Contents

1.1 On Zero-Gravity 1.2 Surface or Capillary Forces 1.3 On the History of the Problem 1.4 Subject Matter of the Book	1 3 6 9
Part I Statics	
2. Equilibrium Shapes of a Liquid	16
2.1 Equilibrium Conditions	16
2.1.1 Basic Assumptions and Notations	16
2.1.2 Hydrostatic Conditions	17
2.1.3 Equilibrium of a Capillary Free Surface	18
2.1.4 Derivation of Equilibrium Conditions from the Variational	
Principle of Stationary Potential Energy	19
2.1.5 Vessel with a Nonsmooth Surface	21
2.1.6 Other Generalizations	22
2.2 The Equilibrium Surface Problem	25
2.2.1 Arbitrary Parametric Representation of a Surface	25
2.2.2 Equilibrium Surface with an Equation of the Type $z = f(x, y) \dots$	29
2.2.3 Axisymmetric Equilibrium Problem	30
2.2.4 Plane Equilibrium Problem	32
2.2.5 Equation for a Bundle of Equilibrium Surfaces	32
2.2.6 On Mass Force Potential and Similitude Numbers	33
2.3 The Construction of Simply Connected Axisymmetric Equilibrium Shapes	34
2.3.1 Family of Equilibrium Lines	34
2.3.2 Determination of an Equilibrium Line from Known Values	
of α and v	35
2.4 The Axisymmetric Problem for a Vessel at Rest	38
2.4.1 General Remarks	38
2.4.2 Positive Loading	39
2.4.3 Negative Loading	40
2.4.4 Zero-Gravity	43
2.4.5 Examples	46
2.4.6 Reference Commentaries	48
2.5 Axisymmetric Shapes of a Rotating Liquid Under Zero-Gravity	50
2.5.1 Properties of the Solutions of Equilibrium Differential Equations	50

	2.5.2	Solution in Elliptic Integrals	52
	2.5.3	Equilibrium Surfaces in a Vessel	53
	2.5.4	Equilibrium Shapes of a Rotating Drop	55
	2.5.5	Reference Commentaries	56
2.6	Axisyr	nmetric Rotation Problem in a Gravitational Force Field	57
	2.6.1	General Remarks	57
	2.6.2	Cylinder	59
	2.6.3	Cone and Sphere	59
	2.6.4	Application of the First Integral of the Equilibrium Equation	60
2.7	Axisyr	nmetric Problem for Large Bond Numbers	61
	2.7.1	Formulation of the Problem	61
	2.7.2	Construction of the Asymptotic Expansion	62
	2.7.3	Boundary Layer Equation	63
	2.7.4	Remarks	66
	2:7.5	Reference Commentaries	67
2.8	An Ax	kisymmetric Flat (Gently Sloping) Equilibrium Surface	67
	2.8.1	General Remarks	67
	2.8.2	Cone and Cylinder	69
	2.8.3	Drop on a Plane	71
2.9	Doubl	y Connected Axisymmetric Equilibrium Surfaces	72
	2.9.1	State of Rest Under Zero-Gravity	72
	2.9.2	Gravitational Force Field	76
	2.9.3	Rotation of a Liquid Under Zero-Gravity	82
	2.9.4	Annular Equilibrium Shapes	83
2.10	The P	lane Problem for a Gravitational Force Field	83
		Properties of Integral Curves	85
		Solution in Elliptic Integrals	86
		Determination of the Shape of a Symmetric	
		Equilibrium Line	87
	2.10.4	Channel with a Semi-Infinite Cross Section	88
		Linearized Problem	92
2.11		wo-Dimensional Problem for Large Bond Numbers	94
		Formulation of the Two-Dimensional Problem	94
		Construction of the Asymptotic Expansion	96
2.12	Nume	erical Methods of Constructing Equilibrium Surfaces of a	
_,		ral Type	98
		Variational Problem	98
		2 Method of Local Variations	99
	2.12.3	3 Optimal Discretization Method	101
	2.12.4	Review of Other Methods and Results	102
2.13		Perturbations of the Equilibrium Surface	104
	2.13.1	Formulation of the Problem	104
	2.13.2	2 Linearization of the Problem	104
		3 Axisymmetric Case	108
		4 Small Bond Numbers	109
	2.13	5 Gently Sloping (Flat) Surfaces	110
	2.13.6	6 Nonaxisymmetric Shapes of a Drop on a Plane	115
	2.13	7 On Numerical Construction of Equilibrium Surfaces	119
	•		

