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Regina Fluhrer studierte Lebensmittelchemie an der Ludwig-Ma-
ximilians-Universität München (LMU) und der Technischen Uni-
versität München (TUM). Im Rahmen ihrer Promotion (2000–
2003) am Institut von Christian Haass untersuchte sie die katalyti-
schen Spezifitäten der beiden Aspartylproteasen BACE-1 (β-site 
APP cleaving enzyme), einem Schlüsselfaktor bei der Entstehung 
der Alzheimererkrankung, und BACE-2. Als Postdoktorandin 
(2003–2005) begann sie, sich zunehmend für Intramembranpro-
teasen zu interessieren. 2008 schloss sie ihre Habilitationsarbeit ab 
und leitete eine wissenschaftliche Arbeitsgruppe an der LMU 
München sowie am Deutschen Zentrum für Neurodegenerative 
Erkrankungen (DZNE), die sich schwerpunktmäßig mit der Funk-
tion der Signalpeptid-Peptidase-Familie (SPP/SPPL) beschäftigt. 
Für ihre Forschungsarbeiten erhielt sie den Böhringer-Ingel-
heim-APOPIS-Preis für Nachwuchswissenschaftler. Von 2015–
2019 war sie Professorin für Biochemie an der LMU München und 
leitete von 2006–2019 hauptverantwortlich die Seminare der Bio-
chemie/Molekularbiologie für Studierende der Human- und 
Zahnmedizin. Sie engagiert sich in zahlreichen Gremien für die 
Weiterentwicklung des medizinischen Curriculums und ist als 
Sachverständige des Instituts für medizinische und pharmazeuti-
sche Prüfungsfragen (IMPP) tätig. Seit 2019 ist sie Inhaberin des 
Lehrstuhls für Biochemie und Molekularbiologie an der neu ge-
gründeten medizinischen Fakultät der Universität Augsburg. In 
verschiedenen von der Virtuellen Hochschule Bayern (VHB) ge-
förderten Projekten arbeitet sie an der Entwicklung digitaler Lern-
materialien für die Fächer Biochemie und Molekularbiologie. 2012 
wurde sie mit dem Preis für gute Lehre des bayerischen Staatsmi-
nisters ausgezeichnet.

 

Nach dem Biochemiestudium in Tübingen und in Berlin promo-
vierte Wolfgang Hampe bei Hartmut Michel am MPI für Biophysik 
in Frankfurt über die heterologe Expression des β-adrenergen Re-
zeptors. Als Postdoc bei Chica Schaller im Zentrum für Molekula-
re Neurobiologie Hamburg isolierte und charakterisierte er den 
Rezeptor SorLA, der mit der Entstehung der Alzheimer-Demenz 
assoziiert ist. Seit 2008 ist er Professor für Biochemie mit Schwer-
punkt Lehre am Uniklinikum Hamburg-Eppendorf, wo er intensiv 
an der Vernetzung vorklinischer und klinischer Inhalte und beim 
Aufbau der Modellstudiengänge Medizin und Zahnmedizin mit-
arbeitet. Angeregt durch das berufsbegleitende Studium zum Mas-
ter of Medical Education baute er das Hamburger Auswahlverfah-
ren für Medizinstudierende auf und koordiniert einen nationalen 
Forschungsverbund zur Studierendenauswahl. Bei der Entwick-
lung des Nationalen Kompetenzbasierten Lernzielkatalogs NKLM 
leitete er die Arbeitsgruppe für das Kapitel „Prinzipien normaler 
Struktur und Funktion“, ist Sachverständiger des Instituts für me-
dizinische und pharmazeutische Prüfungsfragen (IMPP) und an 
der Weiterentwicklung der Gegenstandskataloge beteiligt. Neben 
vielen weiteren Lehrpreisen erhielt er 2012 den Ars-Legendi-Fa-
kultätenpreis Medizin des Stifterverbands für die deutsche Wis-
senschaft und des Medizinischen Fakultätentags.
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Die Verfasser der Studentenspalte

