Contents

Ch	iapte	er 1 Classical Theories of Plasticity	1
		Definition of Subject	
	1.2	Hencky-Nadai Deformation Theory	3
	1.3	Hencky Relations	
	1.4	Infinite Thin Plate with a Circular Hole: Comparison of Three	
		Solutions	
	1.5	Ilyushin's Theorems	
	1.6	Prager Deformation Theory	. 32
	1.7	Ilyushin's Space	
	1.8	Isotropy Postulate	. 39
	1.9	Loading Surface	
	1.10		
	1.11		
	1.12	Boundaries of the Applicability of the Hencky-Nadai Relations	. 55
	1.13		
	1.14		
	1.15	· · · · · · · · · · · · · · · · · · ·	
	1.16	Flow Plasticity Theory with Kinematic Hardening	. 75
	1.17	=	
	1.18	Experimental Check of the Laws of Plasticity at Combined Loading	. 81
	1.19	Flow Plasticity Theory with a Singular Loading Surface	. 93
	1.20	Conclusions	. 99
Ch	apte	r 2 The Concept of Slip	
	2.1	One- and Two-Level Models of Deformation	
	2.2	Some Basic Knowledge in the Physics of Metals	
	2.3	The Batdorf-Budiansky Theory of Slip	
	2.4	Uniaxial Strain: Pure Shear	
	2.5	The Cicala Formula	
	2.6	The Cicala Surface	118
	2.7	Analysis of the Budiansky Theory	
	2.8	Generalization of Yield Criterion	
	2.9	The Leonov Theory of Slip	130
	2.10	Shear Strength	133
	2.11	Rehabilitation of the Concept of Slip	135
	2.12	Peculiarities of Plastic Straining under Proportional Loading	139
	2.13	Drucker's Postulate and the Concept of Slip	143
	2.14	Analysis of the Leonov Theory	146

VI Contents

	2.15 Plastic Strain under Combined Loading	147
	2.16 Two Problems	
	2.17 Rearranging in Differential Equations	154
	2.18 Computer-Aided Calculations	158
	2.19 The Concept of Slip and the Isotropy Postulate	159
	2.20 Loading Surface	161
	2.21 The Bauschinger Effect	164
	2.22 Alternating Loading in Tension-Compression	166
	2.23 Loading Surface at Alternating Loading in Tension-Compression	169
	2.24 Conclusions Relative to Shear Strength	171
	2.25 Leonov-Shvajko Model	172
	2.26 Comparison of Two Models	175
	2.27 Discrete Scheme of Slips	177
	·	
C	hapter 3 Synthetic Theory of Plasticity	181
	3.1 Introductory Remarks	181
	3.2 Partial Cases of the Tresca Yield Surface	181
	3.3 Tresca Yield Surface in Five-Dimensional Stress Deviator Space	184
	3.4 Koiter's Result	187
	3.5 Introduction of New Variables	189
	3.6 Modification of Yield Criterion	192
	3.7 Modified Yield Surface	194
	3.8 Tangential Planes and Their Traces	195
	3.9 Basic Equations	
	3.10 Pure Shear	200
	3.11 Proportional Loading	203
	3.12 Cicala Formula	
	3.13 Two-Segment Loading Trajectory	
	3.14 Plastic Strain at Two-Segment Loading Path	
	3.15 Partial Cases	
	3.16 Loading Surface	
	3.17 Another Variant of the Deformation Anisotropy	
	3.18 Alternating Torsion	
	3.19 Proportional Alternating Loading	
	3.20 Discussion.	
C	hapter 4 The Creep Theory	237
	4.1 General Remarks	237
	4.2 Non-homogenous Distribution of Strains and Stresses of the	
	Second Kind	240
	4.3 Local Peak Stresses	
	4.4 Elastic Area	
	4.5 Mathematical Measure of Local Peak Stresses	
	4.6 Properties of the Integral of Non-homogeneity	
	4.7 Account of Loading Rate	
	4.8 The Creep and Yield Limit	

Contents

	Influence of Loading Rate on Stress-Strain Diagram in Pure Shear	
4.10	Sudden Increase in Loading Rate	
4.11	Proportional Loading	
4.12	Stress-Strain Diagram at Elevated Temperatures	267
4.13	The Integral of Non-homogeneity in Alternating Torsion	269
4.14	Cyclic Properties of Material	
4.15	Peculiarities of Irreversible Straining in Alternate Loading	273
4.16	Deformation in Alternating Torsion	276
4.17	Instantaneous Plastic and Creep Deformation	280
4.18	Classical Creep Theories in Uniaxial Tension	282
4.19	Creep Potential	288
4.20	Experimental Verification of Creep Laws	294
4.21	On the Advantages of the Physical Theories of Plasticity and	
	Creep	296
4.22	Physics of Unsteady-State Creep	299
4.23	Unsteady Creep in Pure Shear	
4.24	Generalization to an Arbitrary State of Stress	303
4.25	Creep Delay	304
4.26	Haazen-Kelly's Effect	305
4.27	Creep with Variable Loading	308
4.28	Generalization of the Cicala Formula	311
4.29	Analysis of the Generalized Cicala Formula	315
4.30	Intermediate Discussion	317
4.31	Physics of Steady-State Creep	
4.32	Generalized Synthetic Theory of Irreversible Deformation	320
4.33	Irreversible Deformation in Pure Shear	327
4.34	Creep Deformation in Pure Shear	
4.35	Creep in a State of Complex Stress	332
4.36	Definition of Function K	
4.37	Definition of Function K: Continuation	
4.38	Creep with Different Plastic Pre-strains	339
4.39	Creep with Different Plastic Pre-strains: Continuation	
4.40	Reverse Creep	
4.41	Duration of Creep Delay and Reverse Creep	
4.42	Discussion	. 360
4.43	Light Alloys Creep	
4.44	Conclusions to the Chapter 4	. 363
6 1	EN BILL ADVICE LO	2
Chapte	r 5 New Problems of Plasticity and Creep	. 365
	Temperature After-Effect Strain	
	Physical Nature of Temperature After-Effect	
	Modeling of Temperature After-Effect	
	Temperature After-Effect in Pure Shear	
	Temperature After-Effect at Cooling	
5.6	Temperature Strengthening	. 58 l

VIII Contents

5.7	Influence of Atomic Irradiation Upon Plastic and Creep	
	Deformation of Metals	384
5.8	Mathematical Theory of the Irreversible Deformation in Irradiation	. 387
5.9	Creep and Yield Criteria	. 391
5.10	Plastic Deformation in Radiation	394
5.11	Creep Deformation in Radiation	396
5.12	The Determination of Function K	. 399
5.13	Phase Transformations	400
5.14	Stress-Strain Diagram under Phase Transformations	404
5.15	Effective Temperature	407
5.16	Mathematical Model of Deformation under Phase Transformations	409
5.17	PT-Deformation under Heating or Cooling	413
5.18	Mathematical Description of Pseudo-elasticity	415
5.19	Modeling of Pseudo-elasticity at Unloading	418
5.20	Modeling of Transformation Plasticity	421
5.21	Conclusions	423
5.22	Conclusions	424
Refere	aces	427