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1 Bewegung

1.1 Ort, Verschiebung undmittlere Geschwindigkeit

Physikalische Motivation
Eines der Ziele der Physik ist, die Bewegung von Objekten zu beschreiben – z. B.
wie schnell sie sich bewegen oder welche Entfernung sie in einer bestimmten Zeit
zurücklegen. Die Konstrukteure von Rennautos sind an diesem Aspekt der Physik
besonders interessiert,weil diese Zusammenhänge letztlichüber Sieg oderNieder­
lage im Rennen entscheiden. Geologen verwenden diesen Teil der Physik, um die
Bewegungen von tektonischen Platten zu messen und zu versuchen, daraus Erd­
beben vorherzusagen.Mediziner brauchen diese physikalischenZusammenhänge,
um aus der beobachteten Strömung des Blutes in einem Patienten den Teilver­
schluss einer Arterie zu diagnostizieren, und Autofahrer nutzen sie, um zu brem­
sen, wenn ihr Radarwarner piepst. Natürlich gibt es noch unzählige weitere Bei­
spiele. In diesem Kapitel untersuchen wir zunächst die Grundlagen der Physik von
Bewegungen, in denen sich ein Objekt (ein Rennwagen, eine tektonische Platte,
rote Blutkörperchen . . . ) entlang einer einzigen Achse bewegt. Danach beschäfti­
gen wir uns mit der Beschreibung von Bewegungen in zwei und drei Raumdimen­
sionen.

1.1.1 Bewegung

Die Erde – und alles auf ihr – bewegt sich. Selbst scheinbar regungslose Dinge, wie
z. B. eine Straße, bewegen sich mit der Erddrehung, der Umlaufbahn der Erde um
die Sonne, der Umlaufbahn des Sonnensystems um das Zentrum der Milchstraße
und der Bewegung derGalaxis relativ zu anderenGalaxien.Die Klassifizierung und
der Vergleich von Bewegungen – Kinematik genannt – können manchmal eine
große Herausforderung darstellen. Was genau messen wir dabei und wie werden
die Vergleiche gezogen?
Bevor wir versuchen, diese Fragen zu beantworten, werden wir einige allgemei­

ne Eigenschaften einer ganz bestimmten Art von Bewegung studieren. Diese wird
durch drei Bedingungen eingeschränkt:

1. Die Bewegung erfolgt nur entlang einer geraden Linie. Diese Linie kann senk­
recht (wie bei einem fallenden Stein), waagerecht (wie bei einem Auto auf einer
geraden Straße) oder schräg verlaufen, aber sie muss eine Gerade sein.

2. Bewegung wird durch Kräfte („ziehen“ und „schieben“) verursacht – diese wer­
den jedoch erst in Kap. 5 behandelt. In dem vorliegenden Kapitel werden wir
nur die Bewegung an sich sowie Veränderungen dieser Bewegung untersuchen.
Wird das bewegte Objekt schneller oder langsamer, hält es an oder wechselt es
die Richtung? Welche Rolle spielt die Zeit bei der Veränderung der Bewegung?

3. Das bewegte Objekt ist entweder ein Teilchen, d. h. ein punktförmiges Gebilde
wie z. B. ein Elektron, oder ein Objekt, das sich wie ein Teilchen bewegt (der­
art, dass all seine Teile sich mit exakt derselben Geschwindigkeit in dieselbe
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1 Bewegung

Richtung bewegen). Ein Kind, das seinen Körper ganz steif macht und auf dem
Spielplatz eine gerade Rutsche hinunterrutscht, bewegt sich wie ein Teilchen;
ein vom Wind durch die Wüste getriebener, rollender Steppenläufer dagegen
nicht, da sich verschiedene Punkte in seinem Inneren in verschiedene Richtun­
gen bewegen.

1.1.2 Ort und Verschiebung

Den Ort eines Teilchens zu bestimmen bedeutet, seine Position in Bezug auf ei­
nen bestimmten Referenzpunkt festzulegen, oftmals in Bezug auf den Ursprung
(oder Nullpunkt) einer Achse, wie der x-Achse in Abb. 1.1. Die positive Rich­
tung derAchse ist die Richtung ansteigender Zahlen (Koordinaten), die in Abb. 1.1
nach rechts zeigt. Die entgegengesetzte Richtung wird als negative Richtung be­
zeichnet.

–3 0

Ursprung

–2 –1 1 2 3

negative Richtung

positive Richtung

x (m)

Abb. 1.1
Der Ort bzw. die Position eines Teil­
chens lässt sich anhand einer Ach­
se bestimmen, die in Einheiten der
Länge gekennzeichnet ist (hier in
Metern) und sich unendlich weit

in entgegengesetzte Richtungen er­
streckt. Die Achsenbeschriftung –
hier x – befindet sich immer auf

der positiven Seite des Ursprungs.

Ein Teilchen befindet sich z. B. am Ort x = 5m, d. h., es befindet sich 5m in po­
sitiver Richtung vom Ursprung entfernt. Läge es bei x = −5m, so befände es sich
genauso weit vom Ursprung entfernt, allerdings in der entgegengesetzten Rich­
tung. Auf der Achse liegt eine Koordinate von−5mweiter links – also zu kleineren
Zahlen hin – als eine von −1m, und beide Koordinaten befinden sich weiter links
als eine Koordinate von +5m. Das Pluszeichen einer Koordinate muss man nicht
ausschreiben, das Minuszeichen dagegen muss immer aufgeführt werden.
EinWechsel von einemOrt x1 zu einem anderenOrt x2 wird eineVerschiebung

Δx genannt, wobei

Δx = x2 − x1 . (1.1)

(Das Symbol Δ, der griechische Großbuchstabe Delta, steht für eine Veränderung
einerGröße, also dieDifferenz vonEndwert undAnfangswert dieserGröße.)Wenn
für die Ortsangaben x1 und x2 Zahlenwerte eingesetzt werden, so ergibt eine Ver­
schiebung in die positive Richtung (nach rechts in Abb. 1.1) immer einen positiven
Wert, eine Verschiebung in die entgegengesetzteRichtung (nach links in derAbbil­
dung) einen negativenWert. Bewegt sich das Teilchen beispielsweise von x1 = 5m
nach x2 = 12m, dann ist Δx = (12m) − (5m) = +7m. Der positive Wert gibt an,
dass die Bewegung in die positive Richtung erfolgt. Kehrt das Teilchen dann zu
x = 5m zurück, so ist die Verschiebung für die ganze Bewegung gleich null. Die
tatsächliche Anzahl von Metern, die auf der gesamten Strecke zurückgelegt wur­
de, ist irrelevant. Verschiebungen berücksichtigen nur den Anfangs- und den End­
punkt einer Bewegung.
Auch bei einer Verschiebung muss ein Pluszeichen nicht aufgeführt werden, ein

Minuszeichen dagegen immer. Ignorierenwir das Vorzeichen (und damit die Rich­
tung) einer Verschiebung, so erhalten wir den Betrag (oder Absolutbetrag) der
Verschiebung. Im vorangehenden Beispiel ist der Betrag von Δx gleich 7 m.
Eine Verschiebung ist ein Beispiel für eine Vektorgröße, d. h., eine Größe, die

sowohl über eine Richtung als auch über einen Betrag verfügt. Über Vektorenwer­
den wir in Anhang D mehr erfahren; an dieser Stelle genügt die Feststellung, dass
eine Verschiebung zwei Eigenschaften besitzt: (1) Ihr Betrag ist der Abstand (wie
z. B. eine Zahl von Metern) zwischen Anfangs- und Endpunkt. (2) Die Richtung
der Verschiebung zwischen Anfangs- und Endpunkt wird einfach mit einem Plus-
oderMinuszeichen angegeben, falls die Bewegung nur entlang einer einzigen Ach­
se erfolgt.

Was an dieser Stelle folgt, ist die erste einer Vielzahl von „Kontrollfra­
gen“, die Ihnen in diesem Buch begegnen werden. Sie bestehen aus einer
oder mehreren Fragen, deren Beantwortung gewisse Argumentationsket­
ten oder Kopfrechnungen erfordert und die Ihnen die Möglichkeit geben,
Ihr Verständnis rasch zu überprüfen. Die Antworten finden Sie am Schluss
dieses Buchs.
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11.1 Ort, Verschiebung und mittlere Geschwindigkeit

KONTROLLFRAGE 1
Hier sind drei Paare von Anfangs- und Endpunkten einer Bewegung gegeben, die
entlang einer x-Achse erfolgt. Welche Paare ergeben eine negative Verschiebung:
(a) −3m, 5m; (b) −3m, −7m; (c) 7m, −3m?

1.1.3 Durchschnittsgeschwindigkeit

Die Position eines Teilchens lässt sich auf kompakte Weise anhand der Ort-Zeit-
Kurve x(t) beschreiben. Dabei wird der Ort x als Funktion der Zeit t aufgetragen.
(Dabei steht der Ausdruck „x(t)“ für „x als Funktion von t“, nicht für das Produkt x
mal t.) Abb. 1.2 zeigt als einfaches Beispiel die Ortsfunktion x(t) eines ruhenden
Gürteltiers (das wir wie ein Teilchen behandeln) bei x = −2m.

x (m)

t (s)
1 2 3 4

+1

–1

–1

0

x(t )

Abb. 1.2
Die Kurve x(t) für ein Gürteltier, das
sich unbewegt bei x = −2m aufhält.
Für alle Zeiten t ist der Wert von
x gleich − 2m.

Abbildung 1.3a ist interessanter, da sich das Gürteltier hier bewegt.Das Tierwird
offensichtlich zum ersten Mal zum Zeitpunkt t = 0 gesichtet, als es sich am Ort
x = −5m befindet. Es bewegt sich bis x = 0, überquert diesen Punkt bei t = 3 s
und strebt dann nach immer größer werdenden positivenWerten von x.
Abbildung 1.3b zeigt die tatsächliche geradlinige Bewegung des Gürteltiers. Sie

entspricht dem,was Sie in etwa sehenwürden.Die Kurve in Abb. 1.3a ist abstrakter
und weiter von dem entfernt, was Sie beobachten würden, doch sie enthält mehr
Information. Sie macht auch deutlich, wie schnell sich das Gürteltier bewegt.
Tatsächlich hängt der Ausdruck „wie schnell“ mit mehreren Größen zusammen.

Eine von ihnen ist die Durchschnittsgeschwindigkeit odermittlere Geschwin­
digkeit vgem. Sie wird durch das Verhältnis der Verschiebung Δx, die in einem
bestimmten Zeitintervall Δt stattfindet, zu diesem Zeitintervall gegeben:

vgem = Δx
Δt

=
x2 − x1
t2 − t1

. (1.2)

Diese Schreibweise bedeutet, dass die Position zum Zeitpunkt t1 gleich x1 ist und
entsprechend zum Zeitpunkt t2 gleich x2. Eine gebräuchliche Einheit für vgem ist
Meter pro Sekunde (m/s oder m ⋅ s−1). In den Aufgaben werden Ihnen eventuell
auch andere Einheiten begegnen, diese haben jedoch immer die Form Länge/Zeit.
Wird x gegen t aufgetragen, so ist vgem durchdie Steigung derGeraden gegeben,

welche zwei bestimmte Punkte der Kurve x(t) verbindet: Einer dieser Punkte ent­
spricht x2 und t2, der andere x1 und t1. Genau wie eine Verschiebung besitzt auch
vgem einen Betrag und eine Richtung – es ist ebenfalls eine Vektorgröße. Der Be­
trag von vgem entspricht demBetrag der Steigung derGeraden. Ist vgem (und damit
die Steigung der Geraden) positiv, so steigt die Gerade nach rechts hin an; ist vgem
negativ (negative Steigung), so verläuft die Gerade von links oben nach rechts un­
ten. Die Durchschnittsgeschwindigkeit vgem besitzt immer das gleiche Vorzeichen
wie die Verschiebung Δx, da Δt in Gl. 1.2 immer positiv ist.
Abbildung 1.4 zeigt, wie man vgem im Falle des Gürteltiers aus Abb. 1.3 für das

Zeitintervall zwischen t = 1 s und t = 4 s ermitteln kann. Dazu zeichnen wir die
Gerade, die den Punkt auf der Bahnkurve am Anfang des Zeitintervalls mit dem­
jenigen am Ende des Zeitintervalls verbindet. Dann ermitteln wir die Steigung
Δx∕Δt derGeraden. Für das gegebeneZeitintervall ist dieDurchschnittsgeschwin­
digkeit damit:

x (m)

t (s)
1 2 3 4

x(t )

0–5 2
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Abb. 1.3
(a) Die x(t)-Kurve eines sich bewe­
genden Gürteltiers. (b) Die Bahn, die
dieser Kurve entspricht. Die Skala
unterhalb der x-Achse gibt die Zeiten
an, zu denen das Gürteltier bestimmte
Werte von x erreicht.

vgem = 6m
3 s

= 2m/s .

„Wie schnell“ sich ein Teilchen bewegt, lässt sich auch durch die in einem Zeit­
intervall insgesamt zurückgelegte Entfernung (z. B. die zurückgelegte Anzahl von
Metern), unabhängig von der Richtung ausdrücken:

veff =
gesamte Entfernung

Δt
. (1.3)
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Diese Größe, die wir auch als Effektivgeschwindigkeit bezeichnen können, be­
sitzt kein Vorzeichen, da die insgesamt zurückgelegte Entfernung keine Angaben
über die Richtung der Bewegung macht. Manchmal entspricht die Effektivge­
schwindigkeit veff (bis auf das Vorzeichen) der Durchschnittsgeschwindigkeit
vgem. Wie in der Beispielaufgabe 1.1 im Übungsbuch gezeigt wird, können sich die
beiden Größen allerdings deutlich voneinander unterscheiden, wenn ein Objekt
auf seinemWeg umkehrt.

x (m)

t (s)
1

x (t)

2 3 4

4

3

2

1

–1

–2

–3

–4

–5

∆x = 2 m – (–4 m) = 6 m

0

vgem = Steigung dieser            

Geraden

∆t = 4 s – 1 s = 3 s

= 
∆

∆t
x__

Abb. 1.4
Berechnung der Durchschnitts­

geschwindigkeit zwischen t = 1 s
und t = 4 s: Die Durchschnitts­
geschwindigkeit entspricht der

Steigung der Geraden, welche die
Punkte verbindet, die diesen Zei­

ten auf der x(t)-Kurve entsprechen.

KONTROLLFRAGE 2
Ebenfalls in Beispielaufgabe 1.1 im Übungsbuch fahren Sie gleich nach dem Auf­
tanken Ihres Fahrzeugs mit 35 km/h zum Punkt x1 zurück. Wie groß ist Ihre
Durchschnittsgeschwindigkeit für die gesamte Strecke?

LÖSUNGSSTRATEGIEN
Strategie 1: VerstehenSie das Problem? Wennman imAufgabenlösen noch un­
erfahren ist, passiert es häufig, dass man die gestellte Aufgabe einfach nicht ver­
steht. Der beste Test für Ihr Verständnis ist folgender: Können Sie die Aufgabe in
Ihren eigenenWorten erklären?
Schreiben Sie die vorgegebenen Daten mit den dazugehörigen Einheiten auf, in­

dem Sie die Symbole aus diesem Kapitel benutzen. (In der Beispielaufgabe 1.1 im
Übungsbuch erlauben Ihnen die vorgegebenenDaten, in Teil (a) Ihre Verschiebung
Δx und in Teil (b) das entsprechendeZeitintervall Δt herauszufinden.) Identifizie­
ren Sie die Unbekannte und das dazugehörige Symbol. (In der gleichen Aufgabe
ist die Unbekannte in Teil (c) Ihre Durchschnittsgeschwindigkeit vgem.) Finden Sie
dann die Verbindung zwischen der Unbekannten und den gegebenen Daten. (Die
Verbindung ist hier Gl. 1.2, also die Definition der Durchschnittsgeschwindigkeit.)

Strategie 2: Stimmen die Einheiten? Stellen Sie sicher, dass Sie ein konsistentes
System vonEinheiten benutzen, wenn Sie die Zahlen in die Gleichungen einsetzen.
In der Beispielaufgabe 1.1 imÜbungsbuch sind die Einheiten durch die vorgegebe­
nen Daten bestimmt: Kilometer für Entfernungen, Stunden für Zeitintervalle und
Kilometer pro Stunde für Geschwindigkeiten. Eventuell müssen Sie ab und zu eine
Einheit in eine andere umformen.

Strategie 3: Ist Ihre Antwort plausibel? Ist Ihre Antwort sinnvoll? Ist der Wert
viel zu groß oder viel zu klein? Stimmt das Vorzeichen? Sind die Einheiten kor­
rekt? In Teil (c) der Beispielaufgabe 1.1 im Übungsbuch z. B. ist die richtige Ant­
wort 17 km/h. Erhalten Sie an dieser Stelle 0,000 17 km/h, −17 km/h, 17 km/s oder
17 000 km/h, so sollte Ihnen sofort klar sein, dass Sie etwas falsch gemacht haben.
Der Fehler liegt möglicherweise in Ihrer Vorgehensweise, in Ihren Rechnungen
oder in Tippfehlern beim Eingeben der Zahlen in Ihren Taschenrechner.