 

Carolin Unterleitner
Als Biochemikerin unterrichte ich seit 2010 Biochemie für Medizi-
ner an der LMU München. Parallel habe ich seit 2012 selbst ein 
Medizinstudium absolviert, das ich 2018 erfolgreich abgeschlossen 
habe. Die Möglichkeit, in diesem Buch mit der Studentenspalte 
und den Teasern beide Fächer verbinden zu können, hat mich sehr 
gereizt. Ich war schon immer der Meinung, dass die Biochemie 
eines der schönsten Fächer der Vorklinik ist. Nun kann ich aus Er-
fahrung sagen, dass sie auch klinisch relevant ist. Die Biochemie 
besticht durch die Möglichkeit, Prinzipien zu verstehen und diese 
auf verschiedene Fragestellungen anwenden zu können. Nicht nur 
die Pharmakologie, auch die Onkologie und sämtliche Stoffwech-
selerkrankungen, die mittlerweile immer häufiger werden, lassen 
sich mit der Biochemie verstehen. Ein potenzieller Nachteil ist da-
mit sicherlich, dass man die Biochemie auch verstehen muss, um 
einen Nutzen daraus zu ziehen. Ich hoffe, ich kann hier einen klei-
nen Teil beitragen, dass der Funke der Begeisterung auch auf euch 
überschlägt.

 

Karim Kouz
Mein Studium der Humanmedizin führte mich von der Trinity 
School of Medicine auf St. Vincent über die Semmelweis Universi-
tät in Budapest schließlich zur Universität Hamburg an das Uni-
versitätsklinikum Hamburg-Eppendorf (UKE). Hier promovierte 
ich bei Frau Professor Dr. rer. nat. Kerstin Kutsche am Institut für 
Humangenetik zu dem Thema „Genotyp und Phänotyp bei Pa-
tienten mit Noonan-Syndrom und einer RIT1-Mutation“. Aktuell 
bin ich ärztlicher Mitarbeiter der Klinik und Poliklinik für Anäs-
thesiologie am UKE.
Seit Beginn meines Studiums interessiere ich mich sehr für die 
Lehrforschung und die Entwicklung neuer, innovativer Unter-
richtskonzepte, die einen maximalen Lernerfolg bei gleichzeitiger 
hoher Zufriedenheit und Motivation der Studierenden zum Ziel 
haben. Einige dieser von mir entwickelten Konzepte sind mittler-
weile fester Bestandteil der Lehrentwicklung in verschiedenen Stu-
diengängen.
Mit diesem Lehrbuch erhoffe ich mir, allen Lesern den Zusam-
menhang zwischen einem naturwissenschaftlichen Grundver-
ständnis und der späteren Relevanz für die Klinik und den Arzt-
beruf näher zu bringen. Gerade in Zeiten der stetigen Verschulung 
des Studiums und der abnehmenden Gewichtung der Naturwis-
senschaften im Medizinstudium zeigt dieses Buch einmal mehr, 
wie wichtig die Biochemie für das nachhaltige Begreifen und Ver-
stehen von Erkrankungen ist.
Ich wünsche allen Lesern viel Spaß bei der Lektüre dieses Buches 
und viele „Aha-Erlebnisse“.
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Die Verfasserin der klinischen Inhalte

 

