

Contents

I. General Principles

I.1	Mechanical Principles of Architecture of Eukaryotic Cells	
	J. BEREITER-HAHN (With 7 Figures)	3
1.1	Introduction	3
1.2	Basic Mechanical Parameters of Cells	3
1.3	Cellular Viscosity	6
1.4	Elasticity, Contractile Forces, and Surface Tension	7
1.5	The Structural Basis of Cell Mechanics	11
1.5.1	Actin and Actin-Based Structures	12
1.5.2	Membrane-Associated Actin Fibrils	14
1.5.3	Microtubules and Related Structures	15
1.5.4	Intermediate Filaments and Related Structures	18
1.6	Aspects of Cytoplasmic Architecture	19
1.6.1	Localization of Organelles	20
1.6.2	Interaction of Cytoskeletal Elements in Generating Cell Shape	21
1.6.3	Cytoplasmic Streaming	23
1.7	Physiological Effects of Mechanical Stresses	24
1.7.1	Mechanical Aspects of Morphogenesis During Embryo Development	24
1.7.2	Influences of Mechanical Stresses on Cellular Metabolism	24
	References	25
I.2	Evaluation of Cytomechanical Properties	
	Y. HIRAMOTO (With 10 Figures)	31
2.1	Introduction	31
2.2	Physical Structure of the Cell	31
2.3	Mechanical Properties of the Cell Surface	32
2.3.1	Relationship Between the Surface Force and the Internal Pressure of the Cell	32
2.3.2	Direct Measurement of the Internal Pressure	33
2.3.3	Indirect Measurements of the Surface Force and the Internal Pressure	33

2.3.3.1	Compression Method	34
2.3.3.2	Suction Method	34
2.3.3.3	Stretching Method	36
2.3.3.4	Sessile Drop Method	36
2.3.4	Elasticity and Viscoelasticity of the Cell Surface	37
2.4	Mechanical Properties of the Endoplasm	38
2.4.1	Measurements of Mechanical Properties of the Endoplasm	38
2.4.1.1	Centrifuge Method	39
2.4.1.2	Magnetic Particle Method	39
2.4.1.3	Capillary Method	41
2.4.1.4	Brownian Movement Method	43
2.4.1.5	Diffusion Method	43
2.4.2	Relationship Between the Mechanical Properties and Submicroscopic Structure of the Endoplasm	44
	References	45

I.3 Use of Finite Element Methods in Cytomechanics: Study of the Mechanical Stability of the Skeletal Basal Plate of *Callimitra* a Biomineralizing Protozoan

G. L. STEUCEK, R. R. ARCHER, and O. R. ANDERSON

(With 3 Figures) 47

3.1	Introduction	47
3.2	<i>Callimitra</i> Architecture	48
3.3	Finite Element Approach	49
3.4	Further Applications of FEM and Their Implications	52
	References	53

I.4 Mechanics and Hydrodynamics of Rotating Filaments

R. JAROSCH (With 23 Figures) 54

4.1	The Molecular Basis of Filament Rotation	54
4.2	Longitudinal (Screw-Mechanical) Effects	56
4.2.1	Waving and Screwing	56
4.2.2	The Oscillation	59
4.2.3	Control of Polymerization and Depolymerization	59
4.2.4	The Translocation of Particles	62
4.2.5	Crossbridges	65
4.3	Lateral (Hydrodynamic) Effects	68
4.3.1	Pattern of Flows	68
4.3.2	Flows Adjacent to a Wall	69
4.3.3	Flows and Molding of an Adjacent Liquid Surface	70
4.3.4	Rolling Motions and Self-Arrangements	70
	References	72

II. The Supramolecular Level

II.1	Mechanical Concepts of Membrane Dynamics: Diffusion and Phase Separation in Two Dimensions	
	K. BECK (With 6 Figures)	79
1.1	Introduction	79
1.2	Translational Diffusion in Fluid Phase Membranes	80
1.2.1	Net Transport by Diffusion: The Einstein-Smoluchowski Equation	80
1.2.2	Diffusion Modeled as a Stochastic Random Walk: The Free Volume Model	81
1.2.3	Diffusion Modeled by Continuum Hydromechanics: The Saffman-Delbrück Model	85
1.2.4	Diffusion in Biological Membranes	88
1.3	Fluid-Solid Phase Separation in Two Dimensions	90
1.3.1	Effective Medium and Percolation Theory	90
1.3.2	Phase Separation in Lipid Monolayers	92
1.3.3	Phase Separation in Biological Membranes	95
1.4	Concluding Comments	96
	References	96
II.2	Implications of Microtubules in Cytomechanics: Static and Motile Aspects	
	D. G. WEISS, G. M. LANGFORD, and R. D. ALLEN (With 4 Figures)	100
2.1	Microtubule Structure: Statics and Elasticity	100
2.1.1	Substructure of Microtubules	100
2.1.2	Rigidity of Microtubules	102
2.1.3	Integration of Microtubules into the Cytoskeleton	102
2.2	Microtubule-Associated Dynamics: Motion and Tension	103
2.2.1	Elongation of Microtubules	103
2.2.2	Shortening of Microtubules	104
2.2.3	Treadmilling of Microtubules	104
2.2.4	Organelle Movement Along Microtubules	104
2.2.5	Gliding of Microtubules	106
2.2.6	Sliding of Microtubules	107
2.2.7	Movement of Axostyle Microtubules	108
2.2.8	Complex Interactions of Microtubules	108
2.2.9	Contraction of Microtubule Arrays	108
2.3	Conclusions	109
	References	110

