Nomenclature xviii **1** Introduction. Technical Applications 1 1 1.1 1.1.1 Heat conduction 2 1.1.25 1.1.3 Convective heat transfer. Heat transfer coefficient 10 1.1.4 Determining heat transfer coefficients. Dimensionless numbers . . 15Thermal radiation 251.1.51.1.6Radiative exchange 2731 1.21.2.1The overall heat transfer coefficient 311.2.233 1.2.334 Overall heat transfer through walls with extended surfaces 1.2.438 1.340 1.3.1Types of heat exchanger and flow configurations 41 1.3.2General design equations. Dimensionless groups 45501.3.3Countercurrent and cocurrent heat exchangers 1.3.457 1.3.5Operating characteristics of further flow configurations. Diagrams 64 The different types of mass transfer 65 1.4 1.4.1 67 67 68 71 1.4.2Diffusion through a semipermeable plane. Equimolar diffusion . . 73 Convective mass transfer 1.4.3 77 1.581 1.5.181 1.5.285 1.5.3Penetration and surface renewal theories 87

	1.6	Overa	ll mass transfer	92
	1.7	Mass	transfer apparatus	94
		1.7.1	Material balances	95
		1.7.2	Concentration profiles and heights of mass transfer columns	98
	1.8	Exerc	ises	103
2	Hea	at cond	duction and mass diffusion	107
	21	Tho h	eat conduction equation	107
	2.1	2110 H	Derivation of the differential equation for the temperature field	107
		2.1.1	The heat conduction equation for hodies with constant	100
		2.1.2	material properties	111
		2.1.3	Boundary conditions	113
		2.1.0	Temperature dependent material properties	116
		2.1.5	Similar temperature fields	117
	0.0	<u></u>		101
	2.2	Stead	y-state heat conduction	121
		2.2.1	Geometric one-dimensional heat conduction with heat sources	121
		2.2.2	Longitudinal heat conduction in a rod	124
		2.2.3	The temperature distribution in fins and pins	129
		2.2.4	Fin emclency	133
		2.2.3	Geometric multi-dimensional neat now	130
			2.2.5.1 Superposition of heat sources and heat sinks	137
				141
	2.3	Trans	ient heat conduction	142
		2.3.1	Solution methods	143
		2.3.2	The Laplace transformation	144
		2.3.3	The semi-infinite solid	151
			2.3.3.1 Heating and cooling with different boundary conditions .	151
			2.3.3.2 Two semi-infinite bodies in contact with each other	156
			2.3.3.3 Periodic temperature variations	158
		2.3.4	Cooling or heating of simple bodies in one-dimensional heat flow .	161
			2.3.4.1 Formulation of the problem	161
			2.3.4.2 Separating the variables	163
			2.3.4.3 Results for the plate	165
			2.3.4.4 Results for the cylinder and the sphere	169
			2.3.4.5 Approximation for large times: Restriction to the first term in the series	171
			2346 A solution for small times	173
		225	Cooling and heating in multi-dimensional heat flow	174
		2.0.0	2 3 5 1 Product solutions	175
			2.3.5.2 Approximation for small Biot numbers	178
		236	Solidification of geometrically simple bodies	179
		2.0.0	2.3.6.1 The solidification of flat layers (Stefan problem)	180
			2.3.6.2 The quasi-steady approximation	183
			2.3.6.3 Improved approximations	186
		2.3.7	Heat sources	187