Strategie4: EineKurve lesen DieAbb. 1.2, 1.3a und 1.4 sindKurven, die Sie leicht
lesen können sollten. In jeder Kurve ist die Variable auf der horizontalenAchse die
Zeit t mit nach rechts hin ansteigendenWerten. In allen Kurven gibt die vertikale
Achse den Ort x des sich bewegenden Teilchens relativ zum Ursprung an, die po­
sitive x-Richtung zeigt nach oben. Achten Sie immer auf die Einheiten (Sekunden
oder Minuten; Meter oder Kilometer), in denen die Variablen angegeben werden.

1.2 Momentangeschwindigkeit

Lernziele
Nach dem Durcharbeiten dieses Abschnitts sollten Sie in der Lage sein, . . .

• aus dem Ort eines Teilchens als Funktion der Zeit seine Momentangeschwin­
digkeit zu jedem Zeitpunkt zu berechnen,

• aus der Auftragung des Ortes eines Teilchens als Funktion der Zeit seine Mo­
mentangeschwindigkeit zu jedem Zeitpunkt zu bestimmen,
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• zwischen der vektoriellen Geschwindigkeit (die gerichtet bzw. im eindimensio­
nalen Fall vorzeichenbehaftet ist) und ihrem Betrag (einer skalaren und vor­
zeichenlosen Größe, die im allgemeinen Sprachgebrauch auch einfach als „Ge­
schwindigkeit“ bezeichnet wird) zu unterscheiden.

Schlüsselideen
• Die Momentangeschwindigkeit (oder einfach Geschwindigkeit) v eines sich be­

wegenden Teilchens ist

v = lim
Δt→0

Δx
Δt

= dx
dt

mit Δx = x2 − x1 und Δt = t2 − t1.
• Die zu einem bestimmten Zeitpunkt geltendeMomentangeschwindigkeit kann

aus der Steigung der Kurve von x als Funktion von t zu diesem Zeitpunkt be­
stimmt werden.

• In vielen Fällen, in denen es nicht auf die Richtung des Geschwindigkeitsvektors
ankommt, bezeichnet man den Betrag dieses Vektors als „Geschwindigkeit“.

1.2.1 Momentangeschwindigkeit

Bisher haben Sie zwei Wege kennengelernt, anhand derer man beschreiben kann,
wie schnell sich etwas bewegt: die Durchschnittsgeschwindigkeit und die Effektiv­
geschwindigkeit. Beide werden über ein Zeitintervall Δt gemessen. Der Ausdruck
„wie schnell“ bezieht sich meist jedoch darauf, wie schnell sich ein Teilchen zu ei­
nem gegebenen Zeitpunkt bewegt – damit ist die Momentangeschwindigkeit v
gemeint, oft auch einfach nur Geschwindigkeit genannt.
Die Geschwindigkeit zu einem beliebigen Zeitpunkt erhält man aus der Durch­

schnittsgeschwindigkeit, indem man das Zeitintervall Δt immer weiter verkürzt
und gegen null gehen lässt. Je kleiner Δt wird, desto mehr nähert sich die Durch­
schnittsgeschwindigkeit einem Grenzwert, der der Momentangeschwindigkeit zu
diesem Zeitpunkt entspricht:

v = lim
Δt→0

Δx
Δt

= dx
dt

. (1.4)

Diese Gleichung macht zwei Charakteristika der Momentangeschwindigkeit v
deutlich: Erstens ist v die Rate, mit der sich der Ort x des Teilchens zu einem
bestimmten Zeitpunkt in Abhängigkeit von der Zeit verändert. Das heißt, v ist die
Ableitung von x nach t. Zweitens entspricht v zu jedem gegebenen Zeitpunkt der
Steigung der Ort-Zeit-Kurve des Teilchens zu diesem bestimmten Zeitpunkt. Die
Geschwindigkeit ist eine Vektorgröße und beinhaltet deshalb eine entsprechen­
de Richtung. Der Betrag der Geschwindigkeit entspricht dem Zahlenwert ohne
das Vorzeichen: Eine Geschwindigkeit von +5m/s und eine Geschwindigkeit
von −5m/s haben damit beide den gleichen Betrag von 5m/s. Der Geschwin­
digkeitsmesser in einem Auto misst den Betrag der Geschwindigkeit, nicht die
Geschwindigkeit selbst, da er die Richtung nicht bestimmen kann.

1.3 Beschleunigung

Lernziele
Nach dem Durcharbeiten dieses Abschnitts sollten Sie in der Lage sein, . . .

• eine Beziehung zwischen der mittleren Beschleunigung, die auf ein Teilchen
wirkt, der daraus resultierendenÄnderung seiner Geschwindigkeit und dem für
diese Änderung erforderlichenZeitintervall anzugeben,

• aus der gegebenen Geschwindigkeit eines Teilchens als Funktion der Zeit die zu
jedem Zeitpunkt wirkendeMomentanbeschleunigung zu berechnen,
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• aus der Auftragung der Geschwindigkeit eines Teilchens als Funktion der Zeit
die zu jedemZeitpunkt wirkendeMomentanbeschleunigung sowie die in einem
beliebigen Zeitintervall wirkende mittlere Beschleunigung zu ermitteln.

Schlüsselideen
• Die mittlere Beschleunigung ist das Verhältnis aus der Änderung Δv einer Ge­

schwindigkeit und dem Zeitintervall Δt, in dem diese Änderung erfolgt:

agem = Δv
Δt

.

Das Vorzeichen von agem gibt die Richtung der Beschleunigung an.
• Die Momentanbeschleunigung (oder einfach Beschleunigung) ist die erste Ab­

leitung der Geschwindigkeit v(t) bzw. die zweite Ableitung des Ortes x(t) nach
der Zeit:

agem = dv
dt

= d2x
dt2

.

• In einer Auftragung von v gegen t ist die Beschleunigung a zu einemZeitpunkt t
gleich der Steigung der Kurve am Punkt t.

1.3.1 Beschleunigung

Wenn sich die Geschwindigkeit eines Teilchens ändert, so sagt man, das Teilchen
unterliegt einerBeschleunigung bzw. eswirdbeschleunigt. Erfolgt die Bewegung
entlang einer Achse, so ist die Durchschnittsbeschleunigung agem in dem Zeit­
intervall Δt gleich

agem =
v2 − v1
t2 − t1

= Δv
Δt

, (1.5)

wobei das Teilchen zumZeitpunkt t1 dieGeschwindigkeit v1 und zumZeitpunkt t2
dieGeschwindigkeit v2 hat. DieMomentanbeschleunigung (oder einfach nurBe­
schleunigung) ist die Ableitung der Geschwindigkeit nach der Zeit:

a = dv
dt

. (1.6)

In Worten ausgedrückt ist die Beschleunigung eines Teilchens zu jedem Zeit­
punkt gleich der Rate, mit der sich seine Geschwindigkeit zu diesem Zeitpunkt
ändert. Grafisch entspricht die Beschleunigung an jedem Punkt der Steigung der
v(t)-Kurve an diesem Punkt.
Kombinieren wir Gl. 1.6 und Gl. 1.4, so erhalten wir:

a = dv
dt

= d
dt

(
dx
dt

)
= d2x

dt2
. (1.7)

Abb. 1.5
Colonel J.P. Stapp in einem Rake­

tenschlitten, der auf sehr hohe Ge­
schwindigkeiten gebracht wird (da­
bei zeigt die Beschleunigung aus der

Buchseite heraus) und dann ruck­
artig wieder abgebremst wird (die
Beschleunigung weist dabei in die

Buchseite hinein) [Quelle: Mit freund­
licher Erlaubnis der US Air Force].
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InWorten ausgedrückt ist die Beschleunigung eines Teilchens zu jedem Zeitpunkt
gleich der zweiten Ableitung seines Ortes x(t) nach der Zeit.
Eine übliche Einheit für die Beschleunigung ist Meter pro Sekunde pro Sekunde

bzw. Meter pro Quadratsekunde: m∕(s ⋅ s) oder m/s2 bzw. m ⋅ s−2. In den Aufga­
ben werden Ihnen noch andere Einheiten begegnen, sie werden jedoch immer die
Form Länge∕(Zeit ⋅ Zeit) oder Länge∕Zeit2 haben. Die Beschleunigung besitzt so­
wohl einen Betrag als auch eine Richtung, sie ist eine weitere Vektorgröße. Genau
wie bei der Verschiebung und der Geschwindigkeit gibt das Vorzeichen der Be­
schleunigung ihre Richtung entlang einer Achse an. Besitzt die Beschleunigung
einen positivenWert, so erfolgt sie in positiver Richtung der Achse; ist sie negativ,
erfolgt sie entsprechend in negativer Richtung.
In Abb. Ü1.2c im Übungsbuch ist die Beschleunigung der Aufzugkabine aus der

dortigenBeispielaufgabe 1.2 dargestellt.VergleichenSie die Kurve a(t)mit derjeni­
gen von v(t). a(t) gibt die Ableitung (Steigung) der Kurve v(t) zum entsprechenden
Zeitpunkt wieder. Ist v konstant (bei 0 oder 4m/s), so ist die Ableitung gleich null
und die Beschleunigung demzufolge auch. Während der Zeit, in der sich der Auf­
zug in Bewegung setzt, ist die Ableitung der v(t)-Kurve positiv (die Steigung ist
positiv), d. h., auch die Beschleunigung ist positiv. Während des Abbremsens sind
Ableitung und Steigung der v(t)-Kurve negativ; entsprechend ist a(t) ebenfalls ne­
gativ.
Vergleichen Sie als Nächstes die Steigung der v(t)-Kurve während der beiden

Beschleunigungsvorgänge. Die Steigung, die dem Abbremsen bzw. der Verzöge­
rung des Aufzugs entspricht, ist steiler, da die Kabine zum Anhalten nur halb so
viel Zeit benötigt, wie sie gebraucht hatte, um ihre übliche Fahrtgeschwindigkeit
zu erreichen. Die steilere Steigung sagt aus, dass der Betrag der Verzögerung, wie
in Abb. Ü1.2c im Übungsbuch dargestellt, größer ist als derjenige der Beschleuni­
gung.
Das Gefühl, das Sie während der Fahrt mit diesem Aufzug verspüren würden,

ist anhand der skizzierten Figuren angedeutet.Während der Aufzug beschleunigt,
fühlen Sie sich, als würden Sie nach unten gedrückt; während des Bremsvorgangs
wirkt es so, als würden Sie nach oben in die Länge gezogen. Dazwischen spüren Sie
nichts Besonderes. Ihr Körper reagiert auf Beschleunigungen (er ist ein guter Be­
schleunigungssensor), jedoch nicht auf Geschwindigkeiten (er ist kein Geschwin­
digkeitsmesser). Ob Sie sich in einem Auto befinden, das sichmit 90 km/h bewegt,
oder in einem mit 900 km/h fliegenden Flugzeug – Ihr Körper spürt diese Bewe­
gung nicht. Verändern Auto oder Flugzeug jedoch abrupt ihre Geschwindigkeit,
so werden Sie sich dieser Veränderung nur allzu deutlich bewusst. Der Reiz eines
Freizeitparks liegt zum großenTeil in den schnellenGeschwindigkeitsänderungen,
denen Sie auf den Achterbahnen ausgesetzt sind. Ein extremeres Beispiel zeigt die
Fotoserie von Abb. 1.5, die aufgenommen wurde, während ein Raketenschlitten
entlang einer Schiene ruckartig beschleunigt und wieder abgebremst wurde.

Abb. 1.5
Fortsetzung

7



D. Halliday, R. Resnick und J. Walker.: Halliday Physik für natur- und ingenieurwissenschaftliche Studiengänge —
2019/8/28 — Seite 8 — le-tex

1 Bewegung

Große Beschleunigungen werden oft in Einheiten von g ausgedrückt, wobei

1 g = 9,8m/s2 (Einheit g) . (1.8)

(Wie wir in Abschn. 2.5 sehen werden, ist g der Betrag der Beschleunigung ei­
nes fallenden Objekts in der Nähe der Erdoberfläche.) Auf einer Achterbahn erle­
ben Sie kurzfristig Beschleunigungen von bis zu 3g, d. h. (3)(9,8m/s2), also etwa
29m/s2 – mehr als genug, um den teuren Fahrpreis zu rechtfertigen.

LÖSUNGSSTRATEGIEN
Strategie 5: Das Vorzeichen einer Beschleunigung In der Umgangssprache hat
das Vorzeichen einer Beschleunigung eine nichtwissenschaftliche Bedeutung: Po­
sitive Beschleunigung bedeutet, dass der Geschwindigkeitsbetrag eines Objekts
größer wird, negative Beschleunigung sagt aus, dass das Objekt langsamer wird
(der Betrag der Geschwindigkeit wird kleiner). In diesem Buch bezieht sich das
Vorzeichen einer Beschleunigung jedoch auf eine Richtung und nicht etwa darauf,
ob die Geschwindigkeit eines Objekts größer oder kleiner wird.
Wird ein Fahrzeug mit einer ursprünglichen Geschwindigkeit v = −25m/s

z. B. innerhalb von 5,0 s vollständig abgebremst, so ist agem = +5,0m/s2. Die
Beschleunigung ist positiv, doch der Betrag der Geschwindigkeit des Fahrzeugs
nimmt ab. Der Grund liegt in den unterschiedlichenVorzeichen: Die Richtung der
Beschleunigung ist derjenigen der Geschwindigkeit entgegengesetzt.
So interpretieren Sie die Vorzeichen korrekt:

Sind die Vorzeichen der Geschwindigkeit und der Beschleunigung eines
Teilchens gleich, so nimmt der Betrag der Geschwindigkeit zu, das Teil­
chenwird schneller. Sind die Vorzeichenunterschiedlich, so nimmt derGe­
schwindigkeitsbetrag ab, das Teilchen wird langsamer.

KONTROLLFRAGE 3
Ein Teilchen bewegt sich entlang einer x-Achse. Was ist das Vorzeichen seiner
Beschleunigung, wenn es sich (a) mit ansteigendem Geschwindigkeitsbetrag
in positive x-Richtung, (b) mit abfallendem Geschwindigkeitsbetrag in positive
x-Richtung, (c) mit ansteigendemGeschwindigkeitsbetrag in negative x-Richtung
und (d) mit abfallendemGeschwindigkeitsbetrag in negative x-Richtung bewegt?

1.4 Konstante Beschleunigung

Lernziele
Nach dem Durcharbeiten dieses Abschnitts sollten Sie in der Lage sein, . . .

• die Beziehungen zwischen Ort, Verschiebung, Geschwindigkeit, Beschleuni­
gung und Zeit (Tab. 1.1) für konstante Beschleunigungen anzuwenden,

• die Änderung derGeschwindigkeit eines Teilchens zu berechnen, indem Sie sei­
ne Beschleunigung über die Zeit integrieren,

• die Änderung des Ortes eines Teilchens zu berechnen, indem Sie seine Ge­
schwindigkeit über die Zeit integrieren.

Schlüsselideen
• Die folgenden fünf Gleichungen beschreiben die Bewegung eines Teilchens un­

ter dem Einfluss einer konstanten Beschleunigung:

v = v0 + at , x − x0 = v0t + 1
2
at2 ,

v2 = v20 + 2a(x − x0), x − x0 = 1
2

(v + v0)t , x − x0 = vt − 1
2
at2 .

Sie gelten nur für den Fall einer konstanten Beschleunigung.

8
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11.4 Konstante Beschleunigung

1.4.1 Konstante Beschleunigung: Ein Sonderfall

Bei vielen Arten von Bewegungen ist die Beschleunigung entweder konstant oder
zumindest annähernd gleichmäßig. Sie können z. B. ein Auto annähernd gleich­
mäßig beschleunigen, wenn die Ampel von Rot auf Grün springt. Die Kurven Ihrer
Position, IhrerGeschwindigkeit und Ihrer Beschleunigungwürdendann denen aus
Abb. 1.6 ähneln. (Beachten Sie, dass a(t) in Abb. 1.6c konstant ist, was bedeutet,
dass v(t) in Abb. 1.6b eine konstante Steigung besitzt.) Wenn Sie das Auto danach
abbremsen, um anzuhalten, so ist die Verzögerung dabei möglicherweise ebenfalls
annähernd konstant.
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Abb. 1.6
(a) Der Ort x(t) eines Teilchens, das
sich unter dem Einfluss einer kon­
stanten Beschleunigung bewegt.
(b) Seine Geschwindigkeit v(t), die
in jedem Punkt durch die Steigung
der x(t)-Kurve aus (a) gegeben wird.
(c) Seine (konstante) Beschleuni­
gung, die der (konstanten) Steigung
der v(t)-Kurve entspricht.