II.3	The Nature and Significance of ATP-Induced Contraction of Microtubule Gels	
	R. C. WEISENBERG (With 2 Figures)	114
3.1	Introduction	114
3.2	Microtubule Gelation-Contraction	114
3.2.1	In Vitro Experiments	114
3.2.2	Significance of Microtubule Gelation-Contraction in Living Cells	116
3.2.2.1	Mitotic Spindle	116
3.2.2.2	Axonal Transport	117
	References	119
II.4	Generation of Propulsive Forces by Cilia and Flagella	
	M. E. J. HOLWILL and P. SATIR (With 1 Figure)	120
4.1	Introduction	120
4.2	Hydrodynamic Interactions	122
4.3	Passive Elastic Properties	125
4.4	Active Mechanical Properties	126
4.5	Conclusions	128
	References	129
II.5	The Cortical Cytoplasmic Actin Gel	
	T. P. STOSSEL, P. A. JANMEY, and K. S. ZANER (With 5 Figures)	131
5.1	Historical Background	131
5.2	The Assembly of Actin and Actin-Binding Proteins Regulating Actin Assembly	134
5.3	The Rheology of Actin and Its Modulation by Actin-Binding Proteins and Other Factors	136
5.4	Actin Gelation in the Cell	144
5.5	Regulation of the Actin Sol/Gel Transformation in the Cell	148
	References	149
II.6	Dynamic Organization and Force Production in Cytoplasmic Strands	
	K.-E. WOHLFARTH-BOTTERMANN (With 5 Figures)	154
6.1	Nature and Locomotory Phenomena of <i>Physarum</i> Plasmodia	154
6.2	The Generation of Hydrostatic Pressure Flow	154
6.3	Contractile Activities as Measured by Tensiometry	157
6.4	Analysis of Morphological Alterations Induced by Stretch Experiments	158
6.5	Nature and Implications of the Contraction Cycle	161

6.6	The Widely Unknown Regulation	162
6.7	Cytomechanical Implications	162
	References	165

III. Mechanical Factors Determining Morphogenesis of Protists

III.1 Determination of Body Shape in Protists by Cortical Structures

	K. HAUSMANN and M. MULISCH (With 13 Figures)	169
1.1	Introduction	169
1.2	Intracellular Cortex Structures	169
1.3	Extracellular Cortex Structures	174
1.4	Concluding Remarks	179
	References	181

III.2 Morphogenetic Forces in Diatom Cell Wall Formation

	A.-M. M. SCHMID (With 11 Figures)	183
2.1	Introduction	183
2.2	Possible Functions of the Diatom Cell Wall	186
2.3	Preconditions of Valve Formation	188
2.3.1	Mitosis and Cleavage	188
2.3.2	The Molding Surface: The Plasmalemma	190
2.3.3	The Mold for the Valve Outline	191
2.4	Valve Formation	192
2.4.1	The Silica Deposition Vesicle (SDV)	192
2.4.2	The Role of the Nucleus, Microtubule Center, and Microtubules	192
2.4.3	The Molding System for the Valve Pattern	194
2.4.4	Mechanisms for Mechanical Stabilization of the Valve	195
2.4.5	The Organic Coat and Valve Release	196
2.5	Conclusions	197
	References	198

III.3 The Cytoskeletal and Biomineralized Supportive Structures in Radiolaria

	O. R. ANDERSON, M. L. MOSS, and R. SKALAK (With 4 Figures)	200
3.1	Introduction	200
3.2	Cytoskeletal Organization of the Axopodia	201
3.3	Biomineralization and Skeletal Morphogenesis	202
3.3.1	Analysis of Growth Phases	202
3.3.2	Finite Element Analysis	203

3.3.2.1	FEM Descriptors	204
3.3.2.2	FEM Results	206
3.3.2.3	Limitations and Implications of FEM Analysis with Radiolaria	210
	References	211

IV. Mechanical Factors Determining Plant Cell Morphogenesis

IV.1 Mechanical and Hydraulic Aspects of Plant Cell Growth

	D. J. COSGROVE (With 3 Figures)	215
1.1	Introduction	215
1.2	Directionality of Cell Growth	215
1.2.1	Patterns of Expansion	216
1.2.2	Wall Architecture	216
1.2.3	Multinet Growth	217
1.2.4	The Wall Matrix	219
1.3	Wall Loosening and Expansion	219
1.3.1	Physics of Wall Expansion	220
1.3.2	Stress Relaxation	221
1.3.3	Molecular Models of Wall Loosening	222
1.4	Water Uptake and Turgor Maintenance	223
1.4.1	Physics of Water Uptake	223
1.4.2	Restriction of Growth by Water Transport	224
1.4.3	Solute Uptake	225
1.5	Summary	226
	References	226

IV.2 Plant Cytomechanics and Its Relationship to the Development of Form

	P. M. LINTILHAC (With 4 Figures)	230
2.1	Introduction	230
2.2	The Logic of Development	230
2.2.1	The Role of the Genome in the Development of Form	230
2.2.2	The Role of the Environment in the Development of Form	231
2.3	The Architecture of Plant Form	232
2.3.1	Division and Growth. The Basic Events	232
2.3.2	Growth as a Source of Mechanical Stress	232
2.3.3	Factors Affecting Stress Distribution in Embryonic Plant Organs	233
2.3.4	The Role of Stress in the Generation of Form	234
2.4	The Ultrastructural Basis of Cell Behavior	234

2.4.1	The Role of Cytomechanics in the Development of Form	234
2.5	Other Responses to Mechanical Stimuli. Reaction Wood	235
2.5.1	Tropic Responses	235
2.6	Meiosis as a Mechanically-Induced Process	236
2.6.1	The Sporangium as a Stress-Focusing Device	236
2.6.2	Isotropic Stress as a Developmental Effector	237
	References	241
IV.3	Mechanical Properties of the Cyclamen Stalk and Their Structural Basis	
	K. DIERKS and L. HAFNER (With 5 Figures)	242
3.1	Anatomy of the Cyclamen Persicum Flower Stalk	242
3.2	Internal Hydrostatic Pressure	243
3.3	Behavior Under Ultimate Load	244
3.4	Summary	246
	References	246

V. Mechanical Forces Determining the Shape of Metazoan Cells

V.1	Forces Shaping an Erythrocyte	
	R. E. WAUGH and R. M. HOCHMUTH (With 2 Figures)	249
1.1	Introduction	249
1.2	Membrane Elasticity	250
1.2.1	Shear Elasticity	250
1.2.1.1	Molecular Basis of Shear Elasticity	252
1.2.1.2	Metabolic, pH, and Ionic Effects	253
1.2.2	Area Elasticity	253
1.2.2.1	Molecular Basis of Area Elasticity	254
1.2.3	Bending Elasticity	255
1.2.3.1	Molecular Basis of Bending Rigidity	255
1.3	Membrane Viscosity	256
1.3.1	Molecular Basis of Membrane Viscosity	257
1.4	Erythrocyte Shape	257
	References	258
V.2	Hydrostatic Pressure in Metazoan Cells in Culture: Its Involvement in Locomotion and Shape Generation	
	J. BEREITER-HAHN and R. STROHMEIER (With 5 Figures)	261
2.1	Introduction	261
2.2	Osmotic Equations Applied to Cells	261

2.3	Physical State of Cell Water	262
2.4	Solute Leakage	262
2.5	Osmotic Behavior of Cytogel	263
2.6	Generation of Intracellular Hydrostatic Pressure	263
2.6.1	Osmotic Behavior of Cells in Culture	264
2.6.2	Determination of Hydrostatic Pressure in Culture Cells	264
2.6.3	“Visualization” of Tension in the Cortical Fibrillar-Meshwork-Plasma Membrane Complex	266
2.7	Functional Significance of Hydrostatic Pressure in Wall-Free Cells	268
2.7.1	Cell Shape	268
2.7.2	Cell Locomotion	269
2.7.3	Integration of Cells into Tissues	270
2.7.4	Hydraulic Interaction of Organelles	270
	References	270
V.3	The Transmission of Forces Between Cells and Their Environment	
	M. OPAS (With 2 Figures)	273
3.1	Introduction	273
3.2	Focal Contact: Subcellular Level	273
3.3	Traction: Cellular Level	276
3.4	Adhesion: Supracellular Level	280
3.5	Conclusions	281
	References	282
Subject Index		287