 $\mathbf{x}\mathbf{i}$

		2.3.7.1	Homogeneous heat sources	188
		2.3.1.2	Point and linear neat sources	189
2.4	Nume	rical solu	tion to heat conduction problems with difference methods	194
	2.4.1	The sim	ple, explicit difference method for transient heat conduction	105
		problem	$1S \dots \dots \dots \dots \dots \dots \dots \dots \dots $	195
		2.4.1.1	The finite difference equation	195
		2.4.1.2	The stability condition	197
	040	2.4.1.3	Heat sources	198
	2.4.2	Discretia	sation of the boundary conditions	199
	2.4.3	I ne imp	blicit difference method from J. Grank and P. Nicolson	205
	2.4.4	noncart	ies an coordinates. Temperature dependent material	208
		2 / / 1	The discretization of the self adjoint differential experience	200
		2.4.4.1	Constant material properties. Cylindrical coordinates	209
		2.4.4.2	Tomporature dependent material properties	210
	915	2.4.4.5 Transio	at two and three dimensional temperature fields	212
	2.4.0	Stondy	nt two- and time-dimensional temperature news	210
	2.4.0	2461	A simple finite difference method for plane, steady state	210
		2.4.0.1	temperature fields	216
		2462	Consideration of the boundary conditions	219
		2.1.0.2		210
2.5	Nume	rical solu	tion to heat conduction problems with the method of Finite	004
	eleme	nts	· · · · · · · · · · · · · · · · · · ·	224
	2.5.1	The fini	te element method applied to geometrical one-dimensional,	995
	959	The fri	to element method emplied to steady state plane tempera	220
	2.0.2	ture fiel	de	230
	253	The fini	te element method applied to transient geometrical one-	200
	2.0.0	dimensio	onal heat conduction problems	236
	2.5.4	Extensio	on to transient, geometrical two-dimensional heat conduc-	
		tion pro	blems	241
96	Maga	diffusion		949
2.0	Mass	Demont	·····	242
	2.0.1	Dominanti	an af the differential equation for the concentration field	242
	2.0.2	Simplify	on of the differential equation for the concentration field .	240
	2.0.3	Bounda		250
	2.0.4	Stordurg	ry conditions	201
	2.0.0	Steady-s	state mass diffusion with homogeneous chemical reaction	204
	2.0.0	Transi-	t mass diffusion	400 969
	2.0.1	1 ransier	It mass unfusion	202
		2.0.1.1	Transient mass diffusion in a semi-infinite solid	203
		2.0.1.2	with one-dimensional mass flow	264
	_			
2.7	Exerci	ses		266

Co	nte	nts
-	1100	1100

3 Convective heat and mass transfer. Single phase flow 2		
3.1	Preliminary remarks: Longitudinal, frictionless flow over a flat plate	275
3.2	The balance equations	280 280
	3.2.2 The mass balance	282 282 284
	3.2.3 The momentum balance	286 288 292
	 3.2.3.3 The strain tensor	293 295
	3.2.3.5 The Navier-Stokes equations 3.2.4 The energy balance 3.2.4.1 Dissipated energy and entropy 3.2.4.2 Constitutive equations for the solution of the energy	296 297 302
	equation	303 305 308
3.3	Influence of the Reynolds number on the flow	310
3.4	Simplifications to the Navier-Stokes equations 3.4.1 Creeping flows 3.4.2 Frictionless flows 3.4.3 Boundary layer flows	313 313 314 314
3.5	The boundary layer equations	315 315 319 323 323
3.6	Influence of turbulence on heat and mass transfer	327 331
3.7	External forced flow	335 336 336 348
	 3.7.2 The cylinder in crossflow	353 357 361
3.8	Internal forced flow	364 364 365

			3.8.1.2 Thermal, fully developed, laminar flow	367
			3.8.1.3 Heat transfer coefficients in thermally fully developed,	
			laminar flow	369
			3.8.1.4 The thermal entry flow with fully developed velocity	
			profile	372
			3.8.1.5 Thermally and hydrodynamically developing flow	377
		3.8.2	Turbulent flow in circular tubes	379
		3.8.3	Packed beds	380
		3.8.4	Porous bodies	384
			3.8.4.1 Fluid flow and momentum balance	384
			3.8.4.2 The energy balance	387
			3.8.4.3 Heat transfer inside channels	392
		3.8.5	Fluidised beds	398
		3.8.6	Some empirical equations for heat and mass transfer in flow	
			through channels, packed and fluidised beds	407
	3.9	Free fl	0W	411
	0.0	3.9.1	The momentum equation	413
		392	Heat transfer in laminar flow on a vertical wall	417
		393	Some empirical equations for heat transfer in free flow	421
		394	Mass transfer in free flow	423
		0.0.4		120
	3.10	Overla	pping of free and forced flow	425
	3.11	Comp	ressible flows	426
		3.11.1	The temperature field in a compressible flow	426
		3.11.2	Calculation of heat transfer	433
	3.12	Exerci	ses	437
л	Con	vectiv	e heat and mass transfer. Flows with phase change	443
.*				
	4.1	Heat t	ransfer in condensation	443
		4.1.1	The different types of condensation	444
		4.1.2	Nusselt's film condensation theory	446
		4.1.3	Deviations from Nusselt's film condensation theory	450
		4.1.4	Influence of non-condensable gases	454
		4.1.5	Film condensation in a turbulent film	460
		4.1.6	Condensation of flowing vapours	464
		4.1.7	Dropwise condensation	469
		4.1.8	Condensation of vapour mixtures	473
			4.1.8.1 The temperature at the phase interface	477
			4.1.8.2 The material and energy balance for the vapour	481
			4.1.8.3 Calculating the size of a condenser	483
		4.1.9	Some empirical equations	484
	4.2	Heat t	ransfer in boiling	486
		4.2.1	The different types of heat transfer	486
		4.2.2	The formation of vapour bubbles	491
		4.2.3	Mechanism of heat transfer in natural convection boiling	494
			ϕ	