Christine Wild-Bode
Seit vielen Jahren unterrichte ich mit viel Begeisterung Biochemie 
in der Vorklinik. Am meisten Spaß macht es mir natürlich, wenn 
alle motiviert mitmachen, aber leider gilt dieses unglaublich span-
nende Fach oft als mühsam, trocken und, was noch schlimmer ist: 
als für die Klinik ziemlich irrelevant. Allerdings ist das Gegenteil 
der Fall und so habe ich mir angewöhnt, die Themenkomplexe mit 
kleinen „Schmankerln“ aus der Klinik anzureichern – und plötz-
lich sehe ich leuchtende Augen, es wird neugierig nachgefragt und 
interessiert diskutiert. Das sind die Momente, die das Unterrich-
ten zu meinem Traumberuf machen. Mein Hintergrund als Ärztin 
erleichtert mir die Sache sehr und so habe ich in den letzten Jahren 
fleißig Fallbeispiele geschrieben, die aber auch für klinisch Un-
erfahrene leicht zugänglich sein sollen. Ich hoffe, dass die „klini-
schen Kästen“ helfen, die Relevanz der Biochemie für die Klinik 
aufzuzeigen, und Lust machen, sich intensiv mit der wunderbaren 
Welt der Biochemie auseinanderzusetzen. Ich wünsche allen viel 
Spaß beim Lesen!

Zu den Fallbeschreibungen
Die Fallbeschreibungen in „Biochemie hoch2“ basieren teilweise 
auf Inhalten der „Biochemischen Übungskurse für Medizinstudie-
rende“. Diese und weitere Fälle werden über die Virtuelle Hoch-
schule Bayern (www.vhb.org) angeboten.
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ÜBERSICHT DER BESCHRIEBENEN KRANKHEITSBILDER

XIII

Übersicht der beschriebenen Krankheitsbilder
A
Achondroplasie 
Adipositas , , , , , 

, , , , 
adrenogenitales Syndrom 
Ahornsirupkrankheit 
AIDS 
Alkalose 
Alkoholabusus 
Alkoholintoxikation , 
Alzheimer-Krankheit , 
Ammoniumtoxizität 
amyotrophe Lateralsklerose 

(ALS) 
α₍ₓₑsub₎₍subₓ ₎e-Antitrypsin-Mangel 
anaphylaktischer Schock 
Asthma , 
Aszites , , 
Autoimmunthyreoiditis 
Azidose , 

B
Bauchkrämpfe 
Beckwith-Wiedemann-Syndrom 
Beriberi 
Blähungen 
Blasenbildung , , 
Blasenentzündung 
Botulismus , , 
Brustkrebs , , 
Bruton-Syndrom 
Burkitt-Lymphom , , 

C
Caput medusae 
Carnitinmangel , 
Carnitin-Transporter-Mangel , 


Chinarestaurant-Syndrom 
Cholelithiasis 
Cholera 
Chylomikronämie , , 
Colitis ulcerosa 
Coma diabeticum 
Creutzfeldt-Jakob-Erkrankung , 

, , 
Cushing-Syndrom , 
Cyanidvergift ung 

D
Darmkrebs 
Darmpolypen 
Dekompressionskrankheit 
Demenz , , 
Depression , 
Diabetes mellitus , , , , 

, , , , , 
Diphtherie , 
Doping 
Down-Syndrom 
Duchenne-Muskeldystrophie 
Durchfall , 

E
Ehlers-Danlos-Syndrom 
Elektrolytstörungen 
Epidermolysis bullosa 
erektile Dysfunktion 
Erkältung , , , , 

F
familiäre adenomatöse Polyposis 
Favismus 
Fettstühle 
Fieber 
Fruktose-Intoleranz 
Fruktose-Malabsorption , 
Fruktosurie 

G
Galaktosämie 
Gallensteinleiden 
Gerinnungshemmer , 
Gichtanfall , , 
Glasknochenkrankheit 
glutensensitive Enteropathie , 


Glykogenspeicherkrankheit 
Granulomatose 
Grippe , 

H
Hämochromatose 
Hämoglobinopathie 
Harnstoff zyklusdefekte 
Hashimoto-Th yreoiditis , 
Herzinfarkt , , 
Herzinsuffi  zienz 
Heuschnupfen , , 
HNPCC 
Homocysteinämie 
Hutchinson-Gilford-Syndrom 
Hyperammonämie , , , , 


