CONTENTS

BASIC METHODOLOGICAL PROBLEMS

Kôczy, L. T. Interactive formulation of fuzzy algebra and its application as a model of function capability	9
Novāk, V. The origin and claims of fuzzy logic	21
Novák, V. First-order fuzzy logic and its applications in fuzzy modelling	27
Wagenknecht, M., and K. Hartmann On the solution of direct and inverse problems for fuzzy equation systems with tolerances	37
Gottwald, S. On some theoretical problems concerning the construction of fuzzy controllers	45
Fedrizzi, M., and J. Kacprzyk Essentials of fuzzy sets theory: a linguistic perspective	56
Kacprzyk, J. Fuzzy dispositions as a tool for more human-perception-consistent models in systems analysis	64
FUZZY DECISION - MAKING	
Böttner, R. Fuzzy approach to multiple criteria decision - making	74
Werners, B, A flexible mathematical programming system	86
Ramik, J. An application of fuzzy optimization to optimum allocation of production	96
Khurgin, J.I., and V.V. Polyakov Stability in the problem of multicriterial fuzzy decision— making	105
Khurgin, J.I., and V.V. Polyakov Fuzzy analysis of the group concordance of expert preferences, defined by Saaty matrices	111

Khurgin, J.I., and V.V. Polyakov Fuzzy approach to the analysis of expert data	116
FUZZY MODEL-BUILDING	
Orlovski, S.A. Fuzzy goals and sets of choices in two-person games	125
Straube, B. Model building and fuzzy systems	133
Bocklisch, S.F., and U. Priber A parametric fuzzy classification concept	147
Peschel, M., B. Straube, and W. Mende Fuzzy inferences for the analysis of qualitative behaviour	157
FUZZY STRUCTURE FORMATION	
Straube, B. Some remarks to fuzzy cluster analysis	165
Straube, B. Fuzzy cluster analysis by means of FDA	175
Voigt, HM. Fuzzy structure formation based on natural selection	181
FUZZY APPLICATIONS	
Lipp, HP., and R. Guenther An application of a fuzzy Petri net in complex industrial systems	3 18 8
Weise, A., and W. Kühnel Application of a fuzzy set concept to the design of chemical syntheses	197
Bocklisch, S.F., F. Bilz, and W. Schüler A fuzzy classification diagnosis system	203
Nishiwaki, Y. Possible application of fuzzy set theory to nuclear safety analysis, risk perception and nuclear plant siting evaluation	213
Lederman, L. Summary of the panel discussion on the use of fuzzy set theory to nuclear safety and risk assessment	232