	4.2.4	Bubble frequency and departure diameter	498
	4.2.5	Boiling in free flow. The Nukijama curve	500
	4.2.6	Stability during boiling in free flow	502
	4.2.7	Calculation of heat transfer coefficients for boiling in free flow	505
	4.2.8	Some empirical equations for heat transfer during nucleate	
		boiling in free flow	509
	4.2.9	Two-phase flow	513
		4.2.9.1 The different flow patterns	514
		4.2.9.2 Flow maps	516
		4.2.9.3 Some basic terms and definitions	517
		4.2.9.4 Pressure drop in two-phase flow	520
		4.2.9.5 The different heat transfer regions in two-phase flow	528
		4.2.9.6 Heat transfer in nucleate boiling and convective	
		evaporation	530
		4.2.9.7 Critical boiling states	533
		4.2.9.8 Some empirical equations for heat transfer in two-phase	
		flow	535
	4.2.10	Heat transfer in boiling mixtures	536
4.3	Exerc	ises	542
5 The	ermal :	radiation	545
5.1	Funda	amentals. Physical quantities	545
	5.1.1	Thermal radiation	546
	5.1.2	Emission of radiation	548
		5.1.2.1 Emissive power	548
		5.1.2.2 Spectral intensity	549
		5.1.2.3 Hemispherical spectral emissive power and total intensity	551
		5.1.2.4 Diffuse radiators. Lambert's cosine law	555
	5.1.3	Irradiation	557
	5.1.4	Absorption of radiation	559
	5.1.5	Reflection of radiation	564
	5.1.6	Radiation in an enclosure. Kirchhoff's law	566
52	Radia	tion from a black body	560
0.2	5.2.1	Definition and realisation of a black body	560
	599	The spectral intensity and the spectral omissive power	571
	593	The emissive power and the emission of radiation in a wavelength	071
	0.2.0	interval	574
59	Dadia	tion properties of real hadies	590
0.0	5 2 1		500
	520	The relationships between emissivity abcomptivity and reflectivity	990
	0.0.4	The rev Lambert radiator	5.81
		5.3.9.1 Conclusions from Kirchhoff's law	589
		5.3.2.2. Colculation of absorptivities from emissivities	5.22
		5.3.2.2 Calculation of absorptivities from emissivities	585
	533	Emissivities of real hodies	587
	0.0.0		001

xv

	5.3.3.1 Electrical insulators5.3.3.2 Electrical conductors (metals)5.3.4 Transparent bodies	588 590 593
5.4	Solar radiation	597 598 600 601 604 605 606 608 611
5.5	Radiative exchange	612 613 619 622 623 624 628 630 633
5.6	Gas radiation 5.6.1 Absorption coefficient and optical thickness 5.6.2 5.6.2 Absorptivity and emissivity 5.6.2 5.6.3 Results for the emissivity 5.6.2 5.6.4 Emissivities and mean beam lengths of gas spaces 5.6.5 5.6.5 Radiative exchange in a gas filled enclosure 5.6.5.1 5.6.5.2 Grey isothermal boundary walls 5.6.5.3 5.6.5.3 Calculation of the radiative exchange in complicated cases	637 638 640 643 646 650 650 651 654
5.7	Exercises	655
Appe	ndix A: Supplements	660
A.1	Introduction to tensor notation	660
A.2	Relationship between mean and thermodynamic pressure \ldots	662
A.3	Navier-Stokes equations for an incompressible fluid of constant viscosity in cartesian coordinates	663
A.4	Navier-Stokes equations for an incompressible fluid of constant viscosity in cylindrical coordinates	664
A.5	Entropy balance for mixtures	665

Contents	xvii	
A.6 Relationship between partial and specific enthalpy $\ldots \ldots \ldots \ldots$ A.7 Calculation of the constants a_n of the Graetz-Nusselt problem (3.245) \ldots	666 667	
Appendix B: Property data		
Appendix C: Solutions to the exercises		
Literature		
Index		