Hypercholesterinämie , , , 


Hyperchylomikronämie 
Hyperglykämie , 
Hyperthyreose 
Hypertonie 
Hypoglykämie , , 
Hypothyreose , 

I
IgA-Mangel 
Ikterus , , 
Insulinom 
Iodmangel 
I-Zell-Krankheit 

K
Karies 
Ketose , 
Kohlenmonoxidvergift ung , , 


Kollagendefekte 
Kolonkarzinom , , , , 

, , 

L
Lähmung 
Laktatazidose , 
Laktoseintoleranz , , 
Leberzirrhose , , , , , 


Lesch-Nyhan-Syndrom , 
Li-Fraumeni-Syndrom 
Lungenemphysem 
lysosomale Speicherkrankheit 

M
Malaria 
Mammakarzinom , , , , 

, , , 
Marfan-Syndrom 
MCAD-Mangel 
megaloblastäre Anämie 
Metastasen 
Methanolvergift ung , , 
Methylmalonacidurie 
Mitochondriopathie , 
Morbus Addison 
Morbus Alzheimer , , , 
Morbus Basedow 
Morbus Bechterew 
Morbus Crohn 
Morbus Gaucher 
Morbus Hunter 
Morbus Huntington 
Morbus Parkinson , , , 

, , 
Morbus Tay-Sachs , 
MRSA 
Mukoviszidose , 
multiple Sklerose , , 
Muskeldystrophie Duchenne 
Myasthenia gravis , 
Myopathie 

N
Nebennierenrindeninsuffi  zienz 
nichtalkoholische Steatohepatitis 

O
Organtransplantation 
Orotacidurie 
Ösophagusvarizen 
Osteogenesis imperfecta 
Osteomalazie 
Osteoporose , 

P
Pankreasinsuffi  zienz , , , , 

, 
Pankreastumor 
Pankreatitis 
Paracetamol-Intoxikation , 
Phenylketonurie , 
Pilzvergift ung , , , 
Pneumonie , , 
Porphyrie , 
portale Hypertension 
Progerie 

Pseudohermaphroditismus femininus 


pseudomembranöse Kolitis 
Pseudopubertas praecox 

R
Rachitis 
Retinoblastom 
rheumatoide Arthritis 
Ribofl avin-Mangel 
Rot-Grün-Blindheit , 

S
Salmonelleninfektion 
Schlafk rankheit 
Schlaganfall 
Schnupfen 
Schwangerschaft sdiabetes 
Sepsis , 
Severe Combined Immune Defi ciency 

, 
Sichelzellanämie , 
Sklerenikterus 
Skorbut 
Sonnenbrand 
Spina bifi da 
Steatorrhö 

T
Tetanus 
Th alassämie 
β-Th alassämie , , 
Th iaminmangel 
Th rombophilie 
Transfusion , , 
Trisomie  
Trypanosomiasis 
Tyrosinämie Typ II 

V
Vitamin-A-Mangel , 
Vitamin-B₍ₓₑsub₎ ₍subₓₑ₎-Mangel 
Vitamin-B₍ₓₑsub₎ ₍subₓₑ₎-Mangel , 
Vitamin-C-Mangel 
Von-Gierke-Erkrankung 
Von-Willebrand-Syndrom , , 



W
Weichteilinfektion 
Wernicke-Korsakow-Syndrom 
Winterdepression 
Wundinfektion , , 

X
Xeroderma pigmentosum , 

Z
Zellweger-Syndrom , 
Zervixkarzinom , 
Zöliakie , , 
zystische Fibrose 
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KAPITEL