	Contents	XIII
3.	Stability of Equilibrium States of a Liquid	120
	3.1 Introduction	120
	3.2 The Second Variation of Potential Energy	125
	3.2.1 Expression for the Second Variation	125
	3.2.2 Spectral Stability Criterion	126
	3.2.3 Axisymmetric Unperturbed Problem	129
	3.2.4 Parameter-Dependent System	130
	3.2.5 Stability of Cylindrical Equilibrium Surfaces in a Channel	133
	3.3 Simply Connected Equilibrium Surfaces in the Axisymmetric Problem	134
	3.3.1 Properties of Eigenvalues	134
		135
	3.3.2 Maximal Stability Regions	136
	3.3.3 Critical Value of the Parameter χ_1	130
	3.4 Critical Values of the Boundary Parameter for Main Types	127
	of Force Fields	137
	3.4.1 Zero-Gravity	137
	3.4.2 Horizontal Equilibrium Surface in a Uniform Gravitational	420
	Force Field	139
	3.4.3 Uniform Field, Positive Loads	140
	3.4.4 Uniform Field, Negative Loads	142
	3.4.5 Liquid Rotating Under Zero-Gravity	143
	3.4.6 Example	146
	3.5 The Determination of Critical Loads	146
	3.5.1 Cylindrical Vessel	147
	3.5.2 Liquid in a Cone	150
	3.5.3 Pendent Liquid Drop on a Horizontal Plane	152
	3.5.4 Liquid with a Doubly Connected Free Surface	154
	3.6 On the Stability of Axisymmetric Equilibrium Forms of a Rotating Liquid	156
	3.6.1 Liquid in a Cylindrical Vessel	157
	3.6.2 Cylindrical Free Surface	160
	3.6.3 Liquid Column Between Parallel Plates	162
	3.6.4 Stability of an Infinite Liquid Column	163
	3.7 Two Classical Problems	164
	3.7.1 Rotating Liquid Drop	164
	3.7.2 Annular Equilibrium Configurations	166
	3.8 The Stability of Cylindrical Equilibrium Surfaces in Channels	
	for Specific Force Fields	167
	3.8.1 General Case	168
	3.8.2 Stability of Symmetric Equilibrium States	170
	3.8.3 Zero-Gravity Conditions	172
	3.8.4 Horizontal Equilibrium Surface in a Gravitational Force Field	173
	3.8.5 Uniform Field, Positive Loads	174
	3.8.6 Uniform Field, Negative Loads	176
	3.8.7 Rectangular Channel	179
	3.8.8 Plane Drop on a Horizontal Plate	181
	3.8.9 Sectorial Channel	182
	3.9 Stable Equilibrium of a Free Surface in Contact with the Edge of a Vessel	183
	3.9.1 Formulation of the Problem	183
	3.9.2 Conditions of Nonnegative $\delta \mathscr{U}$	184
	5.5.2 Conditions of Inolinegative Ou	104

		3.9.3	Conditions of Stability in Terms of $\delta^2 \mathscr{U}$	186
		3.9.4	Axisymmetric Case	186
		3.9.5	Drop in Contact with an Edge	187
		3.9.6	Limiting Case	188
	3.10	Quasis	tatic Evolution and Rupture of an Equilibrium Shape	189
			Introduction	189
		3.10.2	Extrusion of a Liquid from a Circular Orifice	189
			Transporting Water in a Sieve	193
	3.11		orium Stability of a Liquid Zone	194
		3.11.1	Zero-Gravity	194
			Floating Zone Method	198
		3.11.3	Gravitational Force Field	199
		3.11.4	Problem I	200
		3.11.5	Problems II and III	202
		3.11.6	General Stability Criterion	206
	3.12	The St	ability of an Equilibrium State with an Unconnected Free Surface	207
		3.12.1	Formulation of the Problem	207
			Analogue of Maxwell's Problem	209
		3.12.3	Vessels with Cylindrical Sections	209
		3.12.4	Sectional Axisymmetric Problem	211
		3.12.5	Properties of Eigenvalues	211
		3.12.6	Method of Calculating Stability	213
		3.12.7	Example	214
			Closed Systems	215
		3.12.9	Reference Commentaries	218
4	Rifu	rcation	of Equilibrium States	219
٦.	4.1		uction	219
	4.2		ation of Equilibrium Shapes. The General Case	223
	7.2	4.2.1	Case of the Expansibility of a Solution in Integral Powers	
		7.2.1	of the Parameter	223
	4	4.2.2	Expansion of the Solution into Integral and Half-Integral	
		1.2.2	Powers of the Parameter	229
		4.2.3	Variants	230
	4.3		ation in a Circular Cylinder for a Gravitational Force Field	232
		4.3.1	Formulation of the Problem	232
		4.3.2	The Case $\alpha = \pi/2$	233
		4.3.3	Arbitrary Wetting Angle	235
		4.3.4	Stability Margin	240
	4.4		Problems	242
		4.4.1	Pendent Drop on a Horizontal Plane	242
		4.4.2	Bifurcation of the Axisymmetric Shape at the Edge of a Vessel	246
		4.4.3	Rotating Cylindrical Column of Liquid	249
		4.4.4	Rotating Drop	253
		4.4.5	Plane Problem for a Rectangular Channel	257
		4.4.6	Plane Problem of a Pendent Drop	261
	4.5		Plane Problem of a Pendent Drope Concept of the Stability Margin in Problems of Fluid Mechanics	261 262