Diese Fälle treten so häufig auf, dass ein spezieller Satz von Gleichungen aufge­
stellt wurde, um sie zu behandeln. EinmöglicherWeg, diese Gleichungen herzulei­
ten, wird in diesem Abschnitt beschrieben. Einen weiteren finden Sie im nächsten
Abschnitt. Sowohl beim Studium dieser beiden Abschnitte als auch später, wenn
Sie zu Hause Aufgaben lösen, sollten Sie im Hinterkopf behalten, dass diese Glei­
chungen nur für konstante Beschleunigungen gelten (oder für Situationen, in denen
Sie die Beschleunigung näherungsweise gleich einer Konstante setzen können).
Ist die Beschleunigung konstant, so sind Durchschnittsbeschleunigung undMo­

mentanbeschleunigung gleich. Mit kleinen Änderungen in der Schreibweise wird
Gl. 1.5 damit zu:

a = agem =
v − v0
t − 0

.

Hierbei ist v0 die Geschwindigkeit zur Zeit t = 0 und v die Geschwindigkeit zu
jedem beliebigen späterenZeitpunkt t. Diese Gleichung lässt sich umschreiben zu:

v = v0 + at . (1.9)

Beachten Sie, dass diese Gleichung bei t = 0 wie gefordert v = v0 ergibt. Um
die Richtigkeit des Ganzen nochmals zu überprüfen, bilden Sie die Ableitung von
Gl. 1.9. Damit erhalten Sie dv∕dt = a, was der Definition von a entspricht. In
Abb. 1.6b ist eine Kurve von Gl. 1.9, also von der Geschwindigkeitsfunktion v(t),
aufgezeichnet; die Funktion ist linear, die Kurve damit eine Gerade.
Auf ähnliche Art und Weise können wir Gl. 1.2 (mit ein paar Veränderungen in

der Schreibweise) zu

vgem =
x − x0
t − 0

umschreiben und erhalten dann

x = x0 + vgemt , (1.10)

wobei x0 die Position des Teilchens bei t = 0 und vgem dieDurchschnittsgeschwin­
digkeit zwischen t = 0 und einem späteren Zeitpunkt t bezeichnet.
Für die lineare Geschwindigkeitsfunktion von Gl. 1.9 ist die Durchschnittsge­

schwindigkeit in einem beliebigen Zeitintervall (z. B. von t = 0 bis zu einem spä­
teren Zeitpunkt t) der Mittelwert zwischen der Geschwindigkeit am Anfang des
Intervalls (= v0) und der Geschwindigkeit am Ende des Intervalls (= v). Für das
Intervall von t = 0 zu einer späteren Zeit t ist die Durchschnittsgeschwindigkeit
damit:

vgem = 1
2

(v0 + v) . (1.11)

Ersetzt man v durch die rechte Seite von Gl. 1.9, so erhält man nach kleinen Um­
formungen:

vgem = v0 + 1
2
at . (1.12)
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Einsetzen von Gl. 1.12 in Gl. 1.10 ergibt dann schließlich:

x − x0 = v0t + 1
2
at2 . (1.13)

Beachten Sie, dass das Einsetzen von t = 0 wie gefordert x = x0 ergibt. Außer­
dem liefert die Ableitung von Gl. 1.13 genau Gl. 1.9 – ebenfalls wie gefordert. Ab­
bildung 1.6a stellt Gl. 1.13 grafisch dar: Die Funktion ist quadratisch, die Kurve
verläuft daher gekrümmt.
Die Gln. 1.9 und 1.13 sind die grundlegenden Gleichungen der gleichmäßig be­

schleunigten Bewegung. Sie können sie benutzen, um jede beliebige Aufgabe in die­
sem Buch zu lösen, in der eine konstante Beschleunigung angenommen wird. Zu­
sätzlich werden wir jedoch weitere Gleichungen herleiten, die sich in bestimmten
Situationen als nützlich erweisen können. Beachten Sie zunächst, dass in Aufga­
ben mit gleichmäßiger Beschleunigung insgesamt fünf Größen auftreten können,
und zwar x − x0, v, t , a und v0. Üblicherweise kommt eine dieser Größen in der
Übungsaufgabe nicht vor, weder als vorgegebeneGrößenoch alsUnbekannte.Man
gibt uns dann drei der verbleibendenGrößen vor und fordert uns auf, die vierte zu
ermitteln.
DieGln. 1.9 und 1.13 enthalten jeweils vier dieserGrößen, allerdings nicht diesel­

ben vier. In Gl. 1.9 fehlt die Verschiebung x− x0. In Gl. 1.13 ist es die Geschwindig­
keit v. Diese beidenGleichungen können außerdem auf drei verschiedeneArten zu
drei weiteren Gleichungen kombiniert werden, die dann jeweils eine andere „feh­
lende Variable“ aufweisen. In einem ersten Schritt können wir t eliminieren und
erhalten damit:

v2 = v20 + 2a(x − x0) . (1.14)

Diese Gleichung ist dann von Nutzen, wenn wir t nicht kennen und auch nicht
herausfinden sollen. In einem zweiten Schritt können wir die Beschleunigung a
anhand der Gln. 1.9 und 1.13 eliminieren. Wir erhalten dann eine Gleichung, in
der a nicht mehr vorkommt:

x − x0 = 1
2

(v0 + v)t . (1.15)

Schließlich können wir v0 eliminieren und bekommen:

x − x0 = vt − 1
2
at2 . (1.16)

BeachtenSie den subtilenUnterschied zwischen dieserGleichungundGl. 1.13.Die
eine beinhaltet die Anfangsgeschwindigkeit v0, die andere die Geschwindigkeit v
zur Zeit t.
In Tab. 1.1 sind die grundlegendenGleichungen der gleichmäßig beschleunigten

Bewegung (Gln. 1.9 und 1.13) sowie die spezielleren Gleichungen aufgeführt, die
wir daraus abgeleitet haben. Um eine einfache Aufgabe mit konstanter Beschleu­
nigung zu lösen, können Sie normalerweise eine der Gleichungen aus dieser Liste
benutzen – falls Sie die Liste zur Hand (oder im Kopf!) haben. Wählen Sie eine
Gleichung, in der die einzige Unbekannte die in der Aufgabe gesuchte Größe ist.
Einfacher ist es, sich nur die Gln. 1.9 und 1.13 zu merken und beide bei Bedarf als
gekoppeltes Gleichungssystem zu lösen. Ein Beispiel dafür finden Sie in Beispiel­
aufgabe 1.4 im Übungsbuch.

KONTROLLFRAGE 4
Die folgendenGleichungen geben die Position x(t) eines Teilchens in vier verschie­
denen Situationen an: (1) x = 3t − 4; (2) x = −5t3 + 4t2 + 6; (3) x = 2∕t2 − 4∕t;
(4) x = 5t2 −3. Auf welche dieser Situationen können die Gleichungen aus Tab. 1.1
angewendet werden?

10
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TABELLE 1.1:
Bewegungsgleichungen der gleichmäßig beschleunigten Bewegunga).

Nummer der Gleichung Gleichung Fehlende Größe

1.9 v = v0 + at x − x0
1.13 x − x0 = v0t + 1

2at
2 v

1.14 v2 = v20 + 2a(x − x0) t
1.15 x − x0 = 1

2 (v0 + v)t a
1.16 x − x0 = vt − 1

2at
2 v0

a) Vergewissern Sie sich, dass die Beschleunigung tatsächlich konstant ist, bevor Sie die Glei­
chungen aus dieser Tabelle anwenden.

LÖSUNGSSTRATEGIEN
Strategie 6: Überprüfen Sie die Dimensionen Die Dimension einer Geschwin­
digkeit ist L∕T – also die Dimension L einer Länge dividiert durch die Dimen­
sion T einer Zeit; die einer Beschleunigung ist L∕T2. In jeder beliebigenGleichung
müssen die Dimensionen der beiden Terme links und rechts des Gleichheitszei­
chens die gleichen sein. Hegen Sie Zweifel an einer Gleichung, überprüfen Sie ihre
Dimensionen.
Um die Dimensionen von Gl. 1.15 (x − x0 = v0t + 1

2at
2) zu überprüfen,

stellenwir zunächst fest, dass jeder Summand auf der rechtenSeite eine Länge sein
muss, da dies die Dimension von x und x0 ist. Die Dimension des Ausdrucks v0t
ist (L∕T)(T), also L. Die Dimension von 1

2at
2 ist (L∕T2)(T2), d. h. ebenfalls L.

In dieser Gleichung gehen die Dimensionen somit auf.

1.4.2 Konstante Beschleunigung: ein anderer Blickwinkel1)

Die ersten beiden Gleichungen in Tab. 1.1 sind die Grundgleichungen, aus denen
die anderen abgeleitet werden. Diese beiden Gleichungen können unter Ausnut­
zung der Bedingung, dass a konstant ist, durch Integration der Beschleunigung
gewonnen werden. Um Gl. 1.9 zu erhalten, schreiben wir die Definition der Be­
schleunigung (Gl. 1.6) um:

dv = a dt .

Anschließend bilden wir das unbestimmte Integral von beiden Seiten der Glei­
chung:

∫ dv = ∫ a dt .

Da die Beschleunigung a eine Konstante ist, könnenwir sie vor das Integralzeichen
ziehen und erhalten damit:

∫ dv = a ∫ dt .
oder

v = at + C . (1.17)

Um die Integrationskonstante C zu ermitteln, setzen wir t = 0. Wie wir wissen, ist
zu diesem Zeitpunkt v = v0. Durch Einsetzen dieser Werte in Gl. 1.17 (die ja für
alle Werte von t einschließlich t = 0 gelten muss) erhalten wir:

v0 = (a)(0) + C = C .

1) Dieser Abschnitt ist für Studierende vorgesehen, die bereits die Integralrechnung beherrschen.
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Dies schließlich in Gl. 1.17 eingesetzt ergibt Gl. 1.9.
Um Gl. 1.13 herzuleiten, schreiben wir die Definition der Geschwindigkeit

(Gl. 1.4) in der Form

dx = v dt

und bilden dann auf beiden Seiten der Gleichung das unbestimmte Integral:

∫ dx = ∫ v dt .

Im Allgemeinen ist v nicht konstant, wir können v also nicht vor das Integralzei­
chen ziehen.Wir können v jedoch anhand vonGl. 1.9 ersetzen und erhaltendamit:

∫ dx = ∫ (v0 + at) dt .

Da v0 ebensowie die Beschleunigung a eine Konstante ist, lässt sich dies umschrei­
ben als

∫ dx = v0 ∫ dt + a ∫ t dt .

Nach der Integration ergibt sich nun:

x = v0t + 1
2
at2 + C′ , (1.18)

wobei C′ eine weitere Integrationskonstante ist. Zum Zeitpunkt t = 0 ist x = x0.
Einsetzen dieser Werte in Gl. 1.18 ergibt x0 = C′. Ersetzen wir schließlich C′ in
Gl. 1.18 durch x0, so erhalten wir Gl. 1.13.

1.5 Der freie Fall

Lernziele
Nach dem Durcharbeiten dieses Abschnitts sollten Sie in der Lage sein, . . .

• zu verstehen, dass ein Teilchen im freien Fall (aufwärts oder abwärts) unter Ver­
nachlässigung des Einflusses des Luftwiderstands auf seine Bewegung eine kon­
stante nach unten gerichtete Beschleunigung mit einem Betrag g erfährt, den
wir gerundet gleich 9,8m/s2 setzen können,

• die Bewegungsgleichungen für konstante Beschleunigung (Tab. 1.1) auf die Be­
wegung im freien Fall anzuwenden.

Schlüsselideen
• Ein Objekt, das in der Nähe der Erdoberfläche frei aufsteigt oder fällt, ist ein

wichtiges Beispiel einer geradlinigen Bewegung. Diese Bewegung wird durch
die Gleichungen für Bewegungen unter konstanter Beschleunigung beschrie­
ben, wir nehmen jedoch zwei Veränderungen an der Schreibweise vor: Erstens
beschreiben wir die Bewegung jetzt bezüglich einer vertikalen y-Achse, deren
positive Richtung nach oben zeigt, und zweitens ersetzen wir die Beschleuni­
gung a durch −g, wobei g der Betrag der Erdbeschleunigung ist. In der Nähe
der Erdoberfläche ist g = 9,8m/s2.

1.5.1 Der freie Fall

Sie werfen einen Gegenstand entweder nach oben oder nach unten. Könnten Sie
dabei die Auswirkungen des Luftwiderstands auf seinen Flug ausschalten, so wür­
den Sie feststellen, dass der Gegenstand mit einer bestimmten, konstanten Rate
nach unten beschleunigt wird. Diese Rate wird Gravitations- oder Erdbeschleu­
nigung genannt, ihren Betrag bezeichnet man mit g. Die Beschleunigung hängt
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nicht von den Eigenschaften des Gegenstands, wie Masse, Dichte oder Form, ab.
Sie ist für alle Objekte gleich.
Abbildung 1.7 zeigt anhand einer Reihe von Stroboskopaufnahmen einer Feder

und eines Apfels zwei Beispiele von Bewegungen im freien Fall. Während des Falls
werden die beiden Gegenstände nach unten beschleunigt – beide mit derselben
Rate g. Ihre Geschwindigkeiten nehmen in gleichemMaße zu.

Abb. 1.7
Eine Feder und eine Kugel, die sich
im Vakuum im freien Fall befinden,
bewegen sich beide unter dem Ein­
fluss der Gravitationsbeschleunigung g
nach unten. Die Beschleunigung be­
wirkt, dass sich der Abstand zwischen
aufeinander folgenden Bildern wäh­
rend des Falls vergrößert. Beachten
Sie, dass Feder und Apfel in Abwesen­
heit des Luftwiderstands jedes Mal die
gleiche Strecke zurückgelegt haben
[Quelle: Jim Sugar/CORBIS].

Der Betrag von g hängt leicht von der geografischen Breite und von der Höhe
ab. Auf Höhe des Meeresspiegels in mittleren Breiten beträgt er 9,8m/s2. Diesen
Wert sollten Sie für alle Aufgaben in diesem Kapitel verwenden.
Die Bewegungsgleichungen für die gleichmäßig beschleunigte Bewegung in

Tab. 1.1 gelten auch für den freien Fall in der Nähe der Erdoberfläche. Das heißt,
sie gelten für ein Objekt mit senkrechter Flugrichtung – entweder nach oben oder
nach unten – in dem Fall, dass die Wirkung des Luftwiderstands vernachlässigt
werden kann. Beachten Sie jedoch, dass für den freien Fall Folgendes gilt: (1) Die
Richtung der Bewegung liegt nun entlang einer senkrechten y-Achse anstatt ei­
ner waagerechten x-Achse, wobei die positive Richtung nach oben weist. (Dies ist
für spätere Kapitel wichtig, in denen Bewegungen untersucht werden, die sowohl
in horizontaler als auch in vertikaler Richtung erfolgen.) (2) Die Gravitationsbe­
schleunigung ist nun negativ, d. h., sie zeigt auf der y-Achse nach unten in Richtung
Erdmittelpunkt und hat damit in den Gleichungen denWert −g.

Die Gravitationsbeschleunigung in der Nähe der Erdoberfläche ist a =
−g = −9,8m/s2; der Betrag der Beschleunigung ist g = 9,8m/s2. Setzen
Sie für g nicht −9,8m/s2 ein!

Nehmen Sie an, Sie werfen eine Tomate gerade nach oben, mit einer (positiven)
Anfangsgeschwindigkeit v0, und fangen sie auf ihrer Ausgangshöhe wieder auf.
Während des freien Falls – also von dem Moment an, nachdem Sie die Toma­
te losgelassen haben, bis kurz bevor Sie sie wieder auffangen – beschreiben die
Gleichungen von Tab. 1.1 die Bewegung. Die Beschleunigung ist konstant gleich
a = −g = −9,8m/s2, sie ist also negativ und weist nach unten. Die Geschwindig­
keit jedoch verändert sich wie in den Gln. 1.9 und 1.14 angegeben: Während des
Aufstiegs wird der Betrag der – positiven – Geschwindigkeit immer kleiner, bis er
für einenMoment gleich null ist. Die Tomate hält zu diesem Zeitpunkt an und hat
den höchsten Punkt ihrer Flugbahn erreicht.Während des Herunterfallens nimmt
der Betrag der – nun negativen – Geschwindigkeit zu.

KONTROLLFRAGE 5
(a) Wie lautet in Beispielaufgabe 1.5 im Übungsbuch das Vorzeichen der Ver­
schiebung des Balls während des Aufstiegs, vomAusgangspunkt bis zum höchsten
Punkt gemessen? (b) Wie lautet das Vorzeichen während des Falls nach unten,
vom höchsten Punkt bis zur Rückkehr an den Ausgangspunkt gemessen? (c) Wie
groß ist die Beschleunigung des Balls an seinem höchsten Punkt?