1

Aus Studentensicht

1   Biochemie: 
Basis aller Lebewesen
Wolfgang Hampe, Regina Fluhrer

1.1   Die chemische Evolution

1.1.1   Elemente des Lebens

FALL

Johanna hat  Blähungen

Johanna, eine 24-jährige Studentin, hatte in den letzten Monaten immer mal wieder Bauchschmerzen und 
starke Blähungen. Beim gestrigen Brunch zur Einweihung des neuen Kaff eeautomaten ihrer Freundin hat sie 
entdeckt, wie gut ihr Caff è Latte schmeckt. Dazu aß sie selbst gemischtes Müsli, Käsewürfel und zum Nach-
tisch einen frisch gebackenen Quarkaufl auf. Kurz danach wurde ihr übel. Die Bauchschmerzen waren so 
stark wie nie und sie fürchtete, vor lauter Blähungen zu platzen. Dann musste sie mehrmals wegen Durch-
falls auf die Toilette. Danach ging es ihr langsam besser. Jetzt kommt sie zu Ihnen in die Hausarztpraxis und 
fragt, wie sie diese Bauchschmerzen in Zukunft verhindern kann.
Wie entstehen Johannas Blähungen und der  Durchfall? Wie können Sie Johanna helfen?

Über viele Jahrhunderte entwickelten sich in den verschiedensten Kulturen Mythen über die Entstehung 
des Menschen. Erst Anfang des . Jahrhunderts prägte der Physiker und Th eologe Georges Lemaître die 
Th eorie zur Entstehung des Universums aus einem einzigen dichten Ursprung, dem „Uratom “. Aus die-
sem entwickelte sich demnach durch Expansion, den „Urknall “, das Universum mit Atomen, Sternen und 
Planeten, darunter auch die Erde. Wie aber konnte sich auf der Erde Leben entwickeln?
Lebewesen 
• sind von ihrer Umwelt abgegrenzte Stoff systeme,
• haben einen Stoff wechsel,
• können wachsen und
• können sich reproduzieren.
Es ist schwer vorstellbar, wie sich die hohe Komplexität der heutigen Lebewesen entwickelt hat. Möglich 
war dies nur, weil auf der Erde für unermesslich lange Zeiträume günstige Reaktionsbedingungen zur 
Verfügung standen.

„Hormone, alles Gift für den Körper.“ Diese oder 
ähnliche Aussagen hast du vielleicht schon ge-
hört. Aber was steckt hinter diesen Aussagen 
und was sind Hormone überhaupt? Hormone 
steuern unzählige Prozesse in unserem Körper, 
Millionen von Menschen nutzen sie zur Verhü-
tung, aus der modernen Krebstherapie sind sie 
nicht wegzudenken und im Falle eines Ausfalls 
bestimmter Hormonachsen befi ndet sich unser 
Körper schnell in akuter Lebensgefahr. In Prü-
fungssituationen halten uns Hormone wach und 
aufmerksam und sorgen dafür, dass unser Ge-
hirn mit ausreichend Glukose versorgt wird. In 
diesem Kapitel erhältst du einen Überblick über 
eine Vielzahl an Hormonen, ihre Wirkweise und 
die mit diesen Hormonen assoziierten Erkran-
kungen. Ein solides Verständnis für die wich-
tigsten Hormone ist für jeden Arzt unerlässlich.
Karim Kouz