Contents	XV-
4.5.2 Three Examples	263
4.5.3 On Continuous Chains of Stable States	264
4.5.4 Possible Approach to the Concept of the Stability Margin	265
4.5.5 Other Approaches	267
4.6 The Lyapunov-Schmidt Method	269
4.6.1 Fredholm Operators	269
4.6.2 Local Extensions of Solutions of Nonlinear Equations	270
4.6.3 Application to the Problem of Bifurcation of Equilibrium Shapes.	273
Part II Small Oscillations	
5. Small Oscillations of an Ideal Liquid	276
5.1 Introduction	276
5.2 Formulation of the Small Oscillations Problem for an Ideal Liquid	277
5.2.1 Basic Equations	277
5.2.2 Dynamic Condition on an Equilibrium Surface	278
5.2.3 Transition to Dimensionless Variables. Normal Oscillations	280
5.3 Simple Problems Admitting Separation of Variables	281
5.3.1 Cylindrical Vessel	282
5.3.2 Rectangular Channel	285
5.3.3 Conic Vessel	286
5.3.4 Vessel in the Form of a Cylindrical Sector. Liquid Column	289
5.3.5 Spherical Self-Gravitating Liquid Layer	291
5.3.6 Supplement. Nonlinear Radial Oscillations of a Bubble	294
5.4 Transition to the Operator Equation	296
5.4.1 Derivation of the Equation	296
5.4.2 Orthogonal Expansion of the Space $L_2(\Omega)$ of Vector-Functions	300
5.4.3 Projection of Euler's Equation	301
5.4.4 Refinement of the Properties of Operators $\mathscr A$ and $\mathscr B$	302
5.4.5 Energy Spaces	303
5.5 Normal Oscillations and Variational Methods for Determining	
Their Frequencies	304
5.5.1 Spectrum Structure, Completeness of the System	
of Eigenfunctions	304
5.5.2 On the Stability of Equilibrium States	306
5.5.3 Extremal Properties of Eigenvalues	308
5.5.4 Ritz Method	310
5.5.5 Application of the Eigenfunctions of Operators \mathscr{A} and \mathscr{B}	311
5.6 Oscillations of a System of Immiscible Liquids	312
5.6.1 Formulation of the Problem	312
5.6.2 Transition to Operator Equation	313
5.6.3 Variational Methods	315 315
5.6.4 Some Alternative Versions	317
5.6.5 Examples 5.6.6 Operator Treatment of the Problem of Oscillations of a System	31/
of Immissible Liquids	320

