoch weitere Gleichungen herleiten, die sich in bestimmten
Situationen als niitzlich erweisen kénnen. Beachten Sie zunéchst, dass in Aufga-
ben mit gleichméfSiger Beschleunigung insgesamt fiinf Grofien auftreten konnen,
und zwar x — x, v, £, a und v,. Ublicherweise kommt eine dieser Gréfien in der
Ubungsaufgabe nicht vor, weder als vorgegebene Gréfie noch als Unbekannte. Man
gibt uns dann drei der verbleibenden Grofien vor und fordert uns auf, die vierte zu
ermitteln.

Die GlIn. 1.9 und 1.13 enthalten jeweils vier dieser Grofien, allerdings nicht diesel-
ben vier. In Gl. 1.9 fehlt die Verschiebung x —x,. In Gl. 1.13 ist es die Geschwindig-
keit v. Diese beiden Gleichungen konnen auflerdem auf drei verschiedene Arten zu
drei weiteren Gleichungen kombiniert werden, die dann jeweils eine andere ,feh-
lende Variable” aufweisen. In einem ersten Schritt konnen wir ¢ eliminieren und
erhalten damit:

= vé + 2a(x — xq) . (1.14)

Diese Gleichung ist dann von Nutzen, wenn wir ¢ nicht kennen und auch nicht
herausfinden sollen. In einem zweiten Schritt konnen wir die Beschleunigung a
anhand der Gln. 1.9 und 1.13 eliminieren. Wir erhalten dann eine Gleichung, in
der a nicht mehr vorkommt:

X=Xy = %(vo +v)t. (1.15)
Schliefilich kénnen wir v, eliminieren und bekommen:
1 o
X —xg=vt— Eat . (1.16)

Beachten Sie den subtilen Unterschied zwischen dieser Gleichung und Gl. 1.13. Die
eine beinhaltet die Anfangsgeschwindigkeit v, die andere die Geschwindigkeit v
zur Zeit ¢.

In Tab. 1.1 sind die grundlegenden Gleichungen der gleichmaflig beschleunigten
Bewegung (Gln. 1.9 und 1.13) sowie die spezielleren Gleichungen aufgefiihrt, die
wir daraus abgeleitet haben. Um eine einfache Aufgabe mit konstanter Beschleu-
nigung zu losen, konnen Sie normalerweise eine der Gleichungen aus dieser Liste
benutzen — falls Sie die Liste zur Hand (oder im Kopf!) haben. Wihlen Sie eine
Gleichung, in der die einzige Unbekannte die in der Aufgabe gesuchte Grofie ist.
Einfacher ist es, sich nur die GIn. 1.9 und 1.13 zu merken und beide bei Bedarf als
gekoppeltes Gleichungssystem zu 16sen. Ein Beispiel dafiir finden Sie in Beispiel-
aufgabe 1.4 im Ubungsbuch.

Die folgenden Gleichungen geben die Position x(¢) eines Teilchens in vier verschie-
denen Situationen an: (1) x = 3t — 4; (2) x = =53 + 4¢> + 6; (3) x = 2/t> — 4/t;
(4) x = 5t — 3. Auf welche dieser Situationen kénnen die Gleichungen aus Tab. 1.1
angewendet werden?
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Bewegungsgleichungen der gleichmifig beschleunigten Bewegung®?.

Nummer der Gleichung  Gleichung Fehlende Grofle
1.9 v=vy+at X —Xq

1.13 x—xy = vot + %atz v

1.14 V2= vg +2a(x —xy) ¢t

1.15 X=Xy = %(v0+v)t a

116 X — Xy =Vvt— %atz 12

a) Vergewissern Sie sich, dass die Beschleunigung tatséchlich konstant ist, bevor Sie die Glei-
chungen aus dieser Tabelle anwenden.

Strategie 6: Uberpriifen Sie die Dimensionen Die Dimension einer Geschwin-
digkeit ist L/T — also die Dimension L einer Lange dividiert durch die Dimen-
sion T einer Zeit; die einer Beschleunigung ist L/ T2. In jeder beliebigen Gleichung
missen die Dimensionen der beiden Terme links und rechts des Gleichheitszei-
chens die gleichen sein. Hegen Sie Zweifel an einer Gleichung, tiberpriifen Sie ihre
Dimensionen.

Um die Dimensionen von Gl 1.15 (x — x, = vyt + +at?) zu iiberpriifen,
stellen wir zunéchst fest, dass jeder Summand auf der rechten Seite eine Lange sein
muss, da dies die Dimension von x und x, ist. Die Dimension des Ausdrucks vyt
ist (L/T)(T), also L. Die Dimension von %atz ist (L/T?)(T?), d.h. ebenfalls L.
In dieser Gleichung gehen die Dimensionen somit auf.

1.4.2 Konstante Beschleunigung: ein anderer Blickwinkel

Die ersten beiden Gleichungen in Tab. 1.1 sind die Grundgleichungen, aus denen
die anderen abgeleitet werden. Diese beiden Gleichungen kénnen unter Ausnut-
zung der Bedingung, dass a konstant ist, durch Integration der Beschleunigung
gewonnen werden. Um GI. 1.9 zu erhalten, schreiben wir die Definition der Be-
schleunigung (GI. 1.6) um:

dv=adt.

Anschlieflend bilden wir das unbestimmte Integral von beiden Seiten der Glei-
chung:

[av=]aar.

Da die Beschleunigung a eine Konstante ist, konnen wir sie vor das Integralzeichen
ziehen und erhalten damit:

[av=aar.

v=at+C. (1.17)

oder

Um die Integrationskonstante C zu ermitteln, setzen wir £ = 0. Wie wir wissen, ist
zu diesem Zeitpunkt v = v,. Durch Einsetzen dieser Werte in GI. 1.17 (die ja fur
alle Werte von t einschliefSlich £ = 0 gelten muss) erhalten wir:

vo=(@)0)+C=C.

1) Dieser Abschnitt ist fiir Studierende vorgesehen, die bereits die Integralrechnung beherrschen.

11
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Dies schlieflich in Gl. 1.17 eingesetzt ergibt GI. 1.9.
Um GIl. 1.13 herzuleiten, schreiben wir die Definition der Geschwindigkeit
(GL 1.4) in der Form

dx = vdt

und bilden dann auf beiden Seiten der Gleichung das unbestimmte Integral:

s =[var.

Im Allgemeinen ist v nicht konstant, wir kénnen v also nicht vor das Integralzei-
chen ziehen. Wir konnen v jedoch anhand von Gl. 1.9 ersetzen und erhalten damit:

de = I(VO + at)dt .

Da v, ebenso wie die Beschleunigung « eine Konstante ist, lasst sich dies umschrei-
ben als

dezvojdt+ajtdt.

Nach der Integration ergibt sich nun:
¥ =vot+ ~at? +C' 1.18
=, 2a +C, (1.18)

wobei C’ eine weitere Integrationskonstante ist. Zum Zeitpunkt ¢ = 0 ist x = x,,.
Einsetzen dieser Werte in Gl. 1.18 ergibt x, = C’. Ersetzen wir schlieSlich C’ in
GL. 1.18 durch x, so erhalten wir GI. 1.13.

1.5 Der freie Fall

Nach dem Durcharbeiten dieses Abschnitts sollten Sie in der Lage sein, ...

+ zuverstehen, dass ein Teilchen im freien Fall (aufwérts oder abwirts) unter Ver-
nachldssigung des Einflusses des Luftwiderstands auf seine Bewegung eine kon-
stante nach unten gerichtete Beschleunigung mit einem Betrag g erfihrt, den
wir gerundet gleich 9,8 m/s® setzen konnen,

+ die Bewegungsgleichungen fiir konstante Beschleunigung (Tab. 1.1) auf die Be-
wegung im freien Fall anzuwenden.

+ Ein Objekt, das in der Ndhe der Erdoberfliche frei aufsteigt oder fillt, ist ein
wichtiges Beispiel einer geradlinigen Bewegung. Diese Bewegung wird durch
die Gleichungen fiir Bewegungen unter konstanter Beschleunigung beschrie-
ben, wir nehmen jedoch zwei Verdnderungen an der Schreibweise vor: Erstens
beschreiben wir die Bewegung jetzt beziiglich einer vertikalen y-Achse, deren
positive Richtung nach oben zeigt, und zweitens ersetzen wir die Beschleuni-
gung a durch —g, wobei g der Betrag der Erdbeschleunigung ist. In der Néhe
der Erdoberfliche ist ¢ = 9,8 m/s?.

1.5.1 Der freie Fall

Sie werfen einen Gegenstand entweder nach oben oder nach unten. Kénnten Sie
dabei die Auswirkungen des Luftwiderstands auf seinen Flug ausschalten, so wiir-
den Sie feststellen, dass der Gegenstand mit einer bestimmten, konstanten Rate
nach unten beschleunigt wird. Diese Rate wird Gravitations- oder Erdbeschleu-
nigung genannt, ihren Betrag bezeichnet man mit g. Die Beschleunigung héngt
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nicht von den Eigenschaften des Gegenstands, wie Masse, Dichte oder Form, ab.
Sie ist fiir alle Objekte gleich.

Abbildung 1.7 zeigt anhand einer Reihe von Stroboskopaufnahmen einer Feder
und eines Apfels zwei Beispiele von Bewegungen im freien Fall. Wihrend des Falls
werden die beiden Gegenstiande nach unten beschleunigt — beide mit derselben
Rate g. Ihre Geschwindigkeiten nehmen in gleichem Mafle zu.

Der Betrag von g héngt leicht von der geografischen Breite und von der Hohe
ab. Auf Hohe des Meeresspiegels in mittleren Breiten betrigt er 9,8 m/s2. Diesen
Wert sollten Sie fiir alle Aufgaben in diesem Kapitel verwenden.

Die Bewegungsgleichungen fiir die gleichméfdig beschleunigte Bewegung in
Tab. 1.1 gelten auch fiir den freien Fall in der Néhe der Erdoberfliche. Das heif3t,
sie gelten fiir ein Objekt mit senkrechter Flugrichtung — entweder nach oben oder
nach unten — in dem Fall, dass die Wirkung des Luftwiderstands vernachléssigt
werden kann. Beachten Sie jedoch, dass fiir den freien Fall Folgendes gilt: (1) Die
Richtung der Bewegung liegt nun entlang einer senkrechten y-Achse anstatt ei-
ner waagerechten x-Achse, wobei die positive Richtung nach oben weist. (Dies ist
fir spatere Kapitel wichtig, in denen Bewegungen untersucht werden, die sowohl
in horizontaler als auch in vertikaler Richtung erfolgen.) (2) Die Gravitationsbe-
schleunigung ist nun negativ, d. h., sie zeigt auf der y-Achse nach unten in Richtung
Erdmittelpunkt und hat damit in den Gleichungen den Wert —g.

|.- Die Gravitationsbeschleunigung in der Nédhe der Erdoberflache ist a =
—g = —9,8m/s?; der Betrag der Beschleunigung ist ¢ = 9,8 m/s2. Setzen
Sie fir g nicht —9,8 m/s? ein!

Nehmen Sie an, Sie werfen eine Tomate gerade nach oben, mit einer (positiven)
Anfangsgeschwindigkeit v,, und fangen sie auf ihrer Ausgangshohe wieder auf.
Wiahrend des freien Falls — also von dem Moment an, nachdem Sie die Toma-
te losgelassen haben, bis kurz bevor Sie sie wieder auffangen — beschreiben die
Gleichungen von Tab. 1.1 die Bewegung. Die Beschleunigung ist konstant gleich
a = —g = —9,8 m/s?, sie ist also negativ und weist nach unten. Die Geschwindig-
keit jedoch verédndert sich wie in den Gln. 1.9 und 1.14 angegeben: Wihrend des
Aufstiegs wird der Betrag der — positiven — Geschwindigkeit immer kleiner, bis er
fiir einen Moment gleich null ist. Die Tomate hélt zu diesem Zeitpunkt an und hat
den hochsten Punkt ihrer Flugbahn erreicht. Wiahrend des Herunterfallens nimmt
der Betrag der — nun negativen — Geschwindigkeit zu.

(a) Wie lautet in Beispielaufgabe 1.5 im Ubungsbuch das Vorzeichen der Ver-
schiebung des Balls wihrend des Aufstiegs, vom Ausgangspunkt bis zum hochsten
Punkt gemessen? (b) Wie lautet das Vorzeichen wihrend des Falls nach unten,
vom hochsten Punkt bis zur Riickkehr an den Ausgangspunkt gemessen? (c) Wie
grof3 ist die Beschleunigung des Balls an seinem hochsten Punkt?

Strategie 7: Die Bedeutung von Minuszeichen In Beispielaufgabe 1.5 im Ubungs-
buch enthalten viele der Ergebnisse automatisch ein Minuszeichen. Es ist wichtig
zu wissen, was diese Zeichen bedeuten. Bei diesen Aufgaben, die beide den frei-
en Fall behandeln, haben wir eine vertikale Achse bestimmt (die y-Achse) und —
etwas willkiirlich — die Aufwértsrichtung als positive Richtung gewihlt.

Anschlieflend haben wir den Ursprung der y-Achse (d.h. den Ort y = 0) passend
zur Aufgabe gewihlt. Ein negativer Wert von y bedeutet dann, dass der Korper
sich unterhalb des Ursprungs befindet. Eine negative Geschwindigkeit driickt aus,
dass der Korper sich in negative Richtung — also nach unten — entlang der y-Achse
bewegt. Dies gilt an jedem beliebigen Ort, an dem sich der Koérper befindet.

In allen Aufgaben, die mit dem freien Fall zu tun haben, setzen wir eine ne-
gative Erdbeschleunigung an (—9,8 m/s?). Dies bedeutet, dass die Geschwindig-

Abb. 1.7

Eine Feder und eine Kugel, die sich

im Vakuum im freien Fall befinden,
bewegen sich beide unter dem Ein-
fluss der Gravitationsbeschleunigung g
nach unten. Die Beschleunigung be-
wirkt, dass sich der Abstand zwischen
aufeinander folgenden Bildern wih-
rend des Falls vergroflert. Beachten
Sie, dass Feder und Apfel in Abwesen-
heit des Luftwiderstands jedes Mal die
gleiche Strecke zuriickgelegt haben
[Quelle: Jim Sugar/CORBIS].
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keit des Korpers im Lauf der Zeit entweder weniger positiv oder negativer wird.
Dies gilt unabhéngig davon, wo sich der Korper befindet, und unabhéngig davon,
wie schnell oder in welche Richtung er sich bewegt. In der Beispielaufgabe 1.5 im
Ubungsbuch ist die Beschleunigung des Balls wihrend des gesamten Flugs negativ,
d. h. nach unten gerichtet, ob der Ball nun aufsteigt oder hinunterfallt.

Strategie 8: Unerwartete Ergebnisse Die Mathematik liefert oft Antworten, an
die Sie womoglich nicht gedacht haben, wie z.B. in der Beispielaufgabe 1.5¢ im
Ubungsbuch. Wenn Sie mehr Antworten erhalten, als Sie erwartet haben, ver-
werfen Sie nicht automatisch diejenigen, die nicht zu passen scheinen. Priifen Sie
sorgfiltig, ob sie nicht doch eine physikalische Bedeutung haben. Ist die Zeit die
gesuchte Variable, so konnen auch negative Zeiten etwas aussagen; ein negatives
Vorzeichen verweist auf Zeiten vor ¢ = 0, dem (willkiirlich festgelegten) Zeitpunkt,
an dem Sie Thre Stoppuhr gestartet haben.

1.6 Zwei und drei Raumdimensionen

Nach dem Durcharbeiten dieses Abschnitts sollten Sie in der Lage sein, ...

» zwei- und dreidimensionale Ortsvektoren fiir ein Teilchen zu zeichnen und ihre
Komponenten beztiglich der Achsen eines Koordinatensystems anzugeben,

¢ Betrag und Richtung des Ortsvektors eines Teilchens aus seinen Komponenten
in einem Koordinatensystem zu bestimmen (und umgekehrt),

+ die Beziehung zwischen dem Verschiebungsvektor eines Teilchens und seinen
Start- und Endkoordinaten anzugeben.

« Die Position eines Teilchens relativ zum Ursprung eines Koordinatensystems
wird durch einen Ortsvektor 7 beschrieben, der in Einheitsvektoren-Schreib-
weise die Form

7 =xé, + yé, + z¢,

hat. xé,, yé'y und zé, sind die Vektorkomponenten des Ortsvektors 7, dessen
skalare Komponenten x, y und z sind (die auch die Koordinaten des Teilchens
sind).

o Ein Ortsvektor wird entweder durch seinen Betrag und einen oder (in drei Di-
mensionen) zwei Winkel oder aber durch seine skalaren Komponenten spezifi-
ziert.

+ Wenn ein Teilchen sich so bewegt, dass sein Ortsvektor sich von 7; zu 7, verin-
dert, ist sein Verschiebungsvektor

Alternativ kann der Verschiebungsvektor auch wie folgt geschrieben werden:

A? = (xz - xl)_éx + (yz - yl)_éy + (Zz - ZI)EZ
= Axé, + Aé, + Azé, .

In den nun folgenden Abschnitten werden wir uns weiter mit der physikalischen
Beschreibung von Bewegung beschiftigen, wobei nun aber Bewegungen in zwei
oder drei Dimensionen zugelassen sein sollen. Beispielsweise konnen Sie ein Au-
to auf einer Autobahn oder Landstrafle (zweidimensionale Bewegung) vermutlich
sehr sicher fahren, hitten aber wahrscheinlich einige Probleme, ohne aufwéndiges
Training ebenso sicher ein Flugzeug zu landen (dreidimensionale Bewegung).

Bei unserer Untersuchung von zwei- und dreidimensionalen Bewegungen be-
ginnen wir wieder mit den physikalischen Grofien Ort und Verschiebung.



1.7 Durchschnittsgeschwindigkeit und Momentangeschwindigkeit

Eine allgemeine Methode, den Ort eines Teilchens (oder eines Objekts, das wie
ein Teilchen behandelt werden kann) darzustellen, ist die Angabe seines Orts-
vektors 7. Dieser erstreckt sich von einem Referenzpunkt — iiblicherweise dem
Ursprung eines Koordinatensystems — bis zu dem entsprechenden Teilchen. In
der Einheitsvektoren-Schreibweise (vergleiche Anhang D) kann 7 wie folgt ausge-
driickt werden:

F=uxé, + yEy +z€,, (1.19)

wobei x¢,, yé, und zé, die Vektorkomponenten von 7 und die Koeffizienten x, y
und z die skalaren Komponenten von 7 sind.

Die Koeffizienten x, y und z geben den Ort eines Teilchens entlang der Koordi-
natenachsen und relativ zum Ursprung an; das Teilchen besitzt also in dem recht-
winkligen Koordinatensystem die Koordinaten (x, y, z). Abbildung 1.8 zeigt z. B.
ein Teilchen mit dem Ortsvektor

7= (-3m)é, + (2 m)Ey + (5m)é,

und den rechtwinkligen Koordinaten (—3 m, 2 m, 5 m). Entlang der x-Achse befin-
det sich das Teilchen 3 m weit in Richtung —é,, vom Ursprung entfernt. Entlang der
y-Achse ist es 2m in +€ -Richtung und entlang der z-Achse 5m in +¢é,-Richtung
vom Ursprung entfernt.

Wenn sich ein Teilchen bewegt, verdndert sich sein Ortsvektor derart, dass er
immer vom Referenzpunkt (dem Ursprung) zur aktuellen Position des Teilchens
zeigt. Verdndert sich der Ortsvektor z. B. von 7| nach 7, innerhalb eines bestimm-
ten Zeitintervalls, dann ist die Verschiebung A7 des Teilchens wihrend dieses
Zeitintervalls gleich

AF=Fy—7. (1.20)
In der Einheitsvektoren-Schreibweise von Gl. 1.19 wird diese Verschiebung zu:
AF = (%58, + 926, + 29€,) — (%1€, + y1€, + 21€,)
oder
AF = () = %1)€, + (73 — y1)E, + (22 — 21)€,, (1.21)

wobei die Koordinaten (x;, y;, z;) zum Ortsvektor 7 und die Koordinaten (x,, y,,
z,) zum Ortsvektor 7, gehdéren. Wir konnen die Verschiebung weiter umformen,
indem wir Ax fir (xy — ), Ay fir (y5 — y;) und Az fir (z, — z;) einsetzen:

AF = Axé, + Ayé, + Azé, . (1.22)

(a) Eine Fledermaus fliege vom Ort mit den xyz-Koordinaten (-2 m, 4m, —3 m)
nach (6m, —2m, —3 m). Wie lautet ihre Verschiebung A7 in Einheitsvektoren-
Schreibweise? (b) Verlduft A7 parallel zu einer der drei Ebenen, die von den Ko-
ordinatenachsen aufgespannt werden? Wenn ja, zu welcher?

1.7 Durchschnittsgeschwindigkeit
und Momentangeschwindigkeit

Nach dem Durcharbeiten dieses Abschnitts sollten Sie in der Lage sein, ...

« zu verstehen, dass die Geschwindigkeit eine Vektorgrofie ist und daher einen
Betrag und eine Richtung sowie Komponenten besitzt,

Abb. 1.8

Der Ortsvektor 7 eines Teilchens ist
die Vektorsumme seiner Vektorkom-
ponenten.

-
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1 Bewegung

+ zwei- und dreidimensionale Geschwindigkeitsvektoren fiir ein Teilchen zu
zeichnen und ihre Komponenten beziiglich der Achsen des Koordinatensys-
tems anzugeben,

» eine Beziehung zwischen Start- und Endposition eines Teilchens, dem Zeitin-
tervall zwischen Start und Ankunft und dem zugehorigen Vektor der mittleren
Geschwindigkeit des Teilchens sowohl in Betrag-Winkel- als auch in Einheits-
vektoren-Schreibweise anzugeben,

o aus dem Ort eines Teilchens als Funktion der Zeit seinen (momentanen) Ge-
schwindigkeitsvektor zu bestimmen.

¢ Wenn ein Teilchen im Zeitintervall At eine Verschiebung A7 erfihrt, ist seine

Durchschnittsgeschwindigkeit Ve, in diesem Zeitintervall

- AF
Vgem = E .
o Wenn wir das Zeitintervall At gegen null gehen lassen, erhalten wir die Momen-
tangeschwindigkeit V() = v (oft auch einfach als Geschwindigkeit bezeichnet):

dv

‘_}' )
dt

die wir in Einheitsvektoren-Schreibweise als

v=vge,tvye, €2

mit v, = dv/dx, v, = dv/dy und v, = dv/dz schreiben kdnnen.
+ Die Momentangeschwindigkeit v eines Teilchens zeigt stets in Richtung der
Tangente an die Bahnkurve des Teilchens an seinem momentanen Ort.

1.7.1  Mittlere und Momentangeschwindigkeit

Wenn ein Teilchen in einem Zeitintervall At eine Verschiebung A7 durchliuft,
dann ist seine Durchschnittsgeschwindigkeit Vg,,,:

Verschiebun
Durchschnittsgeschwindigkeit = —g
Zeitintervall
beziehungsweise
- A7
Vgem = At (1.23)

Dies bedeutet, dass die Richtung von V,,,, (dem Vektor auf der linken Seite von
Gl. 1.23) dieselbe sein muss wie die der Verschiebung A7 (des Vektors auf der rech-
ten Seite). Anhand von Gl. 1.22 kdnnen wir Gl. 1.23 in Vektorkomponenten um-
schreiben und erhalten:

Ax2x+AyEy+AzEZ Ax. Ay, Azl
= = + Eez.

-

Vgem AL = Eex + Eey (1.24)

Wenn sich die Fledermaus aus Kontrollfrage 6 in 2,0s von ihrer Anfangs- zu ih-
rer Endposition bewegt, so ist ihre Durchschnittsgeschwindigkeit wéhrend dieses
Zeitintervalls:

A7 (8m)é, — (6,0 m)é'y

-

v = — =
gem At 2,0s

= (4,0m/s)é, — (3 m/s)Ey .

Wenn wir von der Geschwindigkeit eines Teilchens sprechen, so meinen wir iibli-
cherweise die Momentangeschwindigkeit v des Teilchens zu einem bestimmten
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Zeitpunkt. Diese Geschwindigkeit v ist der Grenzwert, den Vgem anstrebt, wenn
wir das Zeitintervall At um diesen Zeitpunkt herum gegen null gehen lassen. For-
mal kénnen wir v also als die Ableitung
d7

dt

schreiben. Abbildung 1.9 zeigt die Bahnkurve eines Teilchens, dessen Bewegung
auf die xy-Ebene beschrénkt ist. Wihrend das Teilchen sich entlang der Kurve
nach rechts bewegt, schwenkt auch sein Ortsvektor nach rechts. Wéhrend des
Zeitintervalls A¢ dndert sich der Ortsvektor von 7, nach 7,, die Verschiebung des
Teilchens ist A7 = 7, — 74.

Um die Momentangeschwindigkeit des Teilchens zur Zeit ¢; zu bestimmen (zu
der sich das Teilchen am Ort 1 befindet), lassen wir das Intervall A um ¢; herum
gegen null gehen. Dabei passieren drei Dinge: (1) Der Ortsvektor 7, in Abb. 1.9
bewegt sich auf 7, zu, sodass A7 gegen null geht. (2) Die Richtung von A7/At (also
vOn Vgep,) ndhert sich der Richtung der Tangente an die Bahnkurve des Teilchens
im Punkt 1 an. (3) Die Durchschnittsgeschwindigkeit Vg, nahert sich der Momen-
tangeschwindigkeit ¥ zum Zeitpunkt #; an.

Fir At — 0 geht V., im Grenzwert gegen v; auflerdem nimmt v, — was an
dieser Stelle besonders wichtig ist — die Richtung der Tangente an die Bahnkurve
an. Also besitzt v ebenfalls diese Richtung:

V= (1.25)

|.- Die Richtung der Momentangeschwindigkeit v eines Teilchens verlauft im-
mer tangential zur Bahnkurve am momentanen Ort des Teilchens.

Dieses Ergebnis gilt genauso in drei Dimensionen: ¥ weist immer entlang der Tan-
gente an die (rdumliche) Bahnkurve des Teilchens.

Um GL 1.25 in Einheitsvektoren-Schreibweise zu schreiben, ersetzen wir 7 an-
hand von GI. 1.19:
dx_. dy, dz.
E e, + E €y E e,.
Diese Gleichung lasst sich vereinfachen, indem wir sie in die Form

- d . - -
V= E(xex +ye, + zé,) =

V=16, +V,E,+ Ve, (1.26)
bringen, wobei die skalaren Komponenten von v gleich
dw dy dz
V.= —, vy, =-—=2 d v.==2=2 1.27
Yoode T T (1.27)

sind. So ist dx/d¢ z.B. die skalare Komponente von v entlang der x-Achse. Wir
kénnen also die skalaren Komponenten von v bestimmen, indem wir die skalaren
Komponenten von 7 nach der Zeit ableiten.

Abbildung 1.10 zeigt einen Geschwindigkeitsvektor v und seine skalaren Kom-
ponenten in x- und y-Richtung. Beachten Sie, dass v am Ort des Teilchens tan-
gential zur Bahnkurve des Teilchens verlduft. Vorsicht: Wenn ein Ortsvektor wie
in den Abb. 1.8 und 1.9 gezeichnet wird, dann wird er durch einen Pfeil dargestellt,
der sich von einem Punkt (einem ,hier®) zu einem anderen Punkt (einem ,dort®)
erstreckt. Wenn ein Geschwindigkeitsvektor so gezeichnet wird wie in Abb. 1.10,
dann erstreckt er sich nicht von einem Punkt zu einem anderen. Vielmehr zeigt
er die momentane Richtung an, in der sich das Teilchen bewegt, das sich an sei-
nem Anfang befindet. Die Linge des Pfeils (die dem Betrag der Geschwindigkeit
entspricht) kann in einem beliebigen Maf3stab gezeichnet werden.

Die Abbildung zeigt die kreisformige Bahn eines Teilchens. Die Momentange-
schwindigkeit des Teilchens ist ¥ = (2 m/s)é, — (2 m/s)é y- In welchem Quadranten
befindet sich das Teilchen, wenn es den Kreis (a) im Uhrzeigersinn und (b) im
Gegenuhrzeigersinn durchlduft? Zeichnen Sie v in beiden Fillen in die Abbildung
ein.

Tangente )

/

Bahnkurve

o
Abb. 1.9

Die Verschiebung A7 eines Teilchens
wihrend eines Zeitintervalls Az von
Position 1 mit Ortsvektor 7, zur
Zeit t; zur Position 2 mit Ortsvek-
tor 7, zur Zeit t,. Eingezeichnet ist
auch die Tangente an die Bahnkurve
des Teilchens am Ort 1.

V‘.
e

Tangente

Bahnkurve

(6]
Abb. 1.10

Die Geschwindigkeit v eines Teilchens
und die skalaren Komponenten von V.
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1 Bewegung

1.8  Durchschnittsbeschleunigung
und Momentanbeschleunigung

Nach dem Durcharbeiten dieses Abschnitts sollten Sie in der Lage sein, ...

« zu verstehen, dass die Beschleunigung eine Vektorgrofie ist und daher sowohl
einen Betrag als auch eine Richtung sowie Komponenten besitzt,

+ zwei- und dreidimensionale Beschleunigungsvektoren fiir ein Teilchen zu zeich-
nen und ihre Komponenten anzugeben,

o aus der Start- und Endgeschwindigkeit eines Teilchens und dem entsprechen-
den Zeitintervall den zugehorigen Vektor der mittleren Beschleunigung des
Teilchens sowohl in Betrag-Winkel- als auch in Einheitsvektoren-Schreibweise
anzugeben,

» aus der Geschwindigkeit eines Teilchens als Funktion der Zeit seinen (momen-
tanen) Beschleunigungsvektor zu bestimmen,

» die Gleichungen fiir eine Bewegung mit konstanter Beschleunigung (siehe Ab-
schn. 1.4) fiir jede Dimension der Bewegung anzuwenden, um Beschleunigung,
Geschwindigkeit, Ort und Zeit in Beziehung zu setzen.

+ Wenn sich die Geschwindigkeit eines Teilchens im Zeitintervall A¢ von v; auf

V, éndert, ist seine mittlere Beschleunigung d,,, in diesem Zeitintervall

_ V= V1AV
gm T A At
o Wenn wir das Zeitintervall At gegen null gehen lassen, erhalten wir die Momen-
tanbeschleunigung 4 (oft auch einfach als Beschleunigung bezeichnet):
dv
T

a

a

¢ In Einheitsvektoren-Schreibweise ist
a=a.e, +aye, +aze,

mit a, = da/dx, a, = da/dy und a, = da/dz.

1.8.1 Veranderliche Geschwindigkeiten

Wenn sich die Geschwindigkeit eines Teilchens innerhalb eines Zeitintervalls At
von vy auf v, éndert, dann ist seine Durchschnittsbeschleunigung (oder mittlere

Beschleunigung) d,.,,, im Zeitintervall Az durch

Geschwindigkeitsinderung

Durchschnittsbeschleunigung =

Zeitintervall
gegeben, d. h.:
5 V) =V _ AV
agem = T = E . (128)

Lassen wir At um einen bestimmten Zeitpunkt herum gegen null gehen, dann na-

hert sich g, im Grenzwert der Momentanbeschleunigung (oder Beschleuni-

gung) 4 zu diesem Zeitpunkt an, d. h.:
. dv
= d—z : (1.29)

Wenn die Geschwindigkeit sich entweder in ihrem Betrag oder in ihrer Richtung
andert (oder in beiden), dann muss das Teilchen einer Beschleunigung unterliegen.



1.9 Wurfbewegungen

Indem wir ¥ anhand von Gl. 1.26 ersetzen, kénnen wir Gl. 1.29 in die Einheits-
vektoren-Schreibweise umschreiben:

a

d . -
E(Vxex-i-vyey ZZ—Ex-i-—dt y+EZ.

Dies konnen wir wiederum in die Form
d=ae,+aye, +ag, (1.30)
bringen, wobei die skalaren Komponenten von 4 gleich

dv, dv, dv,

A= Y=g und @ =7, (1.31)

sind. Demnach ermitteln wir die skalaren Komponenten von 4, indem wir die ska-
laren Komponenten von v nach der Zeit ableiten.

Abbildung 1.11 zeigt einen Beschleunigungsvektor 4 und seine skalaren Kom-
ponenten fiir ein Teilchen, dass sich in zwei Dimensionen bewegt. Vorsicht: Wenn
ein Beschleunigungsvektor wie in Abb. 1.11 gezeichnet wird, erstreckt er sich nicht
von einem Punkt zu einem anderen. Vielmehr zeigt er die Richtung der Beschleuni-
gung eines Teilchens an, das sich am Anfang des Vektors befindet. Seine Lange (der
Betrag der Beschleunigung) kann in einem beliebigen Maf3stab gezeichnet werden.

Anbei finden Sie vier Angaben (in Metern) zur Position eines Eishockeypucks, der
sich in einer x y-Ebene bewegt:

1. x=-3t244t-2 und y=6t>—4t,
2. x=-3t>—4t und y=-52+6,
3. F=21%¢, — (4t +3)e,,

4. F=(42° - 20)¢, + 3¢, .

Bestimmen Sie fiir jede dieser Positionen, ob x- und y-Komponente der Beschleu-
nigung des Pucks konstant sind und ob der Beschleunigungsvektor @ konstant ist.

Die Position einer Murmel wird durch 7 = (4> — 2¢t)é, + 3¢, beschrieben, wo-
bei 7 in Metern und ¢ in Sekunden gemessen wird. Welche Einheiten besitzen die
Koeffizienten 4, —2 und 3?

1.9  Wurfbewegungen

Nach dem Durcharbeiten dieses Abschnitts sollten Sie in der Lage sein, ...

o in einer Skizze der Bahnkurve eines Teilchens Betrag und Richtung der Ge-
schwindigkeit sowie die Komponenten der Beschleunigung anzugeben,

« aus der gegebenen Startgeschwindigkeit eines Teilchens in Betrag-Richtung-
oder Einheitsvektoren-Schreibweise den Ort, die Verschiebung und die Ge-
schwindigkeit des Teilchens fiir beliebige Zeitpunkte wéihrend seines Flugs zu
berechnen,

« aus den Daten fiir einen beliebigen Zeitpunkt wihrend des Flugs die Startge-
schwindigkeit zu berechnen.

o Bei Wurfbewegungen wird ein Teilchen mit einer Geschwindigkeit v, in einem
Winkel 6, (gegen eine horizontale x-Achse gemessen) in die Luft geworfen.
Wahrend des Flugs ist seine horizontale Beschleunigung (unter Vernachldssi-
gung des Luftwiderstands) null und seine vertikale Beschleunigung betrigt —g
(entlang einer vertikalen y-Achse nach unten).

Bahnkurve

0 X
Abb. 1.11

Die Beschleunigung 4 eines Teilchens
und die skalaren Komponenten von 4.

-4
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Abb. 1.12

Eine Stroboskopaufnahme eines gel-
ben Tennisballs, der von einer har-
ten Oberfldche abprallt. Zwischen
den Augenblicken, in denen er den
Boden beriihrt, fithrt der Ball eine
Wurfbewegung aus [Quelle: Richard
Megna/Fundamental Photographs].

Abb. 1.13

Die Bahn eines Projektils, das bei

%o = 0und y, = 0 mit einer Anfangs-
geschwindigkeit v, geworfen wird.
Eingezeichnet sind die Anfangsge-
schwindigkeit sowie die Geschwin-
digkeiten an verschiedenen Punkten
der Bahnkurve zusammen mit ihren
Komponenten. Beachten Sie, dass die
horizontale Geschwindigkeitskom-
ponente konstant bleibt, die verti-
kale Geschwindigkeitskomponente
sich jedoch kontinuierlich veréndert.
Die Reichweite R ist die horizontale
Entfernung, die das Projektil in dem
Moment zuriickgelegt hat, in dem es
wieder seine Ausgangshohe erreicht.
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1 Bewegung

o Wihrend des Flugs lauten die Bewegungsgleichungen des Teilchens

x —xo = (vgcos byt

Y — Yo = (vgsin Oyt — %th ,
v, =vysinb, — gt,
v = (vysin 6,)2 = 2g(y — y,) -
o Die Trajektorie (Bahnkurve, Flugbahn) eines fliegenden Teilchens ist eine Para-

bel, die fiir x4 = y, = 0 durch
2

ax

= (tanfp)x - ————
y = (tanfo)x 2(v cos 0;)?

gegeben ist.

o Die horizontale Reichweite R des Teilchens, d.h. die horizontale Entfernung
vom Startpunkt bis zu der Stelle, an der es die Abwurfhohe wieder erreicht, be-
tragt

%o
R = —sin26,.
g
1.9.1 Flugbahnen

Als Nichstes betrachten wir einen Spezialfall der zweidimensionalen Bewegung:
Ein Teilchen bewege sich in einer senkrechten Ebene mit einer bestimmten An-
fangsgeschwindigkeit v, und unterliege dabei der nach unten gerichteten Gravi-
tationsbeschleunigung g. Ein solches Teilchen wird ein Projektil genannt, da es
geworfen oder geschossen wurde. Seine Bewegung bezeichnen wir als eine Wurf-
bewegung. Ein solches Projektil kann z. B. ein Tennisball (Abb. 1.12) oder ein Stein
wihrend des Flugs sein — ein Flugzeug oder eine fliegende Ente wiren jedoch kei-
ne Projektile. Unser Ziel ist es hier, die Wurfbewegung anhand der in den Ab-
schn. 4.1-4.3 vorgestellten ,Werkzeuge” fiir die zweidimensionale Bewegung zu
analysieren. Dazu setzen wir voraus, dass die Auswirkungen des Luftwiderstands
auf das Projektil vernachléssigt werden konnen.

Die Abb. 1.13, die im néchsten Abschnitt analysiert wird, zeigt die Bahnkurve,
die ein Projektil beschreibt, wenn der Luftwiderstand gleich null ist. Das Projektil
wird mit einer Anfangsgeschwindigkeit v, geworfen, die sich in der Form

Vo = Vox€x + Voy€y (1.32)
y -
v
- —_
V'f v v, =0
y \ v,
—-]
. "IN
vo/i -
Voy [
[
8| v,
— o e x
O | Vox vwIXo }
R [
K
VX
e
[
[
V). }
v




1.9 Wurfbewegungen

schreiben lasst. Die Komponenten 7, und ¥, lassen sich mithilfe des Winkels 6,
zwischen 7, und der positiven x-Richtung bestimmen:

Vox = Vocosy und vy, =vysinb,. (1.33)

y

Wahrend der zweidimensionalen Bewegung des Projektils verdndern sich sein
Ortsvektor 7 und sein Geschwindigkeitsvektor ¥ kontinuierlich; der Beschleuni-
gungsvektor 4 ist jedoch konstant und immer senkrecht nach unten gerichtet. Ein
Projektil erfahrt keine horizontale Beschleunigung.

Die in den Abb. 1.12 und 1.13 dargestellte Wurfbewegung sieht kompliziert aus,
die folgende — experimentell bestétigte — Tatsache vereinfacht die Situation jedoch
deutlich:

i Bei der Wurfbewegung erfolgen die horizontale und die vertikale Bewe-
gung unabhiéngig voneinander, sie beeinflussen sich gegenseitig nicht.

Diese Eigenschaft erlaubt es uns, eine Aufgabe mit einer zweidimensionalen Bewe-
gung in zwei getrennte, einfachere eindimensionale Aufgaben zu zerlegen — eine
fiir die horizontale Bewegung (bei der die Beschleunigung null ist) und eine fiir die
vertikale Bewegung (mit einer gleichmidfSigen, nach unten gerichteten Beschleuni-
gung). Lassen Sie uns zwei Experimente betrachten, die zeigen, dass die waage-
rechte und die senkrechte Bewegung voneinander unabhéngig sind.

Zwei Golfballe

Abbildung 1.14 zeigt eine Stroboskopaufnahme zweier Golfbélle: Wihrend der ei-
ne Ball einfach fallen gelassen wird, wird der andere durch eine Feder in die ho-
rizontale Richtung geschossen. Die Golfbélle besitzen die gleiche vertikale Bewe-
gung, beide fallen wihrend desselben Zeitintervalls die gleiche senkrechte Strecke
nach unten. Die Tatsache, dass sich der eine Ball wihrend des Falls auch horizontal
bewegt, hat keinen Einfluss auf seine vertikale Bewegung. Die waagerechte und die
senkrechte Bewegung sind also unabhingig voneinander.

Ein Beispiel fiir die Physikvorlesung

Abbildung 1.15 zeigt eine Vorfithrung, die bereits in zahlreichen Physikvorlesun-
gen fir Stimmung gesorgt hat. Dazu wird ein Blasrohr mit einem kleinen Ball als
Projektil bendtigt. Ziel ist es, eine an einem Magneten M aufgehéngte Dose zu tref-
fen; das Blasrohr ist dabei direkt auf die Biichse gerichtet. Das Experiment wird so
aufgebaut, dass der Magnet die Dose genau in dem Augenblick freigibt, in dem der
Ball das Blasrohr verlésst.

Wire g (der Betrag der Erdbeschleunigung) gleich null, so wiirde der Ball wie in
Abb. 1.15 gezeigt eine gerade Linie beschreiben und die Dose wiirde, nachdem der
Magnet sie freigegeben hat, an ein und derselben Stelle hingenbleiben. Der Ball
wiirde die Dose mit Sicherheit treffen.

Die Gravitationsbeschleunigung g ist jedoch nicht gleich null. Und dennoch trifft
der Ball die Dose! Wie Abb. 1.15 zeigt, fallen Dose und Ball wiahrend der Flugzeit
des Balls ab dem Moment, in dem der Ball das Blasrohr verldsst, um die gleiche
Strecke /. Je starker der Vorfithrende in das Rohr blést, desto grofler ist die An-
fangsgeschwindigkeit des Balls, desto kiirzer ist die Flugzeit und desto kleiner auch
der Wert von 4.

1.9.2 Analyse der Wurfbewegung

Lassen Sie uns nun die Wurfbewegung sowohl in horizontaler als auch in vertikaler
Richtung im Einzelnen analysieren.

' L
' ®

Abb. 1.14

Ein Ball wird ohne Anfangsgeschwin-
digkeit in dem Moment fallen gelas-
sen, in dem ein anderer Ball horizontal
nach rechts geworfen wird. Die ver-
tikale Bewegung der beiden Bille ist
identisch [Quelle: Richard Megna/
Fundamental Photographs].

B

Abb. 1.15
Der Ball — das Projektil — trifft die
fallende Dose immer. Beide fallen
eine Entfernung / von dem Punkt
aus gemessen, an dem sie sich ohne
Gravitationsbeschleunigung befinden
wiirden.
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1 Bewegung

Die horizontale Bewegung

Dain horizontaler Richtung keine Beschleunigung stattfindet, bleibt die horizonta-
le Komponente v, der Projektilgeschwindigkeit wahrend der gesamten Bewegung
unverandert gleich der Anfangsgeschwindigkeit v,,. Zu jeder beliebigen Zeit ¢ ist
die horizontale Verschiebung Ax = x — x, des Projektils von seiner Ausgangspo-
sition x, durch GI. 1.13 gegeben, wobei & = 0 ist. Damit haben wir

X — xo = Vot .
Wegen v, = v, cos 0, wird daraus:

x —xy = (vgcos Oyt . (1.34)

Die vertikale Bewegung

Die vertikale Bewegung entspricht derjenigen, die wir in Abschn. 2.5 fiir ein Teil-
chen im freien Fall untersucht hatten. Wichtig ist hier, dass die Beschleunigung
konstant ist. Also gelten die Gleichungen aus Tab. 1.1, wobei wir a durch —g erset-
zen und die Gleichungen fiir y umschreiben miissen. So wird etwa GI. 1.13 zu:

Y= Yo = Voyt — %gtz = (g sin 0y)t — %gtz , (1.35)

wobei die vertikale Komponente v, der Anfangsgeschwindigkeit durch den dqui-
valenten Ausdruck v, sin @ ersetzt wurde. Analog ergibt sich aus den Gln. 1.9
und 1.14

vy, = Vgsinby — gt (1.36)

und
V3 = (vgsin 6p)* — 2g(y = o) - (1.37)

Wie aus Abb. 1.13 und Gl. 1.36 deutlich wird, verhalt sich die vertikale Geschwin-
digkeitskomponente genauso wie bei einem Ball, der senkrecht nach oben gewor-
fen wurde. Sie zeigt anfinglich nach oben und ihr Betrag nimmt kontinuierlich ab,
bis er schliefSlich verschwindet — dieser Punkt entspricht der maximalen Hohe der
Flugbahn. Daraufhin veréndert die Geschwindigkeitskomponente ihre Richtung
und ihr Betrag wird mit der Zeit immer grofSer.

Die Bahngleichung

Wir kénnen die Gleichung ermitteln, welche die Form der Flugbahn (Trajektorie)
des Teilchens beschreibt, indem wir ¢ aus den Gln. 1.34 und 1.35 eliminieren. Dazu
l6sen wir Gl. 1.34 nach ¢ auf und setzen das Ergebnis in Gl. 1.35 ein. Nach kleinen
Umformungen erhalten wir:

gx*

—_— 1.38
2(vg cos ;)2 (1.38)

y = (tan 6y)x —

Dies ist die Gleichung der in Abb. 1.13 gezeigten Bahnkurve. Bei ihrer Herleitung
haben wir der Einfachheit halber in den Gln. 1.34 und 1.35 jeweils x, = 0 und
yo = 0 gesetzt. Da g, 8, und v, Konstanten sind, hat Gl. 1.38 die allgemeine Form
y=ax+ bx?%, wobei a und b konstant sind. Dies ist die Gleichung einer Parabel;
man sagt, das Projektil beschreibt eine parabolische Bahn bzw. eine Wurfparabel.



1.9 Wurfbewegungen

Die horizontale Reichweite
Die horizontale Reichweite des Projektils ist, wie Abb. 1.13 zeigt, die Entfernung,
die das Projektil in horizontaler Richtung zuriickgelegt hat, wenn es seine ur-
spriingliche (Abwurf-)Hohe wieder erreicht. Um die Reichweite R zu bestimmen,
setzen wir x — xy = Rin Gl. 1.34 und y — y;, = 0in GL 1.35. Damit erhalten wir:

R = (vycos Oyt
und

. 1 -
0 = (vosin Oyt — Egt .

Eliminieren wir ¢ aus diesen beiden Gleichungen, so ergibt sich:

21/(2)
R=—sinf,cosb,.
g

Nun nutzen wir aus, dass sin 26, = 2 sin 6, cos 0, (sieche Anhang D), und erhalten
damit:

R=-"sin26, . (1.39)

= |

Vorsicht: Diese Gleichung gibt nicht die horizontale Entfernung an, die ein Projek-
til zuriickgelegt hat, wenn die Hohe des Endpunkts ungleich der Hohe des Start-
punkts ist.

Beachten Sie, dass der Wert von R in Gl. 1.39 maximal wird, wenn sin 26, = 1
ist; dies entspricht einem Winkel von 26, = 90° bzw. 6, = 45°.

|.- Die horizontale Reichweite R ist maximal, wenn das Projektil in einem Win-
kel von 45° geworfen bzw. geschossen wird.

Der Luftwiderstand

Wir haben bisher vorausgesetzt, dass die Luft, durch die sich das Projektil bewegt, y
keinerlei Auswirkungen auf seine Bewegung hat. In vielen Situationen kann die
Abweichung zwischen unseren Rechnungen und der tatséchlichen Bewegung des Yo 1
Projektils allerdings ganz betréchtlich sein, da die Luft der Bewegung in der Realitit I

durchaus einen Widerstand entgegensetzt. Abbildung 1.16 z. B. zeigt zwei Bahn- )

kurven eines Balls, der in einem Winkel von 60° zur Horizontalen und mit einer 3;‘»&“5;%\@;{,?@{%;la_*\&\;.ggi;;y\-;4 TR
Anfangsgeschwindigkeit von 44,7 m/s geworfen wird. Bahn I entspricht einer be-  ap}) 116

rechneten Kurve, welche die normalen Bedingungen (in Luft) anndhernd wieder- (1) Die Bahn eines geworfenen Balls,

gibt. Bahn II ist die Kurve, die der Ball in einem Vakuum beschreiben wiirde. wenn man sie unter Beriicksichti-
gung des Luftwiderstands berechnet.
(II) Die Bahn, die derselbe Ball im Va-
kuum beschreiben wiirde. Sie wurde

CRi]ed)
Zwei Bille®. mit den in diesem Kapitel vorgestell-
N - ten Methoden berechnet. Die ver-

Bahn I (in Luft) Bahn II (im Vakuum) wendeten Daten finden Sie in Tab. 1.2

Reichweite 98,5m 177 m [Quelle: Nach ,,Th.e Trajectory of a Fly
. . Ball“ von Brancazio, P.J. (1985). The

maximale Hohe 53,0 m 76,8 m Physics Teacher]
Flugzeit 6,6 7.9s

a) Siehe Abb. 1.16. Der Wurfwinkel betrédgt 60°, die Abwurfgeschwindigkeit 44,7 m/s.
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Abb. 1.17

Geschwindigkeits- und Beschleu-
nigungsvektoren eines Teilchens,
das gegen den Uhrzeigersinn ei-
ne gleichférmige Kreisbewegung
absolviert. Geschwindigkeit und
Beschleunigung besitzen einen
konstanten Betrag, dndern je-
doch kontinuierlich ihre Richtung.

1 Bewegung

Ein Fufiball wird tiber das Spielfeld getreten. Was passiert wihrend seines Flugs
(bei dem Sie den Luftwiderstand vernachlissigen konnen) mit (a) der horizontalen
und (b) der vertikalen Komponente seiner Geschwindigkeit? Wie grof$ sind (c) die
horizontale und (d) die vertikale Komponente seiner Beschleunigung wihrend des
Anstiegs, des Herabfallens und am hochsten Punkt seiner Flugbahn?

1.10 Die gleichformige Kreisbewegung

Nach dem Durcharbeiten dieses Abschnitts sollten Sie in der Lage sein, ...

o die Bahnkurve in einer gleichférmigen Kreisbewegung zu skizzieren und die
wihrend der Bewegung auftretenden Geschwindigkeits- und Beschleunigungs-
vektoren zu erldutern (Betrag und Richtung),

+ Beziehungen zwischen dem Radius der Kreisbahn, der Periode der Bewegung,
der Geschwindigkeit des Teilchens und dem Betrag seiner Beschleunigung an-
zugeben und anzuwenden.

+ Wenn ein Teilchen sich mit konstanter Geschwindigkeit v im Kreis oder entlang
eines Kreisbogens mit Radius » bewegt, spricht man von einer gleichférmigen
Kreisbewegung. Ein solches Teilchen erfihrt eine Beschleunigung @ mit dem
konstanten Betrag

a=—
r
in Richtung des Kreismittelpunkts, die als Zentripetalbeschleunigung bezeich-
net wird.
¢ Zur Vollendung eines vollstindigen Umlaufs benotigt das Teilchen die Zeit

T=£,
v

die als Periode der Kreisbewegung bezeichnet wird.

1.10.1 Konstanter Betrag, variable Richtung

Ein Teilchen fiihrt eine gleichformige Kreisbewegung aus, wenn es sich mit kon-
stantem, d. h. gleichformigem Geschwindigkeitsbetrag auf einem Kreis oder ei-
nem Kreisbogen bewegt. Obwohl sich der Betrag der Geschwindigkeit nicht &n-
dert, wird das Teilchen beschleunigt. Dies mag auf den ersten Blick verwunderlich
erscheinen, da wir eine Beschleunigung meist mit einer Vergroflerung oder Ver-
kleinerung des Geschwindigkeitsbetrags in Verbindung bringen. Tatséchlichist die
Geschwindigkeit jedoch ein Vektor, kein Skalar. Wenn eine Geschwindigkeit also
nicht ihren Betrag, sondern nur ihre Richtung veréndert, so ist dennoch eine Be-
schleunigung im Spiel — und genau dies ist bei der gleichformigen Kreisbewegung
der Fall.

Abbildung 1.17 verdeutlicht die Beziehung zwischen dem Geschwindigkeits-
vektor und dem Beschleunigungsvektor wihrend verschiedener Phasen einer
gleichféormigen Kreisbewegung. Wahrend des Ablaufs der Bewegung ist der Be-
trag beider Vektoren konstant, ihre Richtung éndert sich jedoch kontinuierlich, da
die Geschwindigkeit immer in Bewegungsrichtung entlang der Tangente an die
Kreisbahn zeigt. Die Beschleunigung ist immer auf den Mittelpunkt des Kreises
gerichtet. Deshalb wird die Beschleunigung in der gleichformigen Kreisbewegung
auch Zentripetalbeschleunigung genannt (was so viel bedeutet wie ,,den Mittel-
punkt suchende” Beschleunigung). Wie wir gleich beweisen werden, ist der Betrag
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dieser Beschleunigung 4 gleich

a="> (Zentripetalbeschleunigung) , (1.40)
r

wobei r der Radius der Kreisbahn und v der Betrag der Geschwindigkeit des Teil-
chens ist.

Wihrend dieser Beschleunigung bei konstantem Geschwindigkeitsbetrag legt
das Teilchen den Umfang des Kreises (welcher der Strecke 2mr entspricht) in der
Zeit T zuriick mit

T = 2nr (Periode) . (1.41)
v

T wird die Periode der Bewegung genannt. Im Allgemeinen bezeichnet man damit
die Zeit, die ein Teilchen bendtigt, um eine geschlossene Bahn genau einmal zu
durchlaufen.

1.10.2 Beweis von Gl. 1.40

Um den Betrag und die Richtung der Beschleunigung bei einer gleichférmigen
Kreisbewegung zu bestimmen, betrachten wir Gl. 1.32. In Abb. 1.18a bewegt sich
das Teilchen p mit konstantem Geschwindigkeitsbetrag v entlang einer Kreisbahn
mit Radius 7. Zu dem dargestellten Zeitpunkt besitzt p die Koordinaten x, und y,,.

In Abschn. 4.2 hatten wir gezeigt, dass die Geschwindigkeit ¥ eines bewegten
Teilchens immer entlang der Tangente an die Bahnkurve des Teilchens am mo-
mentanen Ort des Teilchens zeigt. In Abb. 1.18a bedeutet dies, dass v senkrecht
auf dem Radius r steht, der zum Ort des Teilchens fithrt. Dann ist der Winkel 9,
den v am Ort von p mit der Vertikalen bildet, gleich dem Winkel 0 zwischen dem
Radius r und der x-Achse.

Die skalaren Komponenten von v sind in Abb. 1.18b dargestellt. Mit ihnen kon-
nen wir die Geschwindigkeit v in der Form

V=v.é,+ vyzy = (—vsin 0)é, + (v cos Q)Ey (1.42)

schreiben. Indem wir das rechtwinklige Dreieck aus Abb. 1.18a nutzen, konnen wir
sin @ durch y,/r und cos 6 durch x, /r ersetzen und erhalten damit

- v - v -
_(_v (Y . 143
v ( ryp>ex (rxp>ey ( )

Um die Beschleunigung a des Teilchens p zu ermitteln, miissen wir diese Gleichung
nach der Zeit ableiten. Da sich der Geschwindigkeitsbetrag v und der Radius r im
Lauf der Zeit nicht dndern, ergibt dies

Abb.1.18

Das Teilchen p bewegt sich im Ge-
genuhrzeigersinn gleichférmig im
Kreis. (a) Seine Position und Ge-

schwindigkeit ¥ zu einem bestimmten

Zeitpunkt. (b) Die Geschwindigkeit

v und ihre Komponenten. (c) Die Be-

L dv v ap\ L ydxp\ schleunigung @ des Teilchens und ihre
a= T = T e, t+ T €y - (1.44)  Komponenten.
y Y y
v v
0 alvy
p - <
X
a
Y % Ea\d
0
X
X,

(a) (b)

(©
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1 Bewegung

Beachten Sie nun, dass die Rate dyp /d¢, mit der sich Ip verdndert, gleich der
Geschwindigkeitskomponente v, ist. Entsprechend ist dx,,/d¢ = v,. Ebenfalls aus
Abb. 1.18b sehen wir, dass v, = —vsinfund v, = vcos 6. Einsetzen in Gl 1.44
liefert:

. V2 . V2 .
a= <—— cos 0) e, + <—— sin 9) ey . (1.45)
r r

Dieser Vektor und seine Komponenten sind in Abb. 1.18c dargestellt. Mit der allge-
meinen Regel fiir Betrdge und Richtungen von Vektoren (vgl. GL. D.6 in Anhang D)
finden wir, dass der Betrag von 4 gleich

2 2
a=/al+a2= V—\/(cos@)2+(sin9)2 =L
Y r r

ist, genau wie wir es beweisen wollten. Um die Richtung von 4 zu ermitteln, be-
stimmen wir den in Abb. 1.18c¢ eingezeichneten Winkel ¢:
ay —(?/r)sin O _

tangp = — = =
¢ a, —(2/r)cos0

an6 .

Demnach ist ¢ = 6, was bedeutet, dass 4 entlang dem in Abb. 1.18a eingezeichne-
ten Radius r in Richtung Kreismittelpunkt zeigt, wie wir es beweisen wollten.

Ein Gegenstand bewege sich mit konstantem Geschwindigkeitsbetrag in einer ho-
rizontalen xy-Ebene entlang einer Kreisbahn mit Mittelpunkt im Ursprung des
Koordinatensystems. In dem Moment, in dem sich der Gegenstand bei x = —2m
befindet, sei seine Geschwindigkeit gleich —(4 m/ S)Ey. Geben Sie (a) die Geschwin-
digkeit und (b) die Beschleunigung des Gegenstands am Ort y = 2 m an.

1.11  Relativbewegung in einer Dimension

Nach dem Durcharbeiten dieses Abschnitts sollten Sie in der Lage sein, ...

« die Beziehung zwischen Ort, Geschwindigkeit und Beschleunigung eines Teil-
chens anzugeben, wenn diese in zwei Bezugssystemen gemessen werden, die
sich mit konstanter Geschwindigkeit entlang einer Achse gegeneinander bewe-
gen.

+ Wenn sich zwei Bezugssysteme A und B mit konstanter Geschwindigkeit relativ
zueinander bewegen, unterscheidet sich die von einem Beobachter im Bezugs-
system A gemessene Geschwindigkeit eines Teilchens P in der Regel von der, die
ein Beobachterim Bezugssystem B misst. Die beiden gemessenen Geschwindig-
keiten héngen tiber

VpA = Vpp T VBA
miteinander zusammen, wobei V5, die Geschwindigkeit von B relativ zu A ist.

Beobachter in beiden Bezugssystemen messen jedoch dieselbe Beschleunigung
des Teilchens:

dpp = dpp -

1.11.1 Bezugssysteme

Nehmen Sie an, Sie beobachten eine Ente, die mit 30 km/h nach Norden fliegt. Aus
Sicht einer zweiten Ente, die neben der ersten herfliegt, dndert die erste Ente ihre
Position dagegen nicht (sie befindet sich immer ,neben mir“). Mit anderen Wor-
ten: Die Geschwindigkeit eines Teilchens hiangt vom Bezugssystem desjenigen ab,
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der die Bewegung beobachtet bzw. die Geschwindigkeit misst. In unserem Fall ist
ein Bezugssystem durch das physikalische Objekt gegeben, an dem wir unser Ko-
ordinatensystem befestigen. Im Alltag ist dies meist der Erdboden. So wird z. B.
die Geschwindigkeit, die auf Ihrem Buf3geldbescheid erscheint, immer relativ zum
Erdboden gemessen. Die Geschwindigkeit relativ zum Auto vor Thnen ist eine ganz
andere, da sich dies wihrend der Messung relativ zum Erdboden bewegt!

Nehmen wir an, dass Alex (am Ursprung des Bezugssystems A) am Rand der Au-
tobahn halt und zusieht, wie das Auto P (das ,Teilchen®) vorbeifihrt. Barbara (im
Ursprung des Bezugssystems B) fahrt mit konstanter Geschwindigkeit die Auto-
bahn entlang und beobachtet dabei ebenfalls das Auto P. Wie in Abb. 1.19 gezeigt,
messen beide die Position des Autos zu einem bestimmten Zeitpunkt. Aus der Ab-
bildung konnen wir ablesen, dass

Xpp = Xpg T Xpa - (1.46)

Diese Gleichung besagt Folgendes: ,Die von A gemessene Koordinate xp, von P
ist gleich der von B gemessenen Koordinate xpg von P plus der von A gemessenen
Koordinate x5 von B Beachten Sie, wie diese Bedeutung in der Reihenfolge der
Indizes zum Ausdruck kommt.

Indem wir GI. 1.46 nach der Zeit ableiten, erhalten wir:

d d d
E(xPA) = E(xPB) + E(xBA)

oder (dav = dx/d¢)

Vpa = Vpp t Vpa - (1.47)

Diese Gleichung bedeutet: ,Die von A gemessene Geschwindigkeit vp, von P ist
gleich der von B gemessenen Geschwindigkeit vpg von P plus der von A gemes-
senen Geschwindigkeit vg, von B Der Term vy, entspricht der Geschwindigkeit
des Bezugssystems B relativ zum Bezugssystem A. (Da die Bewegungen entlang ei-
ner einzigen Achse erfolgen, konnen wir hier in Gl. 1.47 die Komponenten entlang
dieser Achse benutzen und die Vektorpfeile weglassen.)

An dieser Stelle beschridnken wir unsere Betrachtungen auf Bezugssysteme, die
sich relativ zueinander mit konstanter Geschwindigkeit bewegen. In unserem Bei-
spiel bedeutet dies, dass Barbara (System B) relativ zu Alex (System A) immer mit
derselben Geschwindigkeit vy, fihrt. Das Auto P jedoch (das bewegte Teilchen)
kann schneller oder langsamer werden, anhalten oder die Richtung wechseln (d. h,
es darf einer Beschleunigung unterliegen).

Um die von Barbara und Alex gemessenen Beschleunigungen von P miteinander
zu verkniipfen, leiten wir Gl. 1.47 nach der Zeit ab:

d d d
&(VPA) = E(VPB) + E(VBA) .

Da vp, konstant ist, ist der letzte Term gleich null und wir erhalten:

dpp = dpp - (1.48)
Mit anderen Worten:
i Bei einem sich bewegenden Teilchen messen Beobachter in verschiedenen

Bezugssystemen (die sich mit gleichformiger Geschwindigkeit relativ zu-
einander bewegen) die gleiche Beschleunigung.

Die nebenstehende Tabelle gibt fiir Barbara und das Auto P aus Abb. 1.19 in drei
unterschiedlichen Situationen verschiedene Geschwindigkeiten an (in km/h). Wie
lautet der fehlende Wert in jeder der drei Situationen und wie veréndert sich die
Entfernung zwischen Barbara und dem Auto P?

Y Bezugs- Y Bezugs-
system A system B
or
VBa “PB
I
T = T x *
XBA XpA = Xpg +X¥BA

Abb. 1.19

Alex (Bezugssystem A) und Barba-
ra (Bezugssystem B) beobachten das
Auto P, wihrend B und P sich mit un-
terschiedlichen Geschwindigkeiten
entlang der identisch verlaufenden
x-Achsen der beiden Systeme bewe-
gen. Zu dem dargestellten Zeitpunkt
ist xy, die Koordinate von B im Sys-
tem A. P besitzt im System B die Ko-
ordinate xpp und im System A die
Koordinate xpy, = Xpp + Xgs.

(a) 450 +50
(b) +30 +40
(c) +60 —20
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Abb. 1.20

Bezugssystem B besitzt eine konstante
zweidimensionale Geschwindigkeit
Vg relativ zum Bezugssystem A. Der
Ortsvektor von B relativ zu A ist 7.
Die Ortsvektoren des Teilchens P sind
7pa relativ zu A und 7pp relativ zu B.
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1 Bewegung

1.12 Relativbewegung in zwei Dimensionen

Nach dem Durcharbeiten dieses Abschnitts sollten Sie in der Lage sein, ...

 die Beziehung zwischen Position, Geschwindigkeit und Beschleunigung eines
Teilchens in zwei Dimensionen aus Sicht zweier Bezugssysteme zu formulieren,
die sich mit konstanter Geschwindigkeit aneinander vorbeibewegen.

o Wenn sich zwei Bezugssysteme A und B mit konstanter Geschwindigkeit anein-
ander vorbeibewegen, unterscheidet sich die in System A gemessene Geschwin-
digkeit eines Teilchens P in der Regel von der im System B gemessenen. Die
beiden gemessenen Geschwindigkeiten héngen tiber die Beziehung

Vpa = Vpp t Vpa

zusammen. Dabei ist v, die Geschwindigkeit von B relativ zu A. Beide Beob-
achter bzw. Systeme messen jedoch die gleiche Beschleunigung von P:

dpp = dpp -

1.12.1 Mehr als eine Dimension

Wir wenden uns nun der Relativbewegung in zwei (und nach Erweiterung auch in
drei) Dimensionen zu. In Abb. 1.20 betrachten unsere beiden Beobachter wieder
ein sich bewegendes Teilchen P vom Ursprung ihrer jeweiligen Bezugssysteme A
und B aus. Dabei bewegt sich B mit einer konstanten Geschwindigkeit vy, relativ
zu A. (Die Achsen der beiden Bezugssysteme bleiben dabei jedoch parallel.)

Abbildung 1.20 stellt eine Momentaufnahme wihrend der Bewegung dar. Zu die-
sem Zeitpunkt ist der Ortsvektor von B relativ zu A gleich 75,. Die Ortsvektoren
des Teilchens P sind 7p, relativzu A und 7pp relativ zu B. Aus der Anordnung dieser
drei Ortsvektoren konnen wir schlieflen, dass sie iiber die Gleichung

Tpp = Tpp + Tpa (1.49)

miteinander verkniipft sind. Indem wir diese Beziehung nach der Zeit ableiten,
erhalten wir eine Verbindung zwischen den Geschwindigkeiten vp, und vpg des
Teilchens P relativ zu unseren Beobachtern:

Vpa = Vpp + Vpa - (1.50)

Indem wir diese Gleichung wiederum nach der Zeit ableiten, konnen wir die Be-
schleunigungen dp, und dpg des Teilchens P relativ zu den beiden Beobachtern
miteinander verbinden. Beachten Sie jedoch, dass die Ableitung von v, nach der
Zeit null ist, da v, konstant ist. Damit erhalten wir also:

Genau wie bei der eindimensionalen Bewegung gilt auch hier die Regel: Beobachter
in verschiedenen Bezugssystemen, die sich mit konstanter Geschwindigkeit rela-
tiv zueinander bewegen, messen fiir ein sich bewegendes Teilchen die gleiche Be-
schleunigung.

Nehmen Sie in Beispielaufgabe 1.13 im Ubungsbuch an, dass der Pilot das Flugzeug
so abwendet, dass es direkt in Richtung Osten zeigt, ohne dabei jedoch den Betrag
der Fluggeschwindigkeit (relativ zum Wind) zu verédndern. Welche der folgenden
Betridge nehmen ab, welche nehmen zu und welche bleiben konstant: (a) vpg,
(b) vpg,, und (c) vpg? (Diese Frage konnen Sie ohne Berechnungen beantworten.)
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1.13 Zusammenfassung

Ort Der Ort x eines Teilchens auf einer x-Achse gibt die
Position eines Teilchens in Bezug auf den Ursprung oder
Nullpunkt der Achse an. Der Ort ist entweder positiv oder
negativ, je nachdem, auf welcher Seite des Ursprungs sich
das Teilchen befindet. Er ist null, wenn das Teilchen sich
am Ursprung befindet. Die positive Richtung der Achse
ist die Richtung ansteigender positiver Zahlen; die entge-
gengesetzte Richtung ist die negative Richtung.

Verschiebung Die Verschiebung Ax eines Teilchens ist
die Anderung seiner Position:

Ax = KXo — X1 . (1.1)
Die Verschiebung ist eine Vektorgrofie. Sie ist positiv, wenn
das Teilchen sich in die positive Richtung der x-Achse be-
wegt hat. Sie ist negativ, wenn es sich in die negative Rich-
tung bewegt hat.

Durchschnittsgeschwindigkeit Hat sich ein Teilchen
wihrend des Zeitintervalls At = ¢, — t; von einem Ort x;
zu einem Ort x, bewegt, so ist seine Durchschnittsge-
schwindigkeit in diesem Intervall

_Ax %X

Vo= = . 1.2
M At -t 1.2

Das Vorzeichen von vy, gibt die Richtung der Bewe-
gung an (Vg ist eine Vektorgrofie). Die Durchschnitts-
geschwindigkeit hangt nicht von der tatsidchlichen Entfer-
nung ab, die ein Teilchen zurticklegt, sondern nur vom An-
fangs- und Endpunkt seines Weges.

Auf einer Kurve von x in Abhingigkeit von ¢ entspricht
die Durchschnittsgeschwindigkeit in einem bestimmten
Zeitintervall At der Steigung der Geraden, die die End-
punkte des Zeitintervalls auf der Kurve verbindet.

Effektivgeschwindigkeit Die Effektivgeschwindigkeit v .
eines Teilchens wihrend eines Zeitintervalls Az hingt von
der Entfernung ab, die das Teilchen wihrend dieses Zeitin-
tervalls insgesamt zuriickgelegt hat:

Gesamtentfernung

AL (1.3)

Veff =

Momentangeschwindigkeit Die Momentangeschwindig-
keit (oder kurz Geschwindigkeit) v eines sich bewegenden
Teilchens ist gleich

. Ax  dx
= lim == = =2, 1.4
a0 T A (14)
wobei Ax und At durch Gl 1.2 gegeben sind. Die Momen-
tangeschwindigkeit (zu einem bestimmten Zeitpunkt) ent-
spricht der Steigung der Kurve von x in Abhéngigkeit von
t (zu diesem bestimmten Zeitpunkt).

Mittlere Beschleunigung Die mittlere Beschleunigung ist
das Verhaltnis einer Verdnderung der Geschwindigkeit Av

zur Dauer des Zeitintervalls Az, in dem die Verdnderung
stattfindet:
_ Ay

gom = 5o - (1.5)

a

an.

Das Vorzeichen gibt die Richtung von g,

Momentanbeschleunigung Die Momentanbeschleuni-
gung (oder kurz Beschleunigung) a ist die Rate, mit der
sich die Geschwindigkeit mit der Zeit éndert. Sie entspricht
der zweiten Ableitung nach der Zeit am Ort x(¢):

4 dv d’x
S dt de2’
Bei einer Kurve von v in Abhingigkeit von ¢ ist die Be-

schleunigung a zu jedem Zeitpunkt ¢ gleich der Steigung
der Kurve an dem Punkt, der ¢ entspricht.

(1.6, 1.7)

Konstante Beschleunigung Die fiinf Gleichungen in
Tab. 1.1 beschreiben die Bewegung eines Teilchens, das
gleichméf3ig beschleunigt wird:

v =v,+at, (1.9)
X —xy=vot+ %atZ, (1.13)
= vé + 2a(x — xg), (1.14)
X —xg = %(vo + )¢, (1.15)
X —xg=vt— %atz. (1.16)

Diese Gleichungen gelten nicht, wenn die Beschleunigung
nicht konstant ist.

Der freie Fall Ein wichtiges Beispiel einer geradlinigen,
gleichmiflig beschleunigten Bewegung ist die eines Ob-
jekts, das sich nahe der Erdoberfliche im freien Fall be-
wegt. Die Gleichungen fiir die konstante Beschleunigung
beschreiben diese Bewegung, dabei haben wir die Schreib-
weise jedoch in zwei Hinsichten verdndert: (1) Wir bezie-
hen die Bewegung auf eine senkrechte y-Achse, bei der die
positive Richtung nach oben weist; (2) wir ersetzen a durch
—g,wobei g der Betrag der Erdbeschleunigung ist. Nahe der
Erdoberfliche ist ¢ = 9,8 m/s?.

Ortsvektor im Raum Die Position eines Teilchens relativ
zum Ursprung des Koordinatensystems wird durch einen
Ortsvektor 7 angegeben. In Einheitsvektoren-Schreibweise
ist

7 =xé,+ yé, +z€, . (1.19)

Dabei sind xé,, yé, und zé, die Vektorkomponenten und
x, y und z die skalaren Komponenten des Ortsvektors 7. x,
y und z entsprechen aufSerdem den Koordinaten des Teil-
chens. Ein Ortsvektor kann iiber seinen Betrag und einen
(oder im dreidimensionalen Fall zwei) Winkel fiir die Rich-
tung, durch seine Vektorkomponenten oder durch seine
skalaren Komponenten beschrieben werden.
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Verschiebungim Raum Bewegt sich ein Teilchen so, dass
sich sein Ortsvektor von 7, nach 7, dndert, dann ist die Ver-
schiebung A7 des Teilchens

Diese Verschiebung lésst sich auch in der Form
A? = (xz - xl)_éx + (yz - yl)zy + (Zz - ZI)EZ
= Axé, + Ayé, + Aze, (1.21,1.22)
schreiben, wobei die Koordinaten (x;, y;, z;) dem Ortsvek-

tor 7; und die Koordinaten (x,, y,, z,) dem Ortsvektor 7,
zugeordnet sind.

Durchschnittsgeschwindigkeit und Momentangeschwin-
digkeit in drei Dimensionen Unterliegt ein Teilchen
withrend eines Zeitintervalls A¢ einer Verschiebung A7,

so ist seine Durchschnittsgeschwindigkeit Ve, in diesem
Zeitintervall:

- A7

Vgem = E . (1.23)

Geht At in Gl 1.23 gegen null, so strebt V., gegen ei-
nen Grenzwert v, der Momentangeschwindigkeit oder Ge-
schwindigkeit genannt wird:

. dF
v=—. 1.25
1 (1.25)
In Einheitsvektoren-Schreibweise ist die Geschwindigkeit
V=V, +V,E,+V,E,, (1.26)

wobei v, = dx/dt, v, = dy/dt und v, = dz/dt ist. Die
Momentangeschwindigkeit v eines Teilchens zeigt immer
entlang der Tangente an die Bahnkurve des Teilchens am
momentanen Ort des Teilchens.

Durchschnittsbeschleunigung und Momentanbeschleu-
nigung in drei Dimensionen Andert sich die Geschwin-
digkeit eines Teilchens im Zeitintervall At von v, auf 7,, so
ist seine Durchschnittsbeschleunigung wihrend At gleich
- ‘72 - T’)1 AV

= = —. 1.28
“gem At At (1.28)
Geht At in Gl. 1.28 gegen null, so strebt d,,, gegen einen
Grenzwert g, der Momentanbeschleunigung oder Beschleu-
nigung genannt wird:

. dv
a=—. 1.29
1 (1.29)
In Einheitsvektoren-Schreibweise ist
d=ae,+aye,+ae,, (1.30)

mita, =dv,/d¢, a, =dv,/dtund a, =dv,/ds.

Wurfbewegung Als Wurfbewegung bezeichnet man die
Bewegung eines Teilchens, das mit einer Anfangsgeschwin-
digkeit v, geworfen oder geschossen wird. Wahrend des
Flugs ist die horizontale Beschleunigung des Teilchens
gleich null und die vertikale Beschleunigung gleich der
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Gravitationsbeschleunigung —g. (Die positive y-Richtung
weist bei der Betrachtung nach oben.) Wird ¥, durch sei-
nen Betrag v, und den Winkel 6, ausgedriickt, so lauten
die Bewegungsgleichungen des Teilchens entlang der hori-
zontalen x- und der vertikalen y-Achse:

x —xg = (v cos Oy)t. (1.34)
Y= Yo = Vo,t — 1gt2 = (v, sin O,)t — 1gt2, (1.35)
) 2

v (1.36)

(1.37)

y = V()Sin00 —gt,

vi = (v sin 90)2 —2g(y — yg).

Die Trajektorie (Bahnkurve) eines Teilchens wihrend ei-
ner Wurfbewegung ist eine Parabel, die durch

gx>

—_— 1.38
2(vy cos O;)> (1.38)

y = (tan Oy)x —
gegeben ist. Hierbei wurde der Ursprung so gewihlt, dass
xo und y, in den Gln. 1.34—1.37 gleich null sind. Die ho-
rizontale Reichweite R des Teilchens ist die horizontale
Entfernung zwischen dem Abwurfpunkt und dem Punkt,
an dem das Teilchen wieder die Abwurthohe erreicht. Sie
ist gegeben durch

6

R = —sin26,. (1.39)

g
Gleichférmige Kreisbewegung Bewegt sich ein Teilchen
mit konstantem Geschwindigkeitsbetrag v entlang eines
Kreises oder eines Kreisbogens mit Radius r, so spricht man
von einer gleichformigen Kreisbewegung.

Die Beschleunigung 4 besitzt den Betrag
v

a=—
r

(1.40)

und zeigt zum Mittelpunkt des Kreises bzw. des Kreis-
bogens. d wird deshalb als Zentripetalbeschleunigung be-
zeichnet. Die Zeit, die ein Teilchen fiir einen kompletten
Umlauf braucht, ist

7= 2
v

(1.41)

T wird die Periode der Bewegung genannt.

Relativbewegung Bewegen sich zwei Bezugssysteme A
und B relativ zueinander mit einer konstanten Geschwin-
digkeit, so unterscheidet sich die von einem Beobachter
im System A gemessene Geschwindigkeit eines Teilchens
P ublicherweise von der im Bezugssystem B gemessenen
Geschwindigkeit. Die zwei gemessenen Geschwindigkeiten
sind durch

Vpa = Vpp + Vpa (1.50)

miteinander verkniipft, wobei v, die Geschwindigkeit von
B relativ zu A ist. Beide Beobachter messen fiir das Teilchen
die gleiche Beschleunigung, d. h.

ZZPA = aPB . (1.51)
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1. Abbildung 1.F1 gibt die Geschwindigkeit eines Teil-
chens an, das sich auf einer x-Achse bewegt. In welche
Richtung bewegt sich das Teilchen (a) am Anfang und
(b) am Ende seiner Bahn? (c¢) Halt das Teilchen voriiber-
gehend an? (d) Ist die Beschleunigung positiv oder negativ?
(e) Bleibt sie konstant oder verandert sie sich?

.
/

2. Abbildung 1.F2 zeigt vier Bahnen, entlang derer sich
verschiedene Objekte gleichzeitig von einem Anfangs- zu
einem Endpunkt bewegen. Diese Bahnen verlaufen iiber ei-
nem Gitter aus Geraden, die in gleichem Abstand neben-
einanderliegen. Ordnen Sie die Bahnen in absteigender Rei-
henfolge nach (a) der Durchschnittsgeschwindigkeit und
(b) der Effektivgeschwindigkeit der Objekte.

v

/

Abb. 1.F1

Abb. 1.F2

3. Abbildung 1.F3 zeigt die Position eines Teilchens ent-
lang der x-Achse als Funktion der Zeit. (a) Welches Vor-
zeichen hat die Position des Teilchens zur Zeit ¢t = 0? Ist
die Geschwindigkeit des Teilchens zur Zeit (b) t = 15,
(c) t =2sund (d) ¢ = 3 s positiv, negativ oder null? (e) Wie
oft passiert das Teilchen den Ort x = 0?

X

£(s)

(=]
™o

Abb. 1.F3

4. Abbildung 1.F4 zeigt die Geschwindigkeit eines Teil-
chens, das sich entlang einer Achse bewegt. Punkt 1 be-
zeichnet den hochsten Punkt der Kurve, Punkt 4 den tiefs-
ten; die Punkte 2 und 6 liegen auf derselben Hohe. In wel-
che Richtung bewegt sich das Teilchen (a) zur Zeit £t = 0
und (b) an Punkt 4? (c) An welchen der sechs nummerier-
ten Punkte dndert das Teilchen seine Bewegungsrichtung?
(d) Ordnen Sie die sechs Punkte in der Reichenfolge abstei-
genden Betrags der Beschleunigung.

2% p6

L 2
4 Abb. 1.F4

5. Bei ¢ = 0 befindet sich ein Teilchen, das sich entlang ei-
ner x-Achse bewegt, am Ort x; = —20 m. Die Vorzeichen
der urspriinglichen Geschwindigkeit vy (zur Zeit £;) und
der konstanten Beschleunigung a sind in vier verschiede-
nen Situationen jeweils: (1) +, +; (2) +, —; (3) —, +; (4) —, —.
In welcher dieser Situationen wird das Teilchen (a) vor-
tibergehend anhalten, (b) sich auf jeden Fall (bei ausrei-
chend langer Zeit) iber den Ursprung hinwegbewegen und
(c) auf keinen Fall den Ursprung tiberqueren?