1.1 Die chemische Evolution

1.1.1 Elemente des Lebens

Der Theorie von G. Lemaître zufolge entwickelte 
sich das Universum aus einem einzigen „Ur-
atom “ durch Expansion, den „Urknall“.
Lebewesen sind von der Umwelt abgegrenzt, 
 haben einen Stoff wechsel, wachsen und repro-
duzieren sich.
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Alle Elemente, aus denen Lebewesen bestehen, fi nden sich in der Erdkruste. Dennoch ist auff ällig, dass in 
Lebewesen überproportional viel Kohlenstoff  (C), Wasserstoff  (H) und Stickstoff  (N) vorkommen. Stanley 
Miller  nahm in den er-Jahren an, dass die Atmosphäre kurz nach der Entstehung der Erde Ammo niak 
(NH), Methan (CH) und molekularen Wasserstoff  (H) enthielt und einen stark reduzierenden Charakter 
aufwies, was nicht mit menschlichem Leben vereinbar ist. Um herauszufi nden, wie die ersten auch heute 
noch in Lebewesen vorkommenden Moleküle auf der Erde entstanden sein könnten, stellte er diese Bedin-
gungen in einem Versuch nach (› Abb. .). In einer geschlossenen Apparatur erhitzte er Wasser („Ur-
ozean “), zum entstehenden Wasserdampf gab er Ammoniak, Methan und Wasserstoff  („Uratmosphäre “). 
Das Gasgemisch setzte er elektrischen Entladungen („Blitzen“) aus. Bereits nach einer Woche fand er im 
Kondensat Aminosäuren und durch leichte Veränderung der Versuchsbedingungen später auch Kohlen-
hy drate (Zucker), Lipide (Fette) und Nukleotide, die vier wichtigsten Molekülklassen in Lebewesen.
  Wie diese chemische Evolution genau verlief, ist spekulativ. Nicht nur elektrische Entladungen, auch UV- 
oder ionisierende Strahlung sowie Wärme führten zur Entstehung energiereicher Moleküle. Diese reicher-
ten sich vermutlich in den Poren hydrothermaler Quellen an, in denen am Meeresboden warmes Wasser 
aus dem Ozeanboden aufstieg. Nach einer anderen Th eorie stieg die Konzentration energiereicher Molekü-
le durch Verdunstung von Wasser in heißen Becken an Land durch viele Nass-trocken-Zyklen lokal an. Die 
Moleküle konnten durch eine Art Oberfl ächenkatalyse schneller miteinander reagieren und sich so zu im-
mer größeren Molekülen zusammenlagern. Eine zwingende Voraussetzung für die chemische Evolution ist 
das Vorhandensein von Wasser mit seinen ganz besonderen chemischen Eigenschaft en.

1.1.2   Wasser als Ursprung des Lebens
Ein  Wassermolekül (HO) besteht aus einem O-Atom, das über kovalente Bindungen mit zwei H-Ato-
men verknüpft  ist. Das O-Atom im Wasser besitzt neben den Elektronen der beiden kovalenten Bindun-
gen noch zwei weitere freie Elektronenpaare. Diese insgesamt vier Elektronenpaare sind so im Raum 
angeordnet, dass sie etwa in die Ecken eines Tetraeders gerichtet sind, der Winkel zwischen den beiden 
kovalenten Bindungen beträgt ,° (› Abb. .).

Kovalente Bindung

Kovalente Bindung  en (Atom-, Elektronenpaarbindungen) werden durch zwei Elektronen gebildet, i. d. R. 
durch je ein Elektron von den beiden Bindungspartnern. Die beiden an der kovalenten Bindung beteiligten 
Atome teilen sich die Bindungselektronen. Ihre Elektronegativitäten dürfen sich nicht zu stark unterschei-
den, da sonst eine Ionenbindung entstehen würde. Kovalente Bindungen werden durch einen Strich zwi-
schen den beteiligten Atomen dargestellt, der das beteiligte Elektronenpaar symbolisiert. Die Bindungs-

S. Miller  konnte zeigen, dass die wichtigsten in 
den heutigen Lebewesen vorkommenden Mole-
küle ursprünglich aus Wasserdampf, Ammoniak, 
Methan und Wasserstoff  (Uratmosphäre ) und 
darauf einwirkenden elektrischen Entladungen 
(Blitzen) entstanden sein könnten. Zu ihnen ge-
hören:
• Aminosäuren
• Kohlenhydrate
• Lipide
• Nukleotide

Die Anreicherung der gebildeten Moleküle in hy-
drothermalen Quellen könnte zur Bildung größe-
rer Moleküle geführt haben. Eine Voraussetzung 
für diesen als chemische Evolution  bezeichne-
ten Prozess und das Leben an sich ist das Vor-
handensein von Wasser.