	5.7	A Rotating Liquid. Application of the Function of State	322
		5.7.1 General Case	323
		5.7.2 Function of State	324
		5.7.3 Normal Oscillations	325
		5.7.4 Oscillations of a Liquid Column Under Zero-Gravity	326
		5.7.5 Asymptotic Formulas	328
		5.7.6 General Conclusions	329
		5.7.7 Variational Approach	330
		5.7.8 System of Immiscible Liquids	331
		5.7.9 Oscillations of Two Liquids in a Cylindrical Vessel	332
	5.8	Functional Approach to the Problem of Oscillations of an Ideal	
		Rotating Liquid	334
		5.8.1 Projection of Equations of Motion	334
		5.8.2 Transition to the Operator Equation	335
		5.8.3 Properties of Operators of the Problem	337
		5.8.4 Normal Oscillations	338
		5.8.5 On the Existence of Surface Waves	340
		5.8.6 On the Completeness and Minimality of Surface Wave Modes	344
		5.8.7 On the Existence of Internal Waves	346
6.		thods of Calculating Linear Oscillations of an Ideal Liquid	349
	6.1	Plane Oscillations in a Rectangular Channel	349
		6.1.1 Ritz Method	349
		6.1.2 Computations	352
		6.1.3 Results of Computations	352
	6.2	Plane Oscillations in a Sectorial Channel	355
		6.2.1 Method of Collocation	355
		6.2.2 Results of Computations	357
	6.3	Plane Problem on the Oscillations of a Weightless Drop Abutting a Plane	358
		6.3.1 Introduction	358 359
		6.3.2 Integral Equations Method	361
		6.3.3 Results of Computations6.3.4 Asymptotic Formulas for Small α	362
		6.3.5 Plane Problem on the Oscillations of a Bubble	365
	<i>6</i> 1	Plane Oscillations in a Circular Channel	366
	0.4	6.4.1 Application of the Ritz Method	366
		6.4.2 Results of Computations	366
		6.4.3 Asymptotic Formulas for Small and Large Fillings	368
	6.5	Oscillations in a Circular Cylindrical Vessel	369
	0.5	6.5.1 Introduction	369
		6.5.2 Application of Method 1	370
		6.5.3 Application of Method 2	371
		6.5.4 Results of Computations; the Principal Mode	373
		6.5.5 Results of Computations; Other Modes	374
		6.5.6 On the Calculation of Frequencies and Oscillation Modes	5,-
		of a Rotating Liquid	375
	6.6	Oscillations in a Spherical Vessel	378
	0.0	6.6.1 Introduction	370

	Contents	XVII
	6.6.2 Method of Numerical Solution	382
	6.6.3 Results of Computations	
	6.6.4 Asymptotic Formulas for Small and Large Fillings	
	6.6.5 Oscillations of a Weightless Drop Adjoining a Plane	
	6.6.6 Oscillations of a Rotating Liquid Drop	
7.	Linear Oscillations of a Viscous Liquid	392
	7.1 Introduction	
	7.2 Formulation of the Problem. Properties of the Spectrum	392
	7.2.1 Basic Equations	392
	7.2.2 Normal Oscillations	394
	7.2.3 Properties of the Spectrum	396
	7.2.4 Stability Theorem	397
	7.2.5 Application of Galerkin's Method	397
	7.3 Free Oscillations of a Self-Gravitating Liquid Globe	398
	7.3.1 Generalized Spherical Functions	398
	7.3.2 Characteristic Equation of the Problem	401
	7.3.3 Properties of the Spectrum for any ν	403
	7.3.4 Asymptotic Formula for the Minimum Eigenvalue for $l \rightarrow \infty$	407
	7.3.5 Asymptotic Formula for Low Viscosity	409
	7.3.6 Asymptotic Formula for High Viscosity	
	7.3.7 Other Cases	
	7.4 Oscillations of a Rotating Liquid Circle. Model Problem	
	7.4.1 Derivation of the Characteristic Equation	
	7.4.2 Properties of the Spectrum for $\omega_0 = 0$	
	7.4.3 General Properties of the Spectrum for $\omega_0 \neq 0$	
	7.4.4 Limiting Cases	
	7.4.5 Effect of Gyroscopic Stabilization	
	7.4.6 Special Cases	
	7.5 Oscillations of a Low-Viscosity Rotating Liquid Ring	
	7.5.1 Basic Equations	
	7.5.2 Problem of Normal Oscillations of an Ideal Liquid	
	7.5.3 Low Viscosity	
	7.5.4 Oscillations of a Coaxial System of Liquids	
	7.6 Oscillations of a Spherical Layer of a Low-Viscosity, Self-Gravita	-
	Liquid	
	7.6.1 Formulation of the Problem	
	7.6.2 Boundary Layer Method	
	•	
	7.6.4 Variants	
	7.7 Application of the Boundary Layer Method for an Axisymmetric Vess	
	7.7.1 General Scheme of the Boundary Layer Method7.7.2 Derivation of Boundary Layer Solutions	
	7.7.2 Derivation of Boundary Layer Solutions	
	7.7.4 Special Cases	
	7.7.4 Special Cases	
	7.8.1 Peculiarities of the Problem	
	7.6.1 1 Committee of the 1 folicill	, 774