6. Die folgenden Gleichungen geben die Geschwindigkeit
v(t) eines Teilchens in vier verschiedenen Situationen wie-
der:(Qv=3(b)v=42+2t—6;(c)v=3t—4;(d) v =
5t2 — 3. In welcher dieser Situationen gelten die Gleichun-
gen aus Tab. 1.1?

7. Ein Passagier in einem HeifSluftballon ldsst beim Start
versehentlich einen Apfel aus dem Korb fallen. Der Ballon
beschleunigt in diesem Moment mit einer Beschleunigung
von 4,0 m/s% nach oben und besitzt bereits eine nach oben
gerichtete Geschwindigkeit von 2 m/s. Geben Sie (a) Betrag
und (b) Richtung der Beschleunigung an, die direkt nach
dem Loslassen auf den Apfel wirkt. (c) Bewegt sich der Ap-
fel im Moment des Loslassens nach oben, nach unten oder
ist er stationdr? (d) Welchen Betrag besitzt seine Geschwin-
digkeit in diesem Moment? () Nimmt der Betrag seiner
Geschwindigkeit in den folgenden Momenten zu, ab oder
bleibt er konstant?

8. Abbildung 1.F8 zeigt die Beschleunigung, die ein sich
entlang einer Achse bewegendes Teilchen in verschiedenen
Zeitintervallen verspiirt. Ordnen Sie diese Zeitintervalle
ohne schriftliche Rechnung in absteigender Reihenfolge
nach der durch sie bewirkten Anderung der Geschwindig-
keit des Teilchens.

3)

(€]

Beschleunigung a

()]

Zeitt Abb. 1.F8

9. Die Fahrerin eines blauen Autos, das sich mit 80 km/h
bewegt, bemerkt plotzlich, dass sie im Begriff ist, ein rotes
Auto zu rammen, das mit 60 km/h vor ihr fahrt. Wie grof3
darf die Geschwindigkeit des blauen Autos, kurz bevor es
das rote Auto erreicht, maximal sein, um einen Zusammen-
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stofl zu vermeiden? (Aufwirmiibung fiir Aufgabe 1.34 im
Ubungsbuch)

10. Bei t = 0 und x = 0 beginnt ein parkendes Auto mit
einer konstanten Beschleunigung von 2,0 m/s? in positi-
ver Richtung entlang einer x-Achse zu beschleunigen. Zur
Zeit t = 2s kommt ein auf der Nebenspur in die gleiche
Richtung fahrendes Auto mit einer Geschwindigkeit von
8,0 m/s und einer konstanten Beschleunigung von 3,0 m/s?
bei x = 0 vorbei. Welche zwei gekoppelten Gleichungen
muss man l6sen, um herauszufinden, wann das rote Auto
das blaue iiberholt? (Aufwirmiibung fiir Aufgabe 1.32 im
Ubungsbuch)

11. Sie werfen einen Ball von der Oberkante einer Klippe
gerade nach oben, er landet im Sand unterhalb der Klip-
pe. Wenn Sie den Ball stattdessen mit dem gleichen Ge-
schwindigkeitsbetrag direkt von der Klippe aus nach un-
ten geworfen hitten, wire der Geschwindigkeitsbetrag des
Balls kurz vor dem Aufprall grofier als, kleiner als oder ge-
nauso grof$ wie im ersten Fall? (Hinweis: Betrachten Sie
Gl 1.14.)

12. Abbildung 1.F12 zeigt die Anfangsposition 1 und die
Endposition 2 eines Teilchens. Wie lauten (a) der Ortsvek-
tor 7, des Teilchens an der Anfangsposition und (b) der
Ortsvektor 7, des Teilchens an der Endposition in Einheits-
vektoren-Schreibweise? (c) Wie lautet die x-Komponente
der Verschiebung A7 des Teilchens?

Abb. 1.F12

13. Im Folgenden finden Sie vier verschiedene Beschrei-
bungen der Geschwindigkeit eines Eishockeypucksin einer
xy-Ebene (in Metern pro Sekunde):

v, =-3t"+4t—2und v, = 61— 4,

X

1
2. v =—3undvy=—5t2+6,
3

v
4 T=-212,+3F,.

(a) Sind die x- und y-Komponente der Beschleunigung
bzw. der Beschleunigungsvektor 4 in allen Féllen konstant?
(b) Wie lauten in Fall (4) die Einheiten der Koeffizienten —2
und 3, wenn ¥ in Metern pro Sekunde und ¢ in Sekunden
angegeben wird?
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14. Zu einem bestimmten Zeitpunkt besitze ein Ball die
Geschwindigkeit v = 25¢,—4,9¢,, (die x-Achse verlauft ho-
rizontal, die y-Achse ist nach oben gerichtet und v wird in
Metern pro Sekunde angegeben). Hat der Ball den hochs-
ten Punkt seiner Trajektorie schon durchlaufen?

15. Sie sollen eine Rakete mit einer der folgenden Anfangs-
geschwindigkeiten vom Boden aus starten:

Vo = 20€, + 70€,,,
Vo = —20€, + 70¢,,,
Vo = 20¢, — 70¢,,,
Vo = —20€, — 702, .

L

In Ihrem Koordinatensystem verlduft x parallel zum Boden
und y nimmt nach oben hin zu. (a) Ordnen Sie die Vektoren
in absteigender Reihenfolge nach den Betrdgen der Startge-
schwindigkeiten. (b) Ordnen sie die Vektoren in absteigen-
der Reihenfolge nach den Flugzeiten der Projektile.

16. Ein Flugzeug, das in horizontaler Richtung mit einem
konstanten Geschwindigkeitsbetrag von 350 km/h iber
den ebenen Erdboden fliegt, werfe ein Paket mit Lebens-
mitteln ab. Vernachlassigen Sie die Auswirkungen des Luft-
widerstands auf das Paket. Wie lauten (a) die vertikale und
(b) die horizontale Komponente der Anfangsgeschwindig-
keit des Pakets? (c) Wie lautet die horizontale Geschwin-
digkeitskomponente, unmittelbar bevor das Paket auf dem
Boden auftrifft? (d) Wenn das Flugzeug stattdessen mit ei-
nem Geschwindigkeitsbetrag von 450 km/h fliegen wiirde,
ware die Fallzeit des Pakets dann langer, kiirzer oder gleich
lang?

17. Sie werfen einen Ball mit einer Wurfgeschwindigkeit

v, = 3m/s)é, + (4 m/s)Ey gegen eine Wand, auf der er

zur Zeit t; nach dem Wurf in einer Hohe /4 auftrifft

(Abb. 1.F17). Nehmen Sie an, die Wurfgeschwindigkeit sei

stattdessen gleich v; = (5m/s)é, + (4 m/s)Ey.

(a) Ware die Zeit, die der Ball bis zur Wand braucht, in die-
sem Fall grofer als, kleiner als oder genauso grof§ wie
t; — oder lasst sich diese Frage ohne Zusatzinformatio-
nen gar nicht beantworten?

Iy
L Abb. 1.F17

(b) Ware die Hohe, in welcher der Ball auf der Wand auf-
trifft, grofSer als, kleiner als oder genauso grofd wie /1; —
oder lésst sich diese Frage gar nicht beantworten?
Nehmen Sie nun an, dass die Wurfgeschwindigkeit
stattdessen v, = (3m/s)é, + (5 m/s)Ey ist.

(c) Ware die Zeit, die der Ball bis zur Wand braucht, in die-
sem Fall grofer als, kleiner als oder genauso grof§ wie
t; — oder lasst sich diese Frage gar nicht beantworten?
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(d) Ware die Hohe, in welcher der Ball auf der Wand auf-
trifft, grofier als, kleiner als oder genauso grofy wie /1, —
oder lésst sich diese Frage gar nicht beantworten?

18. Abbildung 1.F18 zeigt drei Bahnkurven eines Fufiballs,
der vom Boden aus geschossen wurde. Vernachldssigen
Sie die Auswirkungen des Luftwiderstands und ordnen Sie
die Bahnkurven in absteigender Reihenfolge (a) nach den
Flugzeiten, (b) der vertikalen Komponente der Anfangsge-
schwindigkeit, (c) der horizontalen Komponente der An-
fangsgeschwindigkeit und (d) dem Betrag der Anfangsge-
schwindigkeit.

Abb. 1.F18

19. Abbildung 1.F19 zeigt die Geschwindigkeit und die Be-
schleunigung eines Teilchens zu einem bestimmten Zeit-
punkt in drei verschiedenen Situationen. In welcher die-
ser Situationen (a) wichst der Geschwindigkeitsbetrag an,
(b) nimmt der Geschwindigkeitsbetrag ab, (c) bleibt der
Geschwindigkeitsbetrag gleich, (d) ist ¥ - @ positiv, (e) ist
v - d negativund (f) ist v - @ = 0?

— — —
v v v

-

a
. —
a a

) @ ) Abb. 1.F19

20. Abbildung 1.F20 stellt vier Gleise dar (deren Kurven
entweder aus Viertel- oder Halbkreisen bestehen), die ein
Zug mit konstanter Geschwindigkeit befihrt. Ordnen Sie
die Gleise in absteigender Reihenfolge nach dem Betrag der
Beschleunigung des Zugs auf dem gekriimmten Teil der
Gleise.

Abb. 1.F20

21. (a) Ist es moglich, beschleunigt zu werden, wéhrend
man sich mit konstantem Geschwindigkeitsbetrag bewegt?

Ist es moglich, eine Kurve (b) mit einer Beschleunigung von
null und (c) mit einer Beschleunigung, deren Betrag kon-
stant bleibt, zu durchfahren?

22. Ein Ball wird mit einer bestimmten Anfangsgeschwin-
digkeit vom Boden aus geschossen. Abbildung 1.F22 zeigt
die Reichweite R des Schusses als Funktion des Abschuss-
winkels 6. Ordnen Sie die drei bezeichneten Punkte auf der
Kurve in absteigender Reihenfolge (a) nach der gesamten
Flugdauer des Balls und (b) nach dem Betrag seiner Ge-
schwindigkeit am hochsten Punkt seiner Flugkurve.

R

9 Abb.1.F22

23. Das Teilchen P in Abb. 1.F23 vollfiihrt eine gleich-
formige Kreisbewegung um den Ursprung des xy-Koor-
dinatensystems. (a) Bei welchen Werten von 6 besitzt die
vertikale Komponente r,, des Ortsvektors den grofiten Be-
trag? (b) Bei welchen Werten von 6 besitzt die vertikale
Komponente v, des Geschwindigkeitsvektors den gréfiten
Betrag? (c) Bei welchen Werten von 0 besitzt die vertikale
Komponente a, des Beschleunigungsvektors den grofiten
Betrag?

ap
N

Abb. 1.F23

24. Sie fahren direkt hinter einem Pickup mit derselben
Geschwindigkeit wie dieser. Eine Kiste fillt von der Lade-
fliche des Wagens. (a) Kollidiert Ihr Auto mit der Kiste, be-
vor sie auf dem Boden aufschldgt, wenn Sie weder brem-
sen noch ausweichen? (b) Ist die horizontale Geschwindig-
keit der Kiste wiahrend ihres Falls grofier, kleiner oder gleich
grof wie die des Pickups?

25. An welchem Punkt der Flugbahn eines Geschosses ist
der Betrag seiner Geschwindigkeit minimal?

26. Beim Kugelstofien wird die Kugel von oberhalb der
Schulterh6he des Athleten gestoflen. Ist der Abwurfwinkel,
der den weitesten Wurf erzielt, grofler oder kleiner als 45°
oder gleich 45°?
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