1.1.2 Wasser als Ursprung des Lebens
Ein  Wassermolekül besteht aus zwei kovalent 
an ein O-Atom gebundenen H-Atomen.
Unter Berücksichtigung der beiden freien Elek-
tro nen paare des Sauerstoff s beträgt der Bin-
dungswinkel 104,5°.

 Abb. 1.1  Miller-Versuch zur abiotischen Synthese von organischen Molekülen [L253]
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energie ist hoch und die Bindungspartner sind sehr stark aneinander gebunden. Typischerweise müssen 
300–500 kJ/mol aufgebracht werden, um C–C-, C–H- oder O–H-Bindungen zu spalten. 
Aufgrund der Anzahl der Elektronen in ihren Schalen bilden unterschiedliche Atome unterschiedlich viele 
kovalente Bindungen aus: In der Regel sind das bei Wasserstoff  eine, bei Sauerstoff  und Schwefel zwei, bei 
Stickstoff  drei und bei Kohlenstoff  vier Bindungen. Zwischen zwei kovalenten Bindungen an einem Atom 
kann man einen Bindungswinkel angeben (› Abb. 1.2).

 Wasserstoff  und Sauerstoff  unterscheiden sich in ihrer Elektronegativität. Die kovalenten Bindungen im 
Wassermolekül sind daher  polar und Wassermoleküle sind Dipol e mit partial positiv geladenen (δ+) H-
Atomen und partial negativ geladenen (δ–) O-Atomen.
Die Elektronegativität ist ein Maß für die Fähigkeit eines Atoms, die Elektronen einer chemischen Bin-
dung an sich zu ziehen. › Tab. . zeigt die Elektronegativitäten wichtiger Elemente.

 Bilden zwei gleiche Atome (z. B. C-Atome) eine kovalente Bindung (z. B. C–C-Bindung), so sind die zwei 
Bindungselektronen zwischen den beiden Atomen gleichmäßig verteilt und jedes Atom beansprucht im 
Mittel eines der beiden Elektronen. Unterscheiden sich die Bindungspartner einer kovalenten Bindung in 
ihren Elektronegativitäten, befi nden sich die Bindungselektronen mit höherer Wahrscheinlichkeit näher 
an dem elektronegativeren Atom der Bindung, das dadurch eine negative Partialladung  δ– trägt. Das 
weniger elektronegative Atom der Bindung verarmt entsprechend an Elektronen und trägt eine positive 
Partialladung δ+. Es entsteht ein Dipol .
Je größer die Elektronegativitätsdiff erenz der an einer Bindung beteiligten Atome ist, desto polarer wird 
die Bindung. Bei Salzen wie Natriumchlorid (NaCl) ist die Elektronegativitätsdiff erenz so hoch, dass die 
Bindungselektronen praktisch vollständig beim elektronegativeren Cl-Atom vorliegen (Ionenbindung ). 
Aufgrund der dadurch entstehenden gegenläufi gen vollständigen Ladungen ziehen sich die beiden Bin-
dungspartner an. Die Bindungsenergie ist abhängig vom Abstand und von der Ladung der Ionen und 
kann ähnlich hoch wie bei kovalenten Bindungen sein.
Ähnlich wie sich gegensätzlich geladene Ionen anziehen, können auch die partial geladenen Atome des 
Wasserdipols unter Ausbildung einer Wasserstoffb  rückenbindung  (H-Brücke) interagieren (› Abb. .). 
Das H-Atom des einen Wassermoleküls (H-Donor) wird dabei vom O-Atom eines zweiten Wassermole-
küls (H-Akzeptor) angezogen. Am stabilsten ist eine Wasserstoffb  rücke, wenn die beteiligten Atome li-
near angeordnet sind und das freie Elektronenpaar des H-Akzeptors genau in die Richtung des H-Atoms 
weist. Die Bindungsenergie liegt mit etwa – kJ/mol weit unter der von kovalenten oder ionischen 
Bindungen. Auch andere Moleküle, die durch Bindung an O- oder N-Atome partial positiv geladene H-
Atome enthalten, können Wasserstoffb  rücken ausbilden.

Die unterschiedlichen  Elektronegativitätswerte 
von Wasserstoff  und Sauerstoff  führen dazu, 
dass Wasser ein  polares Molekül (Dipol ) ist.

Die  Elektronegativität gibt an, wie stark ein Atom 
die Elektronen in einer Bindung an sich zieht.

Bei einer Bindung zwischen zwei gleichen Atomen 
sind die Elektronen gleichmäßig verteilt, bei un-
terschiedlichen Bindungspartnern befi nden sich 
die Bindungselektronen mit höherer Wahrschein-
lichkeit nahe dem Atom mit höherer Elektronega-
tivität. Dieses trägt dadurch eine negative Partial-
ladung δ–, das weniger elektronegative Atom 
hingegen eine positive Partialladung δ+.

Je größer die Elektronegativitätsdiff erenz der Ato-
me ist, umso polarer ist die Bindung. Bei Salzen 
ist die Diff erenz so hoch, dass die Bindungselek-
tronen praktisch vollständig beim elektronegati-
veren Atom vorliegen (Ionenbindung).

Das partial positiv geladene H-Atom des Wasser-
moleküls (H-Donor) kann mit einem der freien 
Elektronenpaare des Sauerstoff s eines anderen 
Wassermoleküls (H-Akzeptor) eine Wasserstoff -
brückenbindung  (H-Brücke) ausbilden. Ihre Bin-
dungsenergie ist deutlich geringer als die einer 
kovalenten oder ionischen Bindung. Auch ande-
re Moleküle mit partial positiv geladenen H-Ato-
men können Wasserstoff brücken ausbilden.

a b c
  Abb. 1.2  Chemische Struktur des Wassers. a Strichformel. b Anordnung der Elektronen und daraus resultierende Par-
tial ladungen. c Elektronendichte (blau: niedrig, rot: hoch). [L253]

 Tab. 1.1  Elektronegativitäten wichtiger Elemente 
nach Pauling

Element Elektronegativität
H 2,20

C 2,55

N 3,04

O 3,44

S 2,58

Na 0,93

Cl 3,16
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 In fl üssigem Wasser fl uktuieren die Wasserstoffb  rücken sehr schnell und bereits nach weniger als einer 
Nanosekunde zerfallen sie wieder. Dennoch halten sie die Wassermoleküle zusammen, was den ver-
gleichsweise hohen Siedepunkt des Wassers erklärt. In Eis bildet jedes einzelne Wassermolekül vier Was-
serstoffb  rücken aus: zwei als H-Akzeptor und zwei als H-Donor. Durch diese regelmäßige gitterähnliche 
Anordnung der Wassermoleküle im Eis, die zu relativ großen Hohlräumen zwischen den Molekülen 
führt, steigt das Volumen, weshalb Eis eine geringere Dichte als fl üssiges Wasser hat und somit auf die-
sem  schwimmt (Dichteanomalie des Wassers).

Polare Stoffe  lösen sich gut in Wasser
Wegen seiner polaren Eigenschaft en ist Wasser ein gutes Lösungsmittel für polare oder geladene Stoff e. 
In einer Lösung lagern sich die negativen Bereiche des Wasserdipols an die positiv geladenen Bereiche 
eines gelösten Stoff s und umgekehrt. Stoff e, die sich aufgrund ihrer physikalischen Eigenschaft en gut in 
Wasser lösen, sind hydrophil  (gr. hydor = Wasser, philos = liebend), solche, die sich schlecht oder gar 
nicht lösen, hydrophob  (gr. phobos = Furcht).
Einige Stoff e können aufgrund ihrer Molekülstruktur Wasserstoffb  rücken zu den Wassermolekülen aus-
bilden und lösen sich daher besonders gut in Wasser. So lösen sich mehrere Kilogramm Haushaltszucker 
(Saccharose) in einem Liter heