Contents

l.	Introduction			1
	1.1	The V	an der Pol oscillator	2
	1.2	Mecha	anical prototypes of relaxation oscillators	5
	1.3	Relaxa	ation oscillations in physics and biology	7
	1.4	Discor	ntinuous approximations	9
	1.5	Match	ed asymptotic expansions	12
	1.6	Forced	doscillations	15
	1.7	Mutua	al entrainment	18
2.	Free	oscilla	tion	23
	2.1	Auton	nomous relaxation oscillation: definition and existence	25
		2.1.1	A mathematical characterization of relaxation oscillations	26
		2.1.2	Application of the Poincaré-Bendixson theorem	28
		2.1.3	Application of the extension theorem	34
		2.1.4	Application of Tikhonov's theorem	42
		2.1.5	The analytical method of Cartwright	52
	2.2	Asym	ptotic solution of the Van der Pol equation	55
			The physical plane	56
		2.2.2	The phase plane	59
		2.2.3	The Lienard plane	67
			Approximations of amplitude and period	70
	2.3		olterra-Lotka equations	72
			Modeling prey-predator systems	72
		2.3.2	Oscillations with both state variables having a large amplitude	74
		2.3.3	Oscillations with one state variable having a large amplitude	76
		2.3.4		83
	2.4	Chem	ical oscillations	87
		2.4.1	The Brusselator	87
		2.4.2	The Belousov-Zhabotinskii reaction and the Oregonator	89
	2.5		cation of the Van der Pol equation with a constant forcing	0.1
		term		91
		2.5.1	Modeling nerve excitation; the Bonhoeffer-Van der Pol equation	92
		2.5.2	Canards	94
	2.6	Stoch	astic and chaotic oscillations	99
		2.6.1		10
		2.6.2	Randomly perturbed oscillations	103
		2.6.3	The Van der Pol oscillator with a random forcing term	10
		2.6.4	Distinction between chaos and noise	112

3.	Forced oscillation and mutual entrainment				
	3.1	Mode	eling coupled oscillations	117	
		3.1.1	Oscillations in the applied sciences	117	
		3.1.2	The system of differential equations and the method of analysis	118	
	3.2	A rig	orous theory for weakly coupled oscillators	123	
	J. _		Validity of the discontinuous approximation	123	
			Construction of the asymptotic solution	125	
			Existence of a periodic solution	128	
			Formal extension to oscillators coupled with delay	130	
	3.3		ling of two oscillators	131	
			Piece-wise linear oscillators	132	
			Van der Pol oscillators	134	
			Entrainment with frequency ratio 1:3	136	
		3.3.4	Oscillators with different limit cycles	138	
	3.4		eling biological oscillations	139	
			Entrainment with frequency ratio n:m	140	
		3.4.2		,	
			quency	141	
		3.4.3	1 2	143	
		3.4.4	•	144	
		345	Periodic structures of coupled oscillators	144	
		3.4.6		148	
			F	140	
4.	The	Van d	er Pol oscillator with a sinusoidal forcing term	151	
	4.1	Quali	tative methods of analysis	153	
		4.1.1	Global behavior and the Poincaré mapping	154	
		4.1.2	The use of symbolic dynamics	157	
		4.1.3	Some remarks on the annulus mapping	158	
	4.2	Asym	ptotic solution of the Van der Pol equation with a		
		mode	rate forcing term	159	
			Subharmonic solutions	160	
		4.2.2	Dips slices and chaotic solutions	167	
	4.3	Asym	ptotic solution of the Van der Pol equation with a		
			forcing term	169	
			Subharmonic solutions	170	
			Dips and slices	179	
		4.3.3	Irregular solutions	182	

Appendices

A:	Asymptotics of some special functions	187
B:	Asymptotic ordering and expansions	189
C:	Concepts of the theory of dynamical systems	190
D:	Stochastic differential equations and diffusion approximations	196
Literature		
Author Index		
Subject Index		

Š