LÖSUNGSSTRATEGIEN
Strategie7:DieBedeutungvonMinuszeichen InBeispielaufgabe 1.5 imÜbungs­
buch enthalten viele der Ergebnisse automatisch ein Minuszeichen. Es ist wichtig
zu wissen, was diese Zeichen bedeuten. Bei diesen Aufgaben, die beide den frei­
en Fall behandeln, haben wir eine vertikale Achse bestimmt (die y-Achse) und –
etwas willkürlich – die Aufwärtsrichtung als positive Richtung gewählt.
Anschließend habenwir denUrsprung der y-Achse (d.h. denOrt y = 0) passend

zur Aufgabe gewählt. Ein negativer Wert von y bedeutet dann, dass der Körper
sich unterhalb des Ursprungs befindet. Eine negative Geschwindigkeit drückt aus,
dass der Körper sich in negative Richtung – also nach unten – entlang der y-Achse
bewegt. Dies gilt an jedem beliebigen Ort, an dem sich der Körper befindet.
In allen Aufgaben, die mit dem freien Fall zu tun haben, setzen wir eine ne­

gative Erdbeschleunigung an (−9,8m/s2). Dies bedeutet, dass die Geschwindig­
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keit des Körpers im Lauf der Zeit entweder weniger positiv oder negativer wird.
Dies gilt unabhängig davon, wo sich der Körper befindet, und unabhängig davon,
wie schnell oder in welche Richtung er sich bewegt. In der Beispielaufgabe 1.5 im
Übungsbuch ist die Beschleunigung des Balls während des gesamten Flugs negativ,
d. h. nach unten gerichtet, ob der Ball nun aufsteigt oder hinunterfällt.

Strategie 8: Unerwartete Ergebnisse Die Mathematik liefert oft Antworten, an
die Sie womöglich nicht gedacht haben, wie z. B. in der Beispielaufgabe 1.5c im
Übungsbuch. Wenn Sie mehr Antworten erhalten, als Sie erwartet haben, ver­
werfen Sie nicht automatisch diejenigen, die nicht zu passen scheinen. Prüfen Sie
sorgfältig, ob sie nicht doch eine physikalische Bedeutung haben. Ist die Zeit die
gesuchte Variable, so können auch negative Zeiten etwas aussagen; ein negatives
Vorzeichen verweist auf Zeiten vor t = 0, dem (willkürlich festgelegten)Zeitpunkt,
an dem Sie Ihre Stoppuhr gestartet haben.

1.6 Zwei und drei Raumdimensionen

Lernziele
Nach dem Durcharbeiten dieses Abschnitts sollten Sie in der Lage sein, . . .

• zwei- und dreidimensionaleOrtsvektoren für ein Teilchen zu zeichnen und ihre
Komponenten bezüglich der Achsen eines Koordinatensystems anzugeben,

• Betrag und Richtung des Ortsvektors eines Teilchens aus seinen Komponenten
in einem Koordinatensystem zu bestimmen (und umgekehrt),

• die Beziehung zwischen dem Verschiebungsvektor eines Teilchens und seinen
Start- und Endkoordinaten anzugeben.

Schlüsselideen
• Die Position eines Teilchens relativ zum Ursprung eines Koordinatensystems

wird durch einen Ortsvektor r⃗ beschrieben, der in Einheitsvektoren-Schreib­
weise die Form

r⃗ = xe⃗x + ye⃗ y + ze⃗z

hat. xe⃗x , ye⃗ y und ze⃗z sind die Vektorkomponenten des Ortsvektors r⃗, dessen
skalare Komponenten x, y und z sind (die auch die Koordinaten des Teilchens
sind).

• Ein Ortsvektor wird entweder durch seinen Betrag und einen oder (in drei Di­
mensionen) zwei Winkel oder aber durch seine skalaren Komponenten spezifi­
ziert.

• Wenn ein Teilchen sich so bewegt, dass sein Ortsvektor sich von r⃗1 zu r⃗2 verän­
dert, ist sein Verschiebungsvektor

Δr⃗ = r⃗2 − r⃗1 .

Alternativ kann der Verschiebungsvektor auch wie folgt geschrieben werden:

Δr⃗ = (x2 − x1)e⃗x + (y2 − y1)e⃗ y + (z2 − z1)e⃗z
= Δxe⃗x + Δe⃗ y + Δze⃗z .

In den nun folgendenAbschnitten werdenwir uns weitermit der physikalischen
Beschreibung von Bewegung beschäftigen, wobei nun aber Bewegungen in zwei
oder drei Dimensionen zugelassen sein sollen. Beispielsweise können Sie ein Au­
to auf einer Autobahn oder Landstraße (zweidimensionale Bewegung) vermutlich
sehr sicher fahren, hätten aber wahrscheinlich einige Probleme, ohne aufwändiges
Training ebenso sicher ein Flugzeug zu landen (dreidimensionale Bewegung).
Bei unserer Untersuchung von zwei- und dreidimensionalen Bewegungen be­

ginnen wir wieder mit den physikalischen Größen Ort und Verschiebung.
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Eine allgemeine Methode, den Ort eines Teilchens (oder eines Objekts, das wie
ein Teilchen behandelt werden kann) darzustellen, ist die Angabe seines Orts­
vektors r⃗. Dieser erstreckt sich von einem Referenzpunkt – üblicherweise dem
Ursprung eines Koordinatensystems – bis zu dem entsprechenden Teilchen. In
der Einheitsvektoren-Schreibweise (vergleiche Anhang D) kann r⃗ wie folgt ausge­
drückt werden:

r⃗ = xe⃗x + ye⃗ y + ze⃗z , (1.19)

wobei xe⃗x , ye⃗ y und ze⃗z die Vektorkomponenten von r⃗ und die Koeffizienten x, y
und z die skalaren Komponenten von r⃗ sind.

y

x

z

(–3 m) ex

(2 m) ey(5 m) ez

O

r

Abb. 1.8
Der Ortsvektor r⃗ eines Teilchens ist
die Vektorsumme seiner Vektorkom­
ponenten.

Die Koeffizienten x, y und z geben den Ort eines Teilchens entlang der Koordi­
natenachsen und relativ zum Ursprung an; das Teilchen besitzt also in dem recht­
winkligen Koordinatensystem die Koordinaten (x, y, z). Abbildung 1.8 zeigt z. B.
ein Teilchen mit dem Ortsvektor

r⃗ = (−3m)e⃗x + (2m)e⃗ y + (5m)e⃗z

und den rechtwinkligen Koordinaten (−3m, 2m, 5m). Entlang der x-Achse befin­
det sich das Teilchen 3mweit in Richtung−e⃗x vomUrsprung entfernt. Entlang der
y-Achse ist es 2m in +e⃗ y-Richtung und entlang der z-Achse 5m in +e⃗z-Richtung
vom Ursprung entfernt.
Wenn sich ein Teilchen bewegt, verändert sich sein Ortsvektor derart, dass er

immer vom Referenzpunkt (dem Ursprung) zur aktuellen Position des Teilchens
zeigt. Verändert sich der Ortsvektor z. B. von r⃗1 nach r⃗2 innerhalb eines bestimm­
ten Zeitintervalls, dann ist die Verschiebung Δr⃗ des Teilchens während dieses
Zeitintervalls gleich

Δr⃗ = r⃗2 − r⃗1 . (1.20)

In der Einheitsvektoren-Schreibweise von Gl. 1.19 wird diese Verschiebung zu:

Δr⃗ = (x2 e⃗x + y2 e⃗ y + z2 e⃗z) − (x1 e⃗x + y1 e⃗ y + z1 e⃗z)

oder

Δr⃗ = (x2 − x1)e⃗x + (y2 − y1)e⃗ y + (z2 − z1)e⃗z , (1.21)

wobei die Koordinaten (x1, y1, z1) zumOrtsvektor r⃗1 und die Koordinaten (x2, y2,
z2) zum Ortsvektor r⃗2 gehören. Wir können die Verschiebung weiter umformen,
indem wir Δx für (x2 − x1), Δ y für (y2 − y1) und Δz für (z2 − z1) einsetzen:

Δr⃗ = Δxe⃗x + Δ ye⃗ y + Δze⃗z . (1.22)

KONTROLLFRAGE 6
(a) Eine Fledermaus fliege vom Ort mit den x yz-Koordinaten (−2m, 4m, −3m)
nach (6m, −2m, −3m). Wie lautet ihre Verschiebung Δr⃗ in Einheitsvektoren-
Schreibweise? (b) Verläuft Δr⃗ parallel zu einer der drei Ebenen, die von den Ko­
ordinatenachsen aufgespannt werden? Wenn ja, zu welcher?

1.7 Durchschnittsgeschwindigkeit
und Momentangeschwindigkeit

Lernziele
Nach dem Durcharbeiten dieses Abschnitts sollten Sie in der Lage sein, . . .

• zu verstehen, dass die Geschwindigkeit eine Vektorgröße ist und daher einen
Betrag und eine Richtung sowie Komponenten besitzt,
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• zwei- und dreidimensionale Geschwindigkeitsvektoren für ein Teilchen zu
zeichnen und ihre Komponenten bezüglich der Achsen des Koordinatensys­
tems anzugeben,

• eine Beziehung zwischen Start- und Endposition eines Teilchens, dem Zeitin­
tervall zwischen Start und Ankunft und dem zugehörigen Vektor der mittleren
Geschwindigkeit des Teilchens sowohl in Betrag-Winkel- als auch in Einheits­
vektoren-Schreibweise anzugeben,

• aus dem Ort eines Teilchens als Funktion der Zeit seinen (momentanen) Ge­
schwindigkeitsvektor zu bestimmen.

Schlüsselideen
• Wenn ein Teilchen im Zeitintervall Δt eine Verschiebung Δr⃗ erfährt, ist seine

Durchschnittsgeschwindigkeit v⃗gem in diesem Zeitintervall

v⃗gem = Δr⃗
Δt

.

• Wennwir das Zeitintervall Δt gegen null gehen lassen, erhaltenwir dieMomen­
tangeschwindigkeit v⃗(t) = v⃗ (oft auch einfach als Geschwindigkeit bezeichnet):

v⃗ = d v⃗
dt

,

die wir in Einheitsvektoren-Schreibweise als

v⃗ = vx e⃗x + vy e⃗ y + vz e⃗z

mit vx = dv∕dx, vy = dv∕dy und vz = dv∕dz schreiben können.
• Die Momentangeschwindigkeit v⃗ eines Teilchens zeigt stets in Richtung der

Tangente an die Bahnkurve des Teilchens an seinem momentanen Ort.

1.7.1 Mittlere und Momentangeschwindigkeit

Wenn ein Teilchen in einem Zeitintervall Δt eine Verschiebung Δr⃗ durchläuft,
dann ist seine Durchschnittsgeschwindigkeit v⃗gem:

Durchschnittsgeschwindigkeit =
Verschiebung
Zeitintervall

beziehungsweise

v⃗gem = Δr⃗
Δt

. (1.23)

Dies bedeutet, dass die Richtung von v⃗gem (dem Vektor auf der linken Seite von
Gl. 1.23) dieselbe sein muss wie die der Verschiebung Δr⃗ (des Vektors auf der rech­
ten Seite). Anhand von Gl. 1.22 können wir Gl. 1.23 in Vektorkomponenten um­
schreiben und erhalten:

v⃗gem =
Δxe⃗x + Δ ye⃗ y + Δze⃗z

Δt
= Δx

Δt
e⃗x +

Δ y
Δt

e⃗ y + Δz
Δt

e⃗z . (1.24)

Wenn sich die Fledermaus aus Kontrollfrage 6 in 2,0 s von ihrer Anfangs- zu ih­
rer Endposition bewegt, so ist ihre Durchschnittsgeschwindigkeit während dieses
Zeitintervalls:

v⃗gem = Δr⃗
Δt

=
(8m)e⃗x − (6,0m)e⃗ y

2,0 s
= (4,0m/s)e⃗x − (3m/s)e⃗ y .

Wenn wir von derGeschwindigkeit eines Teilchens sprechen, so meinen wir übli­
cherweise dieMomentangeschwindigkeit v⃗ des Teilchens zu einem bestimmten
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Zeitpunkt. Diese Geschwindigkeit v⃗ ist der Grenzwert, den v⃗gem anstrebt, wenn
wir das Zeitintervall Δt um diesen Zeitpunkt herum gegen null gehen lassen. For­
mal können wir v⃗ also als die Ableitung

v⃗ = d r⃗
dt

(1.25)

schreiben. Abbildung 1.9 zeigt die Bahnkurve eines Teilchens, dessen Bewegung
auf die x y-Ebene beschränkt ist. Während das Teilchen sich entlang der Kurve
nach rechts bewegt, schwenkt auch sein Ortsvektor nach rechts. Während des
Zeitintervalls Δt ändert sich der Ortsvektor von r⃗1 nach r⃗2, die Verschiebung des
Teilchens ist Δr⃗ = r⃗2 − r⃗1.

r1
r2

Bahnkurve

Tangente

O

y

x

1

2∆    r

Abb. 1.9
Die Verschiebung Δ r⃗ eines Teilchens
während eines Zeitintervalls Δt von
Position 1 mit Ortsvektor r⃗1 zur
Zeit t1 zur Position 2 mit Ortsvek­
tor r⃗2 zur Zeit t2. Eingezeichnet ist
auch die Tangente an die Bahnkurve
des Teilchens am Ort 1.

Um die Momentangeschwindigkeit des Teilchens zur Zeit t1 zu bestimmen (zu
der sich das Teilchen am Ort 1 befindet), lassen wir das Intervall Δt um t1 herum
gegen null gehen. Dabei passieren drei Dinge: (1) Der Ortsvektor r⃗2 in Abb. 1.9
bewegt sich auf r⃗1 zu, sodass Δr⃗ gegen null geht. (2) Die Richtung von Δr⃗∕Δt (also
von v⃗gem) nähert sich der Richtung der Tangente an die Bahnkurve des Teilchens
imPunkt 1 an. (3) DieDurchschnittsgeschwindigkeit v⃗gem nähert sich derMomen­
tangeschwindigkeit v⃗ zum Zeitpunkt t1 an.
Für Δt → 0 geht v⃗gem im Grenzwert gegen v⃗; außerdem nimmt v⃗gem – was an

dieser Stelle besonders wichtig ist – die Richtung der Tangente an die Bahnkurve
an. Also besitzt v⃗ ebenfalls diese Richtung:

Die Richtung derMomentangeschwindigkeit v⃗ eines Teilchens verläuft im­
mer tangential zur Bahnkurve am momentanen Ort des Teilchens.

Dieses Ergebnis gilt genauso in drei Dimensionen: v⃗ weist immer entlang der Tan­
gente an die (räumliche) Bahnkurve des Teilchens.
Um Gl. 1.25 in Einheitsvektoren-Schreibweise zu schreiben, ersetzen wir r⃗ an­

hand von Gl. 1.19:

v⃗ = d
dt

(xe⃗x + ye⃗ y + ze⃗z) = dx
dt

e⃗x +
dy
dt

e⃗ y + dz
dt

e⃗z .

Diese Gleichung lässt sich vereinfachen, indem wir sie in die Form
v⃗ = vx e⃗x + vy e⃗ y + vz e⃗z (1.26)

bringen, wobei die skalaren Komponenten von v⃗ gleich

vx = dx
dt

, vy =
dy
dt

und vz = dz
dt

(1.27)

sind. So ist dx∕dt z. B. die skalare Komponente von v⃗ entlang der x-Achse. Wir
können also die skalaren Komponenten von v⃗ bestimmen, indem wir die skalaren
Komponenten von r⃗ nach der Zeit ableiten.
Abbildung 1.10 zeigt einen Geschwindigkeitsvektor v⃗ und seine skalaren Kom­

ponenten in x- und y-Richtung. Beachten Sie, dass v⃗ am Ort des Teilchens tan­
gential zur Bahnkurve des Teilchens verläuft. Vorsicht: Wenn ein Ortsvektor wie
in den Abb. 1.8 und 1.9 gezeichnet wird, dann wird er durch einen Pfeil dargestellt,
der sich von einem Punkt (einem „hier“) zu einem anderen Punkt (einem „dort“)
erstreckt. Wenn ein Geschwindigkeitsvektor so gezeichnet wird wie in Abb. 1.10,
dann erstreckt er sich nicht von einem Punkt zu einem anderen. Vielmehr zeigt
er die momentane Richtung an, in der sich das Teilchen bewegt, das sich an sei­
nem Anfang befindet. Die Länge des Pfeils (die dem Betrag der Geschwindigkeit
entspricht) kann in einem beliebigen Maßstab gezeichnet werden.

Bahnkurve

O

y

x

Tangente

vy
vx

v

Abb. 1.10
Die Geschwindigkeit v⃗ eines Teilchens
und die skalaren Komponenten von v⃗.