7.9	7.8.2 7.8.3 Genera	Determination of the Quantity λ^2	443 444
		ary Liquid	445
	7.9.1	Formulation of the Problem	446
	7.9.2	Two Auxiliary Problems	446
`	7.9.3 7.9.4	Transition to the Operator Equations	449
		Operators of the Problem	451
	7.9.5	The Basic Theorem	455
	7.9.6	Asymptotic Form for High Viscosity	456
7.10		nce Indications for Part II	459
		Oscillations of an Ideal Liquid	459
	7.10.2	Oscillations of a Viscous Liquid	460
Part I	II Co	onvection	
		in a Self-Gravitating Liquid	464
8.1		uction	464
8.2		slation of the Problem	465
	8.2.1	Equilibrium Conditions	465
	8.2.2	Equations of Free Convection	466
	8.2.3	Operator Equations	469
8.3		ty Boundary for a Spherical Layer with Rigid Walls	470
	8.3.1	Separation of Variables	470
	8.3.2	Properties of Kernels $G_k(r, s)$	473
	8.3.3	Properties of Eigenvalues	474
	8.3.4	Methods of Finding the Critical Rayleigh Numbers	476
	8.3.5	Convection in a Spherical Vessel	477
	8.3.6	Convection in a Thin Layer	478
8.4	_	cal Layer with a Free Outer Surface	479
	8.4.1	Boundary-Value Problem	479
	8.4.2	Reduction to an Integral Equation	481
	8.4.3	Properties of Kernels	482
	8.4.4	Properties of Eigenvalues	483
	8.4.5	Thin Spherical Layer	486
	8.4.6	Layer with an Inner Free Surface	488
8.5		ation of Solutions	490
	8.5.1	Bifurcation Points	490
	8.5.2	Bifurcation Equation in the Convection Problem	491
	8.5.3	Application of the Method of Indeterminate Coefficients	494
	8.5.4	Stability of Convective Motion	494
	8.5.5	Calculation of Convection Flow in a Sphere	498
	8.5.6	Direct Numerical Computation	503
	8.5.7	Influence of Rotation	
	8.5.8	Some Additional Reference Commentaries to Chap. 8	507

	· ·	Contents	XIX
).	Thermocapillary Convection		508
	9.1 Introduction		508
	9.1.1 Formulation of the Problem		508
	9.1.2 Reference Commentaries		510
	9.2 Stability Boundary		511
	9.2.1 Spherical Layer		511
	9.2.2 Thin Layer		516
	9.2.3 A Bubble and a Drop		517
	9.2.4 Rectangular Channel: Formulation of the Problem		520
	9.2.5 Application of Galerkin's Method		522
	9.2.6 Reference Commentaries		524
	9.3 Convective Flows in a Spherical Layer After Loss of Stability.		52 4
	9.3.1 Formulation of the Problem		526
	9.3.2 Difference Scheme		529
	9.3.3 Flow Structure and Intensities		531
	9.4 Forced Thermocapillary Flows in a Rectangular Channel		533
	9.4.1 Formulation of the Problem; the Newton-Kantorovich M		533
			535
	9.4.2 Structure of Convection		535
			540
	9.4.4 Reference Commentaries	• • • • • • • • •	540 541
	9.5 Thermocapillary Motion in a Thin Liquid Layer	• • • • • • • • • •	541
	9.5.1 Formulation of the Problem		542
	9.5.2 Derivation of the Equation for a Thin Layer		
	9.5.3 Steady-State Solution		546
	9.5.4 Limiting Regimes of Spreading of a Drop		547
	9.5.5 Stability of a Layer of Constant Thickness		548
	9.6 Nonlinear Thermocapillary Convection in Processes of Space T		
	(Reference Commentaries)		549
	9.6.1 Effect of Convection on Preparation of New Materials		~ 40
	Zero-Gravity Conditions		549
	9.6.2 Migration of a Bubble and a Drop	• • • • • • • • •	551
	C		553
K	ferences		553 553
	References to Preface and Introduction		558
	References to Part I (Chapters 2 – 4)		
	Supplementary References		566
	References to Part II (Chapters 5 – 7)		567
	Supplementary References		571
	References to Part III (Chapters 8 – 9)		573
	Supplementary References	• • • • • • • • • • • • • • • • • • • •	579
c.	hiect Index		581