KONTROLLFRAGE 7
Die Abbildung zeigt die kreisförmige Bahn eines Teilchens. Die Momentange­
schwindigkeit des Teilchens ist v⃗ = (2m/s)e⃗x − (2m/s)e⃗ y. In welchemQuadranten
befindet sich das Teilchen, wenn es den Kreis (a) im Uhrzeigersinn und (b) im
Gegenuhrzeigersinn durchläuft? Zeichnen Sie v⃗ in beiden Fällen in die Abbildung
ein.

y

x
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1.8 Durchschnittsbeschleunigung
undMomentanbeschleunigung

Lernziele
Nach dem Durcharbeiten dieses Abschnitts sollten Sie in der Lage sein, . . .

• zu verstehen, dass die Beschleunigung eine Vektorgröße ist und daher sowohl
einen Betrag als auch eine Richtung sowie Komponenten besitzt,

• zwei- und dreidimensionale Beschleunigungsvektoren für einTeilchen zu zeich­
nen und ihre Komponenten anzugeben,

• aus der Start- und Endgeschwindigkeit eines Teilchens und dem entsprechen­
den Zeitintervall den zugehörigen Vektor der mittleren Beschleunigung des
Teilchens sowohl in Betrag-Winkel- als auch in Einheitsvektoren-Schreibweise
anzugeben,

• aus der Geschwindigkeit eines Teilchens als Funktion der Zeit seinen (momen­
tanen) Beschleunigungsvektor zu bestimmen,

• die Gleichungen für eine Bewegung mit konstanter Beschleunigung (siehe Ab­
schn. 1.4) für jede Dimension der Bewegung anzuwenden, um Beschleunigung,
Geschwindigkeit, Ort und Zeit in Beziehung zu setzen.

Schlüsselideen
• Wenn sich die Geschwindigkeit eines Teilchens im Zeitintervall Δt von v⃗1 auf

v⃗2 ändert, ist seine mittlere Beschleunigung a⃗gem in diesem Zeitintervall

a⃗gem =
v⃗2 − v⃗1
Δt

Δv⃗
Δt

.

• Wennwir das Zeitintervall Δt gegen null gehen lassen, erhaltenwir dieMomen­
tanbeschleunigung a⃗ (oft auch einfach als Beschleunigung bezeichnet):

a⃗ = d v⃗
dt

.

• In Einheitsvektoren-Schreibweise ist

a⃗ = axe⃗x + ay e⃗ y + az e⃗z
mit ax = da∕dx, ay = da∕dy und az = da∕dz.

1.8.1 Veränderliche Geschwindigkeiten

Wenn sich die Geschwindigkeit eines Teilchens innerhalb eines Zeitintervalls Δt
von v⃗1 auf v⃗2 ändert, dann ist seineDurchschnittsbeschleunigung (odermittlere
Beschleunigung) a⃗gem im Zeitintervall Δt durch

Durchschnittsbeschleunigung =
Geschwindigkeitsänderung

Zeitintervall
gegeben, d. h.:

a⃗gem =
v⃗2 − v⃗1
Δt

= Δv⃗
Δt

. (1.28)

Lassen wir Δt um einen bestimmten Zeitpunkt herum gegen null gehen, dann nä­
hert sich a⃗gem im Grenzwert derMomentanbeschleunigung (oder Beschleuni­
gung) a⃗ zu diesem Zeitpunkt an, d. h.:

a⃗ = d v⃗
dt

. (1.29)

Wenn die Geschwindigkeit sich entweder in ihrem Betrag oder in ihrer Richtung
ändert (oder in beiden), dannmuss das Teilchen einer Beschleunigung unterliegen.
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Indem wir v⃗ anhand von Gl. 1.26 ersetzen, können wir Gl. 1.29 in die Einheits­
vektoren-Schreibweise umschreiben:

a⃗ = d
dt

(vx e⃗x + vy e⃗ y + vz e⃗z) =
dvx
dt

e⃗x +
dvy
dt

e⃗ y +
dvz
dt

e⃗z .

Dies können wir wiederum in die Form

a⃗ = ax e⃗x + ay e⃗ y + az e⃗z (1.30)

bringen, wobei die skalaren Komponenten von a⃗ gleich

ax =
dvx
dt

, ay =
dvy
dt

und az =
dvz
dt

(1.31)

sind. Demnach ermitteln wir die skalaren Komponenten von a⃗, indem wir die ska­
laren Komponenten von v⃗ nach der Zeit ableiten.
Abbildung 1.11 zeigt einen Beschleunigungsvektor a⃗ und seine skalaren Kom­

ponenten für ein Teilchen, dass sich in zwei Dimensionen bewegt.Vorsicht: Wenn
ein Beschleunigungsvektorwie in Abb. 1.11 gezeichnet wird, erstreckt er sich nicht
von einemPunkt zu einemanderen.Vielmehr zeigt er die Richtung der Beschleuni­
gung eines Teilchens an, das sich amAnfang desVektors befindet. Seine Länge (der
Betrag der Beschleunigung) kann in einem beliebigenMaßstab gezeichnet werden.

O

y

x

ay

ax

Bahnkurve

a

Abb. 1.11
Die Beschleunigung a⃗ eines Teilchens
und die skalaren Komponenten von a⃗.

KONTROLLFRAGE 8
Anbei finden Sie vier Angaben (in Metern) zur Position eines Eishockeypucks, der
sich in einer x y-Ebene bewegt:

1. x = −3t2 + 4t − 2 und y = 6t2 − 4t ,
2. x = −3t2 − 4t und y = −5t2 + 6 ,
3. r⃗ = 2t2 e⃗x − (4t + 3)e⃗ y ,

4. r⃗ = (4t3 − 2t)e⃗x + 3e⃗ y .

Bestimmen Sie für jede dieser Positionen, ob x- und y-Komponente der Beschleu­
nigung des Pucks konstant sind und ob der Beschleunigungsvektor a⃗ konstant ist.

KONTROLLFRAGE 9
Die Position einer Murmel wird durch r⃗ = (4t3 − 2t)e⃗x + 3e⃗ y beschrieben, wo­
bei r⃗ in Metern und t in Sekunden gemessen wird. Welche Einheiten besitzen die
Koeffizienten 4, −2 und 3?

1.9 Wurfbewegungen

Lernziele
Nach dem Durcharbeiten dieses Abschnitts sollten Sie in der Lage sein, . . .

• in einer Skizze der Bahnkurve eines Teilchens Betrag und Richtung der Ge­
schwindigkeit sowie die Komponenten der Beschleunigung anzugeben,

• aus der gegebenen Startgeschwindigkeit eines Teilchens in Betrag-Richtung-
oder Einheitsvektoren-Schreibweise den Ort, die Verschiebung und die Ge­
schwindigkeit des Teilchens für beliebige Zeitpunkte während seines Flugs zu
berechnen,

• aus den Daten für einen beliebigen Zeitpunkt während des Flugs die Startge­
schwindigkeit zu berechnen.

Schlüsselideen
• Bei Wurfbewegungen wird ein Teilchenmit einer Geschwindigkeit v0 in einem

Winkel θ0 (gegen eine horizontale x-Achse gemessen) in die Luft geworfen.
Während des Flugs ist seine horizontale Beschleunigung (unter Vernachlässi­
gung des Luftwiderstands) null und seine vertikale Beschleunigung beträgt −g
(entlang einer vertikalen y-Achse nach unten).
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• Während des Flugs lauten die Bewegungsgleichungen des Teilchens

x − x0 = (v0 cos θ0)t ,

y − y0 = (v0 sin θ0)t − 1
2
gt2 ,

vy = v0 sin θ0 − gt ,

v2y = (v0 sin θ0)2 − 2g(y − y0) .

• Die Trajektorie (Bahnkurve, Flugbahn) eines fliegenden Teilchens ist eine Para­
bel, die für x0 = y0 = 0 durch

y = (tan θ0)x −
gx2

2(v0 cos θ0)2

gegeben ist.
• Die horizontale Reichweite R des Teilchens, d. h. die horizontale Entfernung

vom Startpunkt bis zu der Stelle, an der es die Abwurfhöhe wieder erreicht, be­
trägt

R =
v20
g
sin 2θ0 .

1.9.1 Flugbahnen

Als Nächstes betrachten wir einen Spezialfall der zweidimensionalen Bewegung:
Ein Teilchen bewege sich in einer senkrechten Ebene mit einer bestimmten An­
fangsgeschwindigkeit v⃗0 und unterliege dabei der nach unten gerichteten Gravi­
tationsbeschleunigung g⃗. Ein solches Teilchen wird ein Projektil genannt, da es
geworfen oder geschossen wurde. Seine Bewegung bezeichnen wir als eineWurf­
bewegung. Ein solches Projektil kann z. B. ein Tennisball (Abb. 1.12) oder ein Stein
während des Flugs sein – ein Flugzeug oder eine fliegende Ente wären jedoch kei­
ne Projektile. Unser Ziel ist es hier, die Wurfbewegung anhand der in den Ab­
schn. 4.1–4.3 vorgestellten „Werkzeuge“ für die zweidimensionale Bewegung zu
analysieren. Dazu setzen wir voraus, dass die Auswirkungen des Luftwiderstands
auf das Projektil vernachlässigt werden können.

Abb. 1.12
Eine Stroboskopaufnahme eines gel­
ben Tennisballs, der von einer har­
ten Oberfläche abprallt. Zwischen
den Augenblicken, in denen er den
Boden berührt, führt der Ball eine

Wurfbewegung aus [Quelle: Richard
Megna/Fundamental Photographs].

Die Abb. 1.13, die im nächsten Abschnitt analysiert wird, zeigt die Bahnkurve,
die ein Projektil beschreibt, wenn der Luftwiderstand gleich null ist. Das Projektil
wird mit einer Anfangsgeschwindigkeit v⃗0 geworfen, die sich in der Form

v⃗0 = v0x e⃗x + v0y e⃗ y (1.32)

Abb. 1.13
Die Bahn eines Projektils, das bei

x0 = 0 und y0 = 0mit einer Anfangs­
geschwindigkeit v⃗0 geworfen wird.
Eingezeichnet sind die Anfangsge­
schwindigkeit sowie die Geschwin­
digkeiten an verschiedenen Punkten
der Bahnkurve zusammen mit ihren

Komponenten. Beachten Sie, dass die
horizontale Geschwindigkeitskom­
ponente konstant bleibt, die verti­
kale Geschwindigkeitskomponente

sich jedoch kontinuierlich verändert.
Die Reichweite R ist die horizontale
Entfernung, die das Projektil in dem
Moment zurückgelegt hat, in dem es
wieder seine Ausgangshöhe erreicht.
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schreiben lässt. Die Komponenten v⃗0x und v⃗0y lassen sich mithilfe desWinkels θ0
zwischen v⃗0 und der positiven x-Richtung bestimmen:

v0x = v0 cos θ0 und v0y = v0 sin θ0 . (1.33)

Während der zweidimensionalen Bewegung des Projektils verändern sich sein
Ortsvektor r⃗ und sein Geschwindigkeitsvektor v⃗ kontinuierlich; der Beschleuni­
gungsvektor a⃗ ist jedoch konstant und immer senkrecht nach unten gerichtet. Ein
Projektil erfährt keine horizontale Beschleunigung.
Die in den Abb. 1.12 und 1.13 dargestellteWurfbewegung sieht kompliziert aus,

die folgende – experimentell bestätigte – Tatsache vereinfacht die Situation jedoch
deutlich:

Bei der Wurfbewegung erfolgen die horizontale und die vertikale Bewe­
gung unabhängig voneinander, sie beeinflussen sich gegenseitig nicht.

Diese Eigenschaft erlaubt es uns, eineAufgabemit einer zweidimensionalen Bewe­
gung in zwei getrennte, einfachere eindimensionale Aufgaben zu zerlegen – eine
für die horizontale Bewegung (bei der die Beschleunigung null ist) und eine für die
vertikale Bewegung (mit einer gleichmäßigen, nach unten gerichteten Beschleuni­
gung). Lassen Sie uns zwei Experimente betrachten, die zeigen, dass die waage­
rechte und die senkrechte Bewegung voneinander unabhängig sind.

Zwei Golfbälle

Abbildung 1.14 zeigt eine Stroboskopaufnahmezweier Golfbälle:Während der ei­
ne Ball einfach fallen gelassen wird, wird der andere durch eine Feder in die ho­
rizontale Richtung geschossen. Die Golfbälle besitzen die gleiche vertikale Bewe­
gung, beide fallen während desselben Zeitintervalls die gleiche senkrechte Strecke
nach unten.Die Tatsache, dass sich der eine Ball während des Falls auch horizontal
bewegt, hat keinen Einfluss auf seine vertikale Bewegung. Die waagerechte und die
senkrechte Bewegung sind also unabhängig voneinander.

Abb. 1.14
Ein Ball wird ohne Anfangsgeschwin­
digkeit in dem Moment fallen gelas­
sen, in dem ein anderer Ball horizontal
nach rechts geworfen wird. Die ver­
tikale Bewegung der beiden Bälle ist
identisch [Quelle: Richard Megna/
Fundamental Photographs].

Ein Beispiel für die Physikvorlesung

Abbildung 1.15 zeigt eine Vorführung, die bereits in zahlreichen Physikvorlesun­
gen für Stimmung gesorgt hat. Dazu wird ein Blasrohr mit einem kleinen Ball als
Projektil benötigt. Ziel ist es, eine an einemMagnetenM aufgehängteDose zu tref­
fen; das Blasrohr ist dabei direkt auf die Büchse gerichtet. Das Experiment wird so
aufgebaut, dass derMagnet die Dose genau in demAugenblick freigibt, in dem der
Ball das Blasrohr verlässt.

M

Dose

h

B
ah

nk
ur

ve
 fü
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Abb. 1.15
Der Ball – das Projektil – trifft die
fallende Dose immer. Beide fallen
eine Entfernung h von dem Punkt
aus gemessen, an dem sie sich ohne
Gravitationsbeschleunigung befinden
würden.

Wäre g (der Betrag der Erdbeschleunigung) gleich null, so würde der Ball wie in
Abb. 1.15 gezeigt eine gerade Linie beschreiben und die Dose würde, nachdem der
Magnet sie freigegeben hat, an ein und derselben Stelle hängenbleiben. Der Ball
würde die Dose mit Sicherheit treffen.
DieGravitationsbeschleunigung g ist jedochnicht gleich null. Und dennoch trifft

der Ball die Dose! Wie Abb. 1.15 zeigt, fallen Dose und Ball während der Flugzeit
des Balls ab dem Moment, in dem der Ball das Blasrohr verlässt, um die gleiche
Strecke h. Je stärker der Vorführende in das Rohr bläst, desto größer ist die An­
fangsgeschwindigkeit des Balls, desto kürzer ist die Flugzeit und desto kleiner auch
der Wert von h.

1.9.2 Analyse der Wurfbewegung

Lassen Sie uns nun dieWurfbewegung sowohl in horizontaler als auch in vertikaler
Richtung im Einzelnen analysieren.

21



D. Halliday, R. Resnick und J. Walker.: Halliday Physik für natur- und ingenieurwissenschaftliche Studiengänge —
2019/8/28 — Seite 22 — le-tex

1 Bewegung

Die horizontale Bewegung

Da inhorizontaler Richtung keine Beschleunigung stattfindet, bleibt die horizonta­
le Komponente vx der Projektilgeschwindigkeit während der gesamten Bewegung
unverändert gleich der Anfangsgeschwindigkeit v0x . Zu jeder beliebigen Zeit t ist
die horizontale Verschiebung Δx = x − x0 des Projektils von seiner Ausgangspo­
sition x0 durch Gl. 1.13 gegeben, wobei a = 0 ist. Damit haben wir

x − x0 = v0t .

Wegen v0x = v0 cos θ0 wird daraus:

x − x0 = (v0 cos θ0)t . (1.34)

Die vertikale Bewegung

Die vertikale Bewegung entspricht derjenigen, die wir in Abschn. 2.5 für ein Teil­
chen im freien Fall untersucht hatten. Wichtig ist hier, dass die Beschleunigung
konstant ist. Also gelten die Gleichungen aus Tab. 1.1, wobei wir a durch−g erset­
zen und die Gleichungen für y umschreiben müssen. So wird etwa Gl. 1.13 zu:

y − y0 = v0y t − 1
2
gt2 = (v0 sin θ0)t − 1

2
gt2 , (1.35)

wobei die vertikale Komponente v0y der Anfangsgeschwindigkeit durch den äqui­
valenten Ausdruck v0 sin θ ersetzt wurde. Analog ergibt sich aus den Gln. 1.9
und 1.14

vy = v0 sin θ0 − gt (1.36)

und

v2y = (v0 sin θ0)2 − 2g(y − y0) . (1.37)

Wie aus Abb. 1.13 und Gl. 1.36 deutlich wird, verhält sich die vertikale Geschwin­
digkeitskomponente genauso wie bei einem Ball, der senkrecht nach oben gewor­
fen wurde. Sie zeigt anfänglich nach oben und ihr Betrag nimmt kontinuierlich ab,
bis er schließlich verschwindet – dieser Punkt entspricht der maximalen Höhe der
Flugbahn. Daraufhin verändert die Geschwindigkeitskomponente ihre Richtung
und ihr Betrag wird mit der Zeit immer größer.

Die Bahngleichung

Wir können die Gleichung ermitteln, welche die Form der Flugbahn (Trajektorie)
des Teilchens beschreibt, indemwir t aus denGln. 1.34 und 1.35 eliminieren. Dazu
lösen wir Gl. 1.34 nach t auf und setzen das Ergebnis in Gl. 1.35 ein. Nach kleinen
Umformungen erhalten wir:

y = (tan θ0)x −
gx2

2(v0 cos θ0)2
. (1.38)

Dies ist die Gleichung der in Abb. 1.13 gezeigten Bahnkurve. Bei ihrer Herleitung
haben wir der Einfachheit halber in den Gln. 1.34 und 1.35 jeweils x0 = 0 und
y0 = 0 gesetzt. Da g, θ0 und v0 Konstanten sind, hat Gl. 1.38 die allgemeine Form
y = ax + bx2, wobei a und b konstant sind. Dies ist die Gleichung einer Parabel;
man sagt, das Projektil beschreibt eine parabolische Bahn bzw. eineWurfparabel.
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Die horizontale Reichweite

Die horizontale Reichweite des Projektils ist, wie Abb. 1.13 zeigt, die Entfernung,
die das Projektil in horizontaler Richtung zurückgelegt hat, wenn es seine ur­
sprüngliche (Abwurf-)Höhe wieder erreicht. Um die Reichweite R zu bestimmen,
setzen wir x − x0 = R in Gl. 1.34 und y − y0 = 0 in Gl. 1.35. Damit erhalten wir:

R = (v0 cos θ0)t

und

0 = (v0 sin θ0)t − 1
2
gt2 .

Eliminieren wir t aus diesen beiden Gleichungen, so ergibt sich:

R =
2v20
g

sin θ0 cos θ0 .

Nun nutzen wir aus, dass sin 2θ0 = 2 sin θ0 cos θ0 (siehe Anhang D), und erhalten
damit:

R =
v20
g
sin 2θ0 . (1.39)

Vorsicht: Diese Gleichung gibt nicht die horizontale Entfernung an, die ein Projek­
til zurückgelegt hat, wenn die Höhe des Endpunkts ungleich der Höhe des Start­
punkts ist.
Beachten Sie, dass der Wert von R in Gl. 1.39 maximal wird, wenn sin 2θ0 = 1

ist; dies entspricht einemWinkel von 2θ0 = 90° bzw. θ0 = 45°.

Die horizontale Reichweite R istmaximal, wenn das Projektil in einemWin­
kel von 45° geworfen bzw. geschossen wird.

Der Luftwiderstand

Wir haben bisher vorausgesetzt, dass die Luft, durch die sich das Projektil bewegt,
keinerlei Auswirkungen auf seine Bewegung hat. In vielen Situationen kann die
Abweichung zwischen unseren Rechnungen und der tatsächlichen Bewegung des
Projektils allerdings ganz beträchtlich sein, da die Luft der Bewegung in der Realität
durchaus einen Widerstand entgegensetzt. Abbildung 1.16 z. B. zeigt zwei Bahn­
kurven eines Balls, der in einem Winkel von 60° zur Horizontalen und mit einer
Anfangsgeschwindigkeit von 44,7m/s geworfen wird. Bahn I entspricht einer be­
rechneten Kurve, welche die normalen Bedingungen (in Luft) annähernd wieder­
gibt. Bahn II ist die Kurve, die der Ball in einem Vakuum beschreiben würde.

x

y

60° 

v0

I

II

Abb. 1.16
(I) Die Bahn eines geworfenen Balls,
wenn man sie unter Berücksichti­
gung des Luftwiderstands berechnet.
(II) Die Bahn, die derselbe Ball im Va­
kuum beschreiben würde. Sie wurde
mit den in diesem Kapitel vorgestell­
ten Methoden berechnet. Die ver­
wendeten Daten finden Sie in Tab. 1.2
[Quelle: Nach „The Trajectory of a Fly
Ball“ von Brancazio, P.J. (1985). The
Physics Teacher].

TABELLE 1.2:
Zwei Bällea).

Bahn I (in Luft) Bahn II (im Vakuum)

Reichweite 98,5m 177m
maximale Höhe 53,0m 76,8m
Flugzeit 6,6 s 7,9 s

a) Siehe Abb. 1.16. Der Wurfwinkel beträgt 60°, die Abwurfgeschwindigkeit 44,7m/s.

23



D. Halliday, R. Resnick und J. Walker.: Halliday Physik für natur- und ingenieurwissenschaftliche Studiengänge —
2019/8/28 — Seite 24 — le-tex

1 Bewegung

KONTROLLFRAGE 10
Ein Fußball wird über das Spielfeld getreten. Was passiert während seines Flugs
(bei dem Sie den Luftwiderstand vernachlässigen können) mit (a) der horizontalen
und (b) der vertikalen Komponente seiner Geschwindigkeit?Wie groß sind (c) die
horizontale und (d) die vertikale Komponente seiner Beschleunigung während des
Anstiegs, des Herabfallens und am höchsten Punkt seiner Flugbahn?

1.10 Die gleichförmige Kreisbewegung

Lernziele
Nach dem Durcharbeiten dieses Abschnitts sollten Sie in der Lage sein, . . .

• die Bahnkurve in einer gleichförmigen Kreisbewegung zu skizzieren und die
während der Bewegung auftretendenGeschwindigkeits- und Beschleunigungs­
vektoren zu erläutern (Betrag und Richtung),

• Beziehungen zwischen dem Radius der Kreisbahn, der Periode der Bewegung,
der Geschwindigkeit des Teilchens und dem Betrag seiner Beschleunigung an­
zugeben und anzuwenden.

Schlüsselideen
• Wenn ein Teilchen sichmit konstanterGeschwindigkeit v imKreis oder entlang

eines Kreisbogens mit Radius r bewegt, spricht man von einer gleichförmigen
Kreisbewegung. Ein solches Teilchen erfährt eine Beschleunigung a⃗ mit dem
konstanten Betrag

a = v2
r

in Richtung des Kreismittelpunkts, die als Zentripetalbeschleunigung bezeich­
net wird.

• Zur Vollendung eines vollständigen Umlaufs benötigt das Teilchen die Zeit

T = 2πr
v

,

die als Periode der Kreisbewegung bezeichnet wird.

1.10.1 Konstanter Betrag, variable Richtung

Ein Teilchen führt eine gleichförmige Kreisbewegung aus, wenn es sichmit kon­
stantem, d. h. gleichförmigem Geschwindigkeitsbetrag auf einem Kreis oder ei­
nem Kreisbogen bewegt. Obwohl sich der Betrag der Geschwindigkeit nicht än­
dert, wird das Teilchen beschleunigt. Dies mag auf den ersten Blick verwunderlich
erscheinen, da wir eine Beschleunigung meist mit einer Vergrößerung oder Ver­
kleinerung desGeschwindigkeitsbetrags in Verbindung bringen. Tatsächlich ist die
Geschwindigkeit jedoch ein Vektor, kein Skalar. Wenn eine Geschwindigkeit also
nicht ihren Betrag, sondern nur ihre Richtung verändert, so ist dennoch eine Be­
schleunigung im Spiel – und genau dies ist bei der gleichförmigen Kreisbewegung
der Fall.

v

v

v

a

aa

Abb. 1.17
Geschwindigkeits- und Beschleu­
nigungsvektoren eines Teilchens,
das gegen den Uhrzeigersinn ei­
ne gleichförmige Kreisbewegung
absolviert. Geschwindigkeit und
Beschleunigung besitzen einen
konstanten Betrag, ändern je­

doch kontinuierlich ihre Richtung.

Abbildung 1.17 verdeutlicht die Beziehung zwischen dem Geschwindigkeits­
vektor und dem Beschleunigungsvektor während verschiedener Phasen einer
gleichförmigen Kreisbewegung. Während des Ablaufs der Bewegung ist der Be­
trag beider Vektoren konstant, ihre Richtung ändert sich jedoch kontinuierlich, da
die Geschwindigkeit immer in Bewegungsrichtung entlang der Tangente an die
Kreisbahn zeigt. Die Beschleunigung ist immer auf den Mittelpunkt des Kreises
gerichtet. Deshalb wird die Beschleunigung in der gleichförmigen Kreisbewegung
auch Zentripetalbeschleunigung genannt (was so viel bedeutet wie „den Mittel­
punkt suchende“ Beschleunigung). Wie wir gleich beweisen werden, ist der Betrag
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dieser Beschleunigung a⃗ gleich

a = v2
r

(Zentripetalbeschleunigung) , (1.40)

wobei r der Radius der Kreisbahn und v der Betrag der Geschwindigkeit des Teil­
chens ist.
Während dieser Beschleunigung bei konstantem Geschwindigkeitsbetrag legt

das Teilchen den Umfang des Kreises (welcher der Strecke 2πr entspricht) in der
Zeit T zurück mit

T = 2πr
v

(Periode) . (1.41)

T wird die Periode der Bewegung genannt. Im Allgemeinen bezeichnetman damit
die Zeit, die ein Teilchen benötigt, um eine geschlossene Bahn genau einmal zu
durchlaufen.

1.10.2 Beweis von Gl. 1.40

Um den Betrag und die Richtung der Beschleunigung bei einer gleichförmigen
Kreisbewegung zu bestimmen, betrachten wir Gl. 1.32. In Abb. 1.18a bewegt sich
das Teilchen p mit konstantemGeschwindigkeitsbetrag v entlang einer Kreisbahn
mit Radius r. Zu dem dargestelltenZeitpunkt besitzt p die Koordinaten xp und yp.
In Abschn. 4.2 hatten wir gezeigt, dass die Geschwindigkeit v⃗ eines bewegten

Teilchens immer entlang der Tangente an die Bahnkurve des Teilchens am mo­
mentanen Ort des Teilchens zeigt. In Abb. 1.18a bedeutet dies, dass v⃗ senkrecht
auf dem Radius r steht, der zum Ort des Teilchens führt. Dann ist der Winkel θ,
den v⃗ am Ort von p mit der Vertikalen bildet, gleich demWinkel θ zwischen dem
Radius r und der x-Achse.
Die skalaren Komponenten von v⃗ sind in Abb. 1.18b dargestellt. Mit ihnen kön­

nen wir die Geschwindigkeit v⃗ in der Form

v⃗ = vx e⃗x + vy e⃗ y = (−v sin θ)e⃗x + (v cos θ)e⃗ y (1.42)

schreiben. Indemwir das rechtwinkligeDreieck aus Abb. 1.18a nutzen, könnenwir
sin θ durch yp∕r und cos θ durch xp∕r ersetzen und erhalten damit

v⃗ =
(

− v
r
yp
)
e⃗x +

( v
r
xp
)
e⃗ y . (1.43)

Umdie Beschleunigung a⃗ desTeilchens p zu ermitteln,müssenwir dieseGleichung
nach der Zeit ableiten. Da sich der Geschwindigkeitsbetrag v und der Radius r im
Lauf der Zeit nicht ändern, ergibt dies

a⃗ = d v⃗
dt

=
(

− v
r
dyp
dt

)
e⃗x +

(
v
r
dxp
dt

)
e⃗ y . (1.44)

Abb. 1.18
Das Teilchen p bewegt sich im Ge­
genuhrzeigersinn gleichförmig im
Kreis. (a) Seine Position und Ge­
schwindigkeit v⃗ zu einem bestimmten
Zeitpunkt. (b) Die Geschwindigkeit
v⃗ und ihre Komponenten. (c) Die Be­
schleunigung a⃗ des Teilchens und ihre
Komponenten.

y

x
θ

θ
p

yp
r

xp

v

(a)

y

x

θ

vx

vy
v

(b)

y

x

φ

ax

ay
a

(c)

25



D. Halliday, R. Resnick und J. Walker.: Halliday Physik für natur- und ingenieurwissenschaftliche Studiengänge —
2019/8/28 — Seite 26 — le-tex

1 Bewegung

Beachten Sie nun, dass die Rate dyp∕dt, mit der sich yp verändert, gleich der
Geschwindigkeitskomponente vy ist. Entsprechend ist dxp∕dt = vx . Ebenfalls aus
Abb. 1.18b sehen wir, dass vx = −v sin θ und vy = v cos θ. Einsetzen in Gl. 1.44
liefert:

a⃗ =
(

− v2
r
cos θ

)
e⃗x +

(
− v2

r
sin θ

)
e⃗ y . (1.45)

Dieser Vektor und seine Komponenten sind in Abb. 1.18c dargestellt.Mit der allge­
meinen Regel für Beträge und Richtungen von Vektoren (vgl. Gl. D.6 in Anhang D)
finden wir, dass der Betrag von a⃗ gleich

a =
√

a2x + a2y = v2
r
√

(cos θ)2 + (sin θ)2 = v2
r

ist, genau wie wir es beweisen wollten. Um die Richtung von a⃗ zu ermitteln, be­
stimmen wir den in Abb. 1.18c eingezeichnetenWinkel 𝜑:

tan𝜑 =
ay

ax
=

−(v2∕r) sin θ
−(v2∕r) cos θ

= tan θ .

Demnach ist 𝜑 = θ, was bedeutet, dass a⃗ entlang dem in Abb. 1.18a eingezeichne­
ten Radius r in Richtung Kreismittelpunkt zeigt, wie wir es beweisen wollten.

KONTROLLFRAGE 11
Ein Gegenstand bewege sich mit konstantemGeschwindigkeitsbetrag in einer ho­
rizontalen x y-Ebene entlang einer Kreisbahn mit Mittelpunkt im Ursprung des
Koordinatensystems. In dem Moment, in dem sich der Gegenstand bei x = −2m
befindet, sei seine Geschwindigkeit gleich−(4m/s)e⃗ y. Geben Sie (a) die Geschwin­
digkeit und (b) die Beschleunigung des Gegenstands am Ort y = 2m an.

1.11 Relativbewegung in einer Dimension

Lernziele
Nach dem Durcharbeiten dieses Abschnitts sollten Sie in der Lage sein, . . .

• die Beziehung zwischen Ort, Geschwindigkeit und Beschleunigung eines Teil­
chens anzugeben, wenn diese in zwei Bezugssystemen gemessen werden, die
sich mit konstanter Geschwindigkeit entlang einer Achse gegeneinander bewe­
gen.

Schlüsselideen
• Wenn sich zwei BezugssystemeA und Bmit konstanterGeschwindigkeit relativ

zueinander bewegen, unterscheidet sich die von einem Beobachter im Bezugs­
systemA gemessene Geschwindigkeit eines Teilchens P in der Regel von der, die
ein Beobachter im BezugssystemBmisst. Die beiden gemessenenGeschwindig­
keiten hängen über

v⃗PA = v⃗PB + v⃗BA
miteinander zusammen, wobei v⃗BA die Geschwindigkeit von B relativ zu A ist.
Beobachter in beiden Bezugssystemenmessen jedoch dieselbe Beschleunigung
des Teilchens:

a⃗PA = a⃗PB .

1.11.1 Bezugssysteme

Nehmen Sie an, Sie beobachten eine Ente, die mit 30 km/h nachNorden fliegt. Aus
Sicht einer zweiten Ente, die neben der ersten herfliegt, ändert die erste Ente ihre
Position dagegen nicht (sie befindet sich immer „neben mir“). Mit anderen Wor­
ten: Die Geschwindigkeit eines Teilchens hängt vomBezugssystem desjenigen ab,

26



D. Halliday, R. Resnick und J. Walker.: Halliday Physik für natur- und ingenieurwissenschaftliche Studiengänge —
2019/8/28 — Seite 27 — le-tex

11.11 Relativbewegung in einer Dimension

der die Bewegung beobachtet bzw. die Geschwindigkeit misst. In unserem Fall ist
ein Bezugssystem durch das physikalische Objekt gegeben, an dem wir unser Ko­
ordinatensystem befestigen. Im Alltag ist dies meist der Erdboden. So wird z. B.
die Geschwindigkeit, die auf Ihrem Bußgeldbescheid erscheint, immer relativ zum
Erdboden gemessen. Die Geschwindigkeit relativ zumAuto vor Ihnen ist eine ganz
andere, da sich dies während der Messung relativ zum Erdboden bewegt!
Nehmenwir an, dass Alex (amUrsprung des BezugssystemsA) amRand der Au­

tobahn hält und zusieht, wie das Auto P (das „Teilchen“) vorbeifährt. Barbara (im
Ursprung des Bezugssystems B) fährt mit konstanter Geschwindigkeit die Auto­
bahn entlang und beobachtet dabei ebenfalls das Auto P. Wie in Abb. 1.19 gezeigt,
messen beide die Position des Autos zu einem bestimmten Zeitpunkt. Aus der Ab­
bildung können wir ablesen, dass

xPA = xPB + xBA . (1.46)

Diese Gleichung besagt Folgendes: „Die von A gemessene Koordinate xPA von P
ist gleich der von B gemessenen Koordinate xPB von P plus der von A gemessenen
Koordinate xAB von B.“ Beachten Sie, wie diese Bedeutung in der Reihenfolge der
Indizes zum Ausdruck kommt.

x

Bezugs-

system A

Bezugs-

system B

vBA

P

x

yy

xBA

xPB

xPA = xPB + xBA

Abb. 1.19
Alex (Bezugssystem A) und Barba­
ra (Bezugssystem B) beobachten das
Auto P, während B und P sich mit un­
terschiedlichen Geschwindigkeiten
entlang der identisch verlaufenden
x-Achsen der beiden Systeme bewe­
gen. Zu dem dargestellten Zeitpunkt
ist xBA die Koordinate von B im Sys­
tem A. P besitzt im System B die Ko­
ordinate xPB und im System A die
Koordinate xPA = xPB + xBA.

Indem wir Gl. 1.46 nach der Zeit ableiten, erhalten wir:

d
dt

(xPA) = d
dt

(xPB) + d
dt

(xBA)

oder (da v = dx∕dt)

vPA = vPB + vBA . (1.47)

Diese Gleichung bedeutet: „Die von A gemessene Geschwindigkeit vPA von P ist
gleich der von B gemessenen Geschwindigkeit vPB von P plus der von A gemes­
senen Geschwindigkeit vBA von B.“ Der Term vBA entspricht der Geschwindigkeit
des Bezugssystems B relativ zum BezugssystemA. (Da die Bewegungen entlang ei­
ner einzigen Achse erfolgen, können wir hier in Gl. 1.47 die Komponenten entlang
dieser Achse benutzen und die Vektorpfeile weglassen.)
An dieser Stelle beschränken wir unsere Betrachtungen auf Bezugssysteme, die

sich relativ zueinander mit konstanter Geschwindigkeit bewegen. In unserem Bei­
spiel bedeutet dies, dass Barbara (System B) relativ zu Alex (System A) immer mit
derselben Geschwindigkeit vBA fährt. Das Auto P jedoch (das bewegte Teilchen)
kann schneller oder langsamer werden, anhalten oder die Richtung wechseln (d. h,
es darf einer Beschleunigung unterliegen).
Um die von Barbara und Alex gemessenen Beschleunigungen von Pmiteinander

zu verknüpfen, leiten wir Gl. 1.47 nach der Zeit ab:

d
dt

(vPA) = d
dt

(vPB) + d
dt

(vBA) .

Da vBA konstant ist, ist der letzte Term gleich null und wir erhalten:

aPA = aPB . (1.48)

Mit anderenWorten:

Bei einem sich bewegenden Teilchen messen Beobachter in verschiedenen
Bezugssystemen (die sich mit gleichförmiger Geschwindigkeit relativ zu­
einander bewegen) die gleiche Beschleunigung.

KONTROLLFRAGE 12
Die nebenstehende Tabelle gibt für Barbara und das Auto P aus Abb. 1.19 in drei
unterschiedlichen Situationen verschiedene Geschwindigkeiten an (in km/h). Wie
lautet der fehlende Wert in jeder der drei Situationen und wie verändert sich die
Entfernung zwischen Barbara und dem Auto P?

vBA vPA vPB
(a) +50 +50
(b) +30 +40
(c) +60 −20

27



D. Halliday, R. Resnick und J. Walker.: Halliday Physik für natur- und ingenieurwissenschaftliche Studiengänge —
2019/8/28 — Seite 28 — le-tex

1 Bewegung

1.12 Relativbewegung in zwei Dimensionen

Lernziele
Nach dem Durcharbeiten dieses Abschnitts sollten Sie in der Lage sein, . . .

• die Beziehung zwischen Position, Geschwindigkeit und Beschleunigung eines
Teilchens in zwei Dimensionen aus Sicht zweier Bezugssysteme zu formulieren,
die sich mit konstanter Geschwindigkeit aneinander vorbeibewegen.

Schlüsselideen
• Wenn sich zwei BezugssystemeA und Bmit konstanterGeschwindigkeit anein­

ander vorbeibewegen, unterscheidet sich die in SystemA gemessene Geschwin­
digkeit eines Teilchens P in der Regel von der im System B gemessenen. Die
beiden gemessenen Geschwindigkeiten hängen über die Beziehung

v⃗PA = v⃗PB + v⃗BA

zusammen. Dabei ist v⃗BA die Geschwindigkeit von B relativ zu A. Beide Beob­
achter bzw. Systeme messen jedoch die gleiche Beschleunigung von P:

a⃗PA = a⃗PB .

1.12.1 Mehr als eine Dimension

Wir wenden uns nun der Relativbewegung in zwei (und nach Erweiterung auch in
drei) Dimensionen zu. In Abb. 1.20 betrachten unsere beiden Beobachter wieder
ein sich bewegendes Teilchen P vom Ursprung ihrer jeweiligen Bezugssysteme A
und B aus. Dabei bewegt sich B mit einer konstanten Geschwindigkeit v⃗BA relativ
zu A. (Die Achsen der beiden Bezugssysteme bleiben dabei jedoch parallel.)

x

x

y

y

rPB
rPA

Bezugssystem B
rBA

Bezugssystem A

vBA

P

Abb. 1.20
Bezugssystem B besitzt eine konstante

zweidimensionale Geschwindigkeit
v⃗BA relativ zum Bezugssystem A. Der
Ortsvektor von B relativ zu A ist r⃗BA.

Die Ortsvektoren des Teilchens P sind
r⃗PA relativ zu A und r⃗PB relativ zu B.

Abbildung 1.20 stellt eineMomentaufnahmewährend der Bewegung dar. Zudie­
sem Zeitpunkt ist der Ortsvektor von B relativ zu A gleich r⃗BA. Die Ortsvektoren
des Teilchens P sind r⃗PA relativ zu Aund r⃗PB relativ zu B. Aus derAnordnung dieser
drei Ortsvektoren können wir schließen, dass sie über die Gleichung

r⃗PA = r⃗PB + r⃗BA (1.49)

miteinander verknüpft sind. Indem wir diese Beziehung nach der Zeit ableiten,
erhalten wir eine Verbindung zwischen den Geschwindigkeiten v⃗PA und v⃗PB des
Teilchens P relativ zu unseren Beobachtern:

v⃗PA = v⃗PB + v⃗BA . (1.50)

Indem wir diese Gleichung wiederum nach der Zeit ableiten, können wir die Be­
schleunigungen a⃗PA und a⃗PB des Teilchens P relativ zu den beiden Beobachtern
miteinander verbinden. Beachten Sie jedoch, dass die Ableitung von v⃗BA nach der
Zeit null ist, da v⃗BA konstant ist. Damit erhalten wir also:

a⃗PA = a⃗PB . (1.51)

Genauwie bei der eindimensionalenBewegung gilt auch hier die Regel: Beobachter
in verschiedenen Bezugssystemen, die sich mit konstanter Geschwindigkeit rela­
tiv zueinander bewegen, messen für ein sich bewegendes Teilchen die gleiche Be­
schleunigung.

KONTROLLFRAGE 13
NehmenSie in Beispielaufgabe 1.13 imÜbungsbuch an, dass der Pilot das Flugzeug
so abwendet, dass es direkt in Richtung Osten zeigt, ohne dabei jedoch den Betrag
der Fluggeschwindigkeit (relativ zum Wind) zu verändern. Welche der folgenden
Beträge nehmen ab, welche nehmen zu und welche bleiben konstant: (a) vPG, y,
(b) vPG,x und (c) vPG? (Diese Frage können Sie ohne Berechnungen beantworten.)
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1.13 Zusammenfassung

Ort Der Ort x eines Teilchens auf einer x-Achse gibt die
Position eines Teilchens in Bezug auf den Ursprung oder
Nullpunkt der Achse an. Der Ort ist entweder positiv oder
negativ, je nachdem, auf welcher Seite des Ursprungs sich
das Teilchen befindet. Er ist null, wenn das Teilchen sich
am Ursprung befindet. Die positive Richtung der Achse
ist die Richtung ansteigender positiver Zahlen; die entge­
gengesetzte Richtung ist die negative Richtung.

Verschiebung Die Verschiebung Δx eines Teilchens ist
die Änderung seiner Position:

Δx = x2 − x1 . (1.1)

Die Verschiebung ist eine Vektorgröße. Sie ist positiv, wenn
das Teilchen sich in die positive Richtung der x-Achse be­
wegt hat. Sie ist negativ, wenn es sich in die negative Rich­
tung bewegt hat.

Durchschnittsgeschwindigkeit Hat sich ein Teilchen
während des Zeitintervalls Δt = t2 − t1 von einem Ort x1
zu einem Ort x2 bewegt, so ist seine Durchschnittsge­
schwindigkeit in diesem Intervall

vgem = Δx
Δt

=
x2 − x1
t2 − t1

. (1.2)

Das Vorzeichen von vgem gibt die Richtung der Bewe­
gung an (vgem ist eine Vektorgröße). Die Durchschnitts­
geschwindigkeit hängt nicht von der tatsächlichen Entfer­
nung ab, die ein Teilchen zurücklegt, sondern nur vomAn­
fangs- und Endpunkt seines Weges.
Auf einer Kurve von x in Abhängigkeit von t entspricht

die Durchschnittsgeschwindigkeit in einem bestimmten
Zeitintervall Δt der Steigung der Geraden, die die End­
punkte des Zeitintervalls auf der Kurve verbindet.

Effektivgeschwindigkeit Die Effektivgeschwindigkeit veff
eines Teilchens während eines Zeitintervalls Δt hängt von
der Entfernung ab, die das Teilchen während dieses Zeitin­
tervalls insgesamt zurückgelegt hat:

veff =
Gesamtentfernung

Δt
. (1.3)

Momentangeschwindigkeit DieMomentangeschwindig­
keit (oder kurzGeschwindigkeit) v eines sich bewegenden
Teilchens ist gleich

v = lim
Δt→0

Δx
Δt

= dx
dt

, (1.4)

wobei Δx und Δt durch Gl. 1.2 gegeben sind. Die Momen­
tangeschwindigkeit (zu einem bestimmten Zeitpunkt) ent­
spricht der Steigung der Kurve von x in Abhängigkeit von
t (zu diesem bestimmten Zeitpunkt).

Mittlere Beschleunigung Diemittlere Beschleunigung ist
das Verhältnis einer Veränderung der Geschwindigkeit Δv

zur Dauer des Zeitintervalls Δt, in dem die Veränderung
stattfindet:

agem = Δv
Δt

. (1.5)

Das Vorzeichen gibt die Richtung von agem an.

Momentanbeschleunigung Die Momentanbeschleuni­
gung (oder kurz Beschleunigung) a ist die Rate, mit der
sich dieGeschwindigkeitmit der Zeit ändert. Sie entspricht
der zweiten Ableitung nach der Zeit am Ort x(t):

a = dv
dt

= d2x
dt2

. (1.6, 1.7)

Bei einer Kurve von v in Abhängigkeit von t ist die Be­
schleunigung a zu jedem Zeitpunkt t gleich der Steigung
der Kurve an dem Punkt, der t entspricht.

Konstante Beschleunigung Die fünf Gleichungen in
Tab. 1.1 beschreiben die Bewegung eines Teilchens, das
gleichmäßig beschleunigt wird:

v = v0 + at , (1.9)

x − x0 = v0t + 1
2
at2, (1.13)

v2 = v20 + 2a(x − x0), (1.14)

x − x0 = 1
2

(v0 + v)t , (1.15)

x − x0 = vt − 1
2
at2 . (1.16)

Diese Gleichungen gelten nicht, wenn die Beschleunigung
nicht konstant ist.

Der freie Fall Ein wichtiges Beispiel einer geradlinigen,
gleichmäßig beschleunigten Bewegung ist die eines Ob­
jekts, das sich nahe der Erdoberfläche im freien Fall be­
wegt. Die Gleichungen für die konstante Beschleunigung
beschreiben diese Bewegung, dabei haben wir die Schreib­
weise jedoch in zwei Hinsichten verändert: (1) Wir bezie­
hen die Bewegung auf eine senkrechte y-Achse, bei der die
positive Richtung nach obenweist; (2) wir ersetzen a durch
−g, wobei g der Betrag der Erdbeschleunigung ist. Nahe der
Erdoberfläche ist g = 9,8m/s2.

Ortsvektor im Raum Die Position eines Teilchens relativ
zum Ursprung des Koordinatensystems wird durch einen
Ortsvektor r⃗ angegeben. In Einheitsvektoren-Schreibweise
ist

r⃗ = xe⃗x + ye⃗ y + ze⃗z . (1.19)

Dabei sind xe⃗x , ye⃗ y und ze⃗z die Vektorkomponenten und
x, y und z die skalaren Komponenten des Ortsvektors r⃗. x,
y und z entsprechen außerdem den Koordinaten des Teil­
chens. Ein Ortsvektor kann über seinen Betrag und einen
(oder im dreidimensionalen Fall zwei) Winkel für die Rich­
tung, durch seine Vektorkomponenten oder durch seine
skalaren Komponenten beschrieben werden.
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Verschiebung imRaum Bewegt sich einTeilchen so, dass
sich sein Ortsvektor von r⃗1 nach r⃗2 ändert, dann ist dieVer­
schiebung Δr⃗ des Teilchens

Δr⃗ = r⃗2 − r⃗1 . (1.20)

Diese Verschiebung lässt sich auch in der Form

Δr⃗ = (x2 − x1)e⃗x + (y2 − y1)e⃗ y + (z2 − z1)e⃗z
= Δxe⃗x + Δ ye⃗ y + Δze⃗z (1.21, 1.22)

schreiben,wobei die Koordinaten (x1, y1, z1) demOrtsvek­
tor r⃗1 und die Koordinaten (x2, y2, z2) dem Ortsvektor r⃗2
zugeordnet sind.

DurchschnittsgeschwindigkeitundMomentangeschwin-
digkeit in drei Dimensionen Unterliegt ein Teilchen
während eines Zeitintervalls Δt einer Verschiebung Δr⃗,
so ist seine Durchschnittsgeschwindigkeit v⃗gem in diesem
Zeitintervall:

v⃗gem = Δr⃗
Δt

. (1.23)

Geht Δt in Gl. 1.23 gegen null, so strebt v⃗gem gegen ei­
nen Grenzwert v⃗, der Momentangeschwindigkeit oder Ge­
schwindigkeit genannt wird:

v⃗ = d r⃗
dt

. (1.25)

In Einheitsvektoren-Schreibweise ist die Geschwindigkeit

v⃗ = vx e⃗x + vy e⃗ y + vz e⃗z , (1.26)

wobei vx = dx∕dt, vy = dy∕d t und vz = dz∕d t ist. Die
Momentangeschwindigkeit v⃗ eines Teilchens zeigt immer
entlang der Tangente an die Bahnkurve des Teilchens am
momentanen Ort des Teilchens.

Durchschnittsbeschleunigung und Momentanbeschleu-
nigung in drei Dimensionen Ändert sich die Geschwin­
digkeit eines Teilchens im Zeitintervall Δt von v⃗1 auf v⃗2, so
ist seine Durchschnittsbeschleunigung während Δt gleich

a⃗gem =
v⃗2 − v⃗1
Δt

= Δv⃗
Δt

. (1.28)

Geht Δt in Gl. 1.28 gegen null, so strebt a⃗gem gegen einen
Grenzwert a⃗, derMomentanbeschleunigung oderBeschleu­
nigung genannt wird:

a⃗ = d v⃗
dt

. (1.29)

In Einheitsvektoren-Schreibweise ist

a⃗ = ax e⃗x + ay e⃗ y + az e⃗z , (1.30)

mit ax = dvx∕dt, ay = dvy∕dt und az = dvz∕dt.

Wurfbewegung Als Wurfbewegung bezeichnet man die
Bewegung einesTeilchens, dasmit einerAnfangsgeschwin­
digkeit v⃗0 geworfen oder geschossen wird. Während des
Flugs ist die horizontale Beschleunigung des Teilchens
gleich null und die vertikale Beschleunigung gleich der

Gravitationsbeschleunigung −g. (Die positive y-Richtung
weist bei der Betrachtung nach oben.) Wird v⃗0 durch sei­
nen Betrag v0 und den Winkel θ0 ausgedrückt, so lauten
die Bewegungsgleichungen des Teilchens entlang der hori­
zontalen x- und der vertikalen y-Achse:

x − x0 = (v0 cos θ0)t . (1.34)

y − y0 = v0y t − 1
2
gt2 = (v0 sin θ0)t − 1

2
gt2, (1.35)

vy = v0 sin θ0 − gt , (1.36)

v2y = (v0 sin θ0)2 − 2g(y − y0). (1.37)

Die Trajektorie (Bahnkurve) eines Teilchens während ei­
ner Wurfbewegung ist eine Parabel, die durch

y = (tan θ0)x −
gx2

2(v0 cos θ0)2
(1.38)

gegeben ist. Hierbei wurde der Ursprung so gewählt, dass
x0 und y0 in den Gln. 1.34–1.37 gleich null sind. Die ho­
rizontale Reichweite R des Teilchens ist die horizontale
Entfernung zwischen dem Abwurfpunkt und dem Punkt,
an dem das Teilchen wieder die Abwurfhöhe erreicht. Sie
ist gegeben durch

R =
v20
g
sin 2θ0 . (1.39)

Gleichförmige Kreisbewegung Bewegt sich ein Teilchen
mit konstantem Geschwindigkeitsbetrag v entlang eines
Kreises oder eines Kreisbogensmit Radius r, so sprichtman
von einer gleichförmigen Kreisbewegung.
Die Beschleunigung a⃗ besitzt den Betrag

a = v2
r

(1.40)

und zeigt zum Mittelpunkt des Kreises bzw. des Kreis­
bogens. a⃗ wird deshalb als Zentripetalbeschleunigung be­
zeichnet. Die Zeit, die ein Teilchen für einen kompletten
Umlauf braucht, ist

T = 2πr
v

. (1.41)

T wird die Periode der Bewegung genannt.

Relativbewegung Bewegen sich zwei Bezugssysteme A
und B relativ zueinander mit einer konstanten Geschwin­
digkeit, so unterscheidet sich die von einem Beobachter
im System A gemessene Geschwindigkeit eines Teilchens
P üblicherweise von der im Bezugssystem B gemessenen
Geschwindigkeit. Die zwei gemessenenGeschwindigkeiten
sind durch

v⃗PA = v⃗PB + v⃗BA (1.50)

miteinander verknüpft, wobei v⃗BA dieGeschwindigkeit von
B relativ zu A ist. Beide Beobachtermessen für das Teilchen
die gleiche Beschleunigung, d. h.

a⃗PA = a⃗PB . (1.51)
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1.14 Fragen

1. Abbildung 1.F1 gibt die Geschwindigkeit eines Teil­
chens an, das sich auf einer x-Achse bewegt. In welche
Richtung bewegt sich das Teilchen (a) am Anfang und
(b) am Ende seiner Bahn? (c) Hält das Teilchen vorüber­
gehend an? (d) Ist die Beschleunigung positiv oder negativ?
(e) Bleibt sie konstant oder verändert sie sich?

t

v

Abb. 1.F1

2. Abbildung 1.F2 zeigt vier Bahnen, entlang derer sich
verschiedene Objekte gleichzeitig von einem Anfangs- zu
einem Endpunkt bewegen. Diese Bahnen verlaufen über ei­
nem Gitter aus Geraden, die in gleichem Abstand neben­
einanderliegen.OrdnenSie die Bahnen in absteigender Rei­
henfolge nach (a) der Durchschnittsgeschwindigkeit und
(b) der Effektivgeschwindigkeit der Objekte.

3

2

1

4

Abb. 1.F2

3. Abbildung 1.F3 zeigt die Position eines Teilchens ent­
lang der x-Achse als Funktion der Zeit. (a) Welches Vor­
zeichen hat die Position des Teilchens zur Zeit t = 0? Ist
die Geschwindigkeit des Teilchens zur Zeit (b) t = 1 s,
(c) t = 2 s und (d) t = 3 s positiv, negativ oder null? (e) Wie
oft passiert das Teilchen den Ort x = 0?

t (s)

x

3 4210

Abb. 1.F3

4. Abbildung 1.F4 zeigt die Geschwindigkeit eines Teil­
chens, das sich entlang einer Achse bewegt. Punkt 1 be­
zeichnet den höchsten Punkt der Kurve, Punkt 4 den tiefs­
ten; die Punkte 2 und 6 liegen auf derselben Höhe. In wel­
che Richtung bewegt sich das Teilchen (a) zur Zeit t = 0
und (b) an Punkt 4? (c) An welchen der sechs nummerier­
ten Punkte ändert das Teilchen seine Bewegungsrichtung?
(d) Ordnen Sie die sechs Punkte in der Reichenfolge abstei­
genden Betrags der Beschleunigung.

v
1

2 6

3 5

4

t

Abb. 1.F4

5. Bei t = 0 befindet sich ein Teilchen, das sich entlang ei­
ner x-Achse bewegt, am Ort x0 = −20m. Die Vorzeichen
der ursprünglichen Geschwindigkeit v0 (zur Zeit t0) und
der konstanten Beschleunigung a sind in vier verschiede­
nen Situationen jeweils: (1) +,+; (2)+,−; (3) −,+; (4)−,−.
In welcher dieser Situationen wird das Teilchen (a) vor­
übergehend anhalten, (b) sich auf jeden Fall (bei ausrei­
chend langer Zeit) über denUrsprung hinwegbewegen und
(c) auf keinen Fall den Ursprung überqueren?

6. Die folgenden Gleichungen geben die Geschwindigkeit
v(t) eines Teilchens in vier verschiedenen Situationen wie­
der: (a) v = 3; (b) v = 4t2 + 2t − 6; (c) v = 3t − 4; (d) v =
5t2 − 3. In welcher dieser Situationen gelten die Gleichun­
gen aus Tab. 1.1?

7. Ein Passagier in einem Heißluftballon lässt beim Start
versehentlich einen Apfel aus dem Korb fallen. Der Ballon
beschleunigt in diesemMoment mit einer Beschleunigung
von 4,0m/s2 nach oben und besitzt bereits eine nach oben
gerichteteGeschwindigkeit von 2m/s. Geben Sie (a) Betrag
und (b) Richtung der Beschleunigung an, die direkt nach
dem Loslassen auf den Apfel wirkt. (c) Bewegt sich der Ap­
fel im Moment des Loslassens nach oben, nach unten oder
ist er stationär? (d)WelchenBetrag besitzt seine Geschwin­
digkeit in diesem Moment? (e) Nimmt der Betrag seiner
Geschwindigkeit in den folgenden Momenten zu, ab oder
bleibt er konstant?

8. Abbildung 1.F8 zeigt die Beschleunigung, die ein sich
entlang einer Achse bewegendesTeilchen in verschiedenen
Zeitintervallen verspürt. Ordnen Sie diese Zeitintervalle
ohne schriftliche Rechnung in absteigender Reihenfolge
nach der durch sie bewirkten Änderung der Geschwindig­
keit des Teilchens.

B
e
sc

h
le

u
n
ig

u
n
g
 a

Zeit t

(1)

(2)

(3)

Abb. 1.F8

9. Die Fahrerin eines blauen Autos, das sich mit 80 km/h
bewegt, bemerkt plötzlich, dass sie im Begriff ist, ein rotes
Auto zu rammen, das mit 60 km/h vor ihr fährt. Wie groß
darf die Geschwindigkeit des blauen Autos, kurz bevor es
das rote Auto erreicht,maximal sein, um einenZusammen­
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1 Bewegung

stoß zu vermeiden? (Aufwärmübung für Aufgabe 1.34 im
Übungsbuch)

10. Bei t = 0 und x = 0 beginnt ein parkendes Auto mit
einer konstanten Beschleunigung von 2,0m/s2 in positi­
ver Richtung entlang einer x-Achse zu beschleunigen. Zur
Zeit t = 2 s kommt ein auf der Nebenspur in die gleiche
Richtung fahrendes Auto mit einer Geschwindigkeit von
8,0m/s und einer konstanten Beschleunigung von 3,0m/s2
bei x = 0 vorbei. Welche zwei gekoppelten Gleichungen
muss man lösen, um herauszufinden, wann das rote Auto
das blaue überholt? (Aufwärmübung für Aufgabe 1.32 im
Übungsbuch)

11. Sie werfen einen Ball von der Oberkante einer Klippe
gerade nach oben, er landet im Sand unterhalb der Klip­
pe. Wenn Sie den Ball stattdessen mit dem gleichen Ge­
schwindigkeitsbetrag direkt von der Klippe aus nach un­
ten geworfen hätten, wäre der Geschwindigkeitsbetrag des
Balls kurz vor dem Aufprall größer als, kleiner als oder ge­
nauso groß wie im ersten Fall? (Hinweis: Betrachten Sie
Gl. 1.14.)

12. Abbildung 1.F12 zeigt die Anfangsposition 1 und die
Endposition 2 eines Teilchens. Wie lauten (a) der Ortsvek­
tor r⃗1 des Teilchens an der Anfangsposition und (b) der
Ortsvektor r⃗2 des Teilchens an der Endposition in Einheits­
vektoren-Schreibweise? (c) Wie lautet die x-Komponente
der Verschiebung Δr⃗ des Teilchens?

z

x

1

2

y

4 m
4 m

1 m

2 m

3 m

3 m

3 m 5 m

Abb. 1.F12

13. Im Folgenden finden Sie vier verschiedene Beschrei­
bungen derGeschwindigkeit eines Eishockeypucks in einer
x y-Ebene (in Metern pro Sekunde):

1. vx = −3t2 + 4t − 2 und vy = 6t − 4 ,

2. vx = −3 und vy = −5t2 + 6 ,

3. v⃗ = 2t2 e⃗x − (4t + 3)e⃗ y ,
4. v⃗ = −2te⃗x + 3e⃗ y .

(a) Sind die x- und y-Komponente der Beschleunigung
bzw. der Beschleunigungsvektor a⃗ in allen Fällen konstant?
(b)Wie lauten in Fall (4) die Einheiten der Koeffizienten−2
und 3, wenn v⃗ in Metern pro Sekunde und t in Sekunden
angegeben wird?

14. Zu einem bestimmten Zeitpunkt besitze ein Ball die
Geschwindigkeit v⃗ = 25e⃗x−4,9e⃗ y (die x-Achse verläuft ho­
rizontal, die y-Achse ist nach oben gerichtet und v⃗ wird in
Metern pro Sekunde angegeben). Hat der Ball den höchs­
ten Punkt seiner Trajektorie schon durchlaufen?

15. Sie sollen eine Raketemit einer der folgendenAnfangs­
geschwindigkeiten vom Boden aus starten:

1. v⃗0 = 20e⃗x + 70e⃗ y ,
2. v⃗0 = −20e⃗x + 70e⃗ y ,
3. v⃗0 = 20e⃗x − 70e⃗ y ,
4. v⃗0 = −20e⃗x − 70e⃗ y .

In IhremKoordinatensystemverläuft x parallel zum Boden
und y nimmt nach oben hin zu. (a)Ordnen Sie die Vektoren
in absteigender Reihenfolgenach denBeträgender Startge­
schwindigkeiten. (b) Ordnen sie die Vektoren in absteigen­
der Reihenfolge nach den Flugzeiten der Projektile.

16. Ein Flugzeug, das in horizontaler Richtung mit einem
konstanten Geschwindigkeitsbetrag von 350 km/h über
den ebenen Erdboden fliegt, werfe ein Paket mit Lebens­
mitteln ab. VernachlässigenSie die Auswirkungen des Luft­
widerstands auf das Paket. Wie lauten (a) die vertikale und
(b) die horizontale Komponente der Anfangsgeschwindig­
keit des Pakets? (c) Wie lautet die horizontale Geschwin­
digkeitskomponente, unmittelbar bevor das Paket auf dem
Boden auftrifft? (d) Wenn das Flugzeug stattdessen mit ei­
nem Geschwindigkeitsbetrag von 450 km/h fliegen würde,
wäre die Fallzeit des Pakets dann länger, kürzer oder gleich
lang?

17. Sie werfen einen Ball mit einer Wurfgeschwindigkeit
v⃗1 = (3m/s)e⃗x + (4m/s)e⃗ y gegen eine Wand, auf der er
zur Zeit t1 nach dem Wurf in einer Höhe h1 auftrifft
(Abb. 1.F17). Nehmen Sie an, die Wurfgeschwindigkeit sei
stattdessen gleich v⃗1 = (5m/s)e⃗x + (4m/s)e⃗ y .
(a) Wäre die Zeit, die der Ball bis zurWand braucht, in die­

sem Fall größer als, kleiner als oder genauso groß wie
t1 – oder lässt sich diese Frage ohne Zusatzinformatio­
nen gar nicht beantworten?

h1

Abb. 1.F17

(b) Wäre die Höhe, in welcher der Ball auf der Wand auf­
trifft, größer als, kleiner als oder genauso groß wie h1 –
oder lässt sich diese Frage gar nicht beantworten?
Nehmen Sie nun an, dass die Wurfgeschwindigkeit
stattdessen v⃗1 = (3m/s)e⃗x + (5m/s)e⃗ y ist.

(c) Wäre die Zeit, die der Ball bis zurWand braucht, in die­
sem Fall größer als, kleiner als oder genauso groß wie
t1 – oder lässt sich diese Frage gar nicht beantworten?

32



D. Halliday, R. Resnick und J. Walker.: Halliday Physik für natur- und ingenieurwissenschaftliche Studiengänge —
2019/8/28 — Seite 33 — le-tex

11.14 Fragen

(d) Wäre die Höhe, in welcher der Ball auf der Wand auf­
trifft, größer als, kleiner als oder genauso groß wie h1 –
oder lässt sich diese Frage gar nicht beantworten?

18. Abbildung 1.F18 zeigt drei Bahnkurven eines Fußballs,
der vom Boden aus geschossen wurde. Vernachlässigen
Sie die Auswirkungen des Luftwiderstands und ordnen Sie
die Bahnkurven in absteigender Reihenfolge (a) nach den
Flugzeiten, (b) der vertikalen Komponente der Anfangsge­
schwindigkeit, (c) der horizontalen Komponente der An­
fangsgeschwindigkeit und (d) dem Betrag der Anfangsge­
schwindigkeit.

1 2 3
Abb. 1.F18

19. Abbildung 1.F19 zeigt dieGeschwindigkeit und die Be­
schleunigung eines Teilchens zu einem bestimmten Zeit­
punkt in drei verschiedenen Situationen. In welcher die­
ser Situationen (a) wächst der Geschwindigkeitsbetrag an,
(b) nimmt der Geschwindigkeitsbetrag ab, (c) bleibt der
Geschwindigkeitsbetrag gleich, (d) ist v⃗ ⋅ a⃗ positiv, (e) ist
v⃗ ⋅ a⃗ negativ und (f ) ist v⃗ ⋅ a⃗ = 0?

(1) (2) (3)

v v v

a

a

a

Abb. 1.F19

20. Abbildung 1.F20 stellt vier Gleise dar (deren Kurven
entweder aus Viertel- oder Halbkreisen bestehen), die ein
Zug mit konstanter Geschwindigkeit befährt. Ordnen Sie
die Gleise in absteigender Reihenfolge nach demBetrag der
Beschleunigung des Zugs auf dem gekrümmten Teil der
Gleise.

3

4

2

1

Abb. 1.F20

21. (a) Ist es möglich, beschleunigt zu werden, während
man sichmit konstantemGeschwindigkeitsbetrag bewegt?

Ist esmöglich, eine Kurve (b)mit einer Beschleunigung von
null und (c) mit einer Beschleunigung, deren Betrag kon­
stant bleibt, zu durchfahren?

22. Ein Ball wird mit einer bestimmten Anfangsgeschwin­
digkeit vom Boden aus geschossen. Abbildung 1.F22 zeigt
die Reichweite R des Schusses als Funktion des Abschuss­
winkels θ. Ordnen Sie die drei bezeichneten Punkte auf der
Kurve in absteigender Reihenfolge (a) nach der gesamten
Flugdauer des Balls und (b) nach dem Betrag seiner Ge­
schwindigkeit am höchsten Punkt seiner Flugkurve.

R

θ

B

A

C

Abb. 1.F22

23. Das Teilchen P in Abb. 1.F23 vollführt eine gleich­
förmige Kreisbewegung um den Ursprung des x y-Koor-
dinatensystems. (a) Bei welchen Werten von θ besitzt die
vertikale Komponente r y des Ortsvektors den größten Be­
trag? (b) Bei welchen Werten von θ besitzt die vertikale
Komponente vy des Geschwindigkeitsvektors den größten
Betrag? (c) Bei welchen Werten von θ besitzt die vertikale
Komponente ay des Beschleunigungsvektors den größten
Betrag?

x

y

θ
r

P

Abb. 1.F23

24. Sie fahren direkt hinter einem Pickup mit derselben
Geschwindigkeit wie dieser. Eine Kiste fällt von der Lade­
fläche desWagens. (a) Kollidiert Ihr Automit der Kiste, be­
vor sie auf dem Boden aufschlägt, wenn Sie weder brem­
sen noch ausweichen? (b) Ist die horizontale Geschwindig­
keit derKistewährend ihres Falls größer, kleiner oder gleich
groß wie die des Pickups?

25. An welchem Punkt der Flugbahn eines Geschosses ist
der Betrag seiner Geschwindigkeit minimal?

26. Beim Kugelstoßen wird die Kugel von oberhalb der
SchulterhöhedesAthleten gestoßen. Ist der Abwurfwinkel,
der den weitesten Wurf erzielt, größer oder kleiner als 45°
oder gleich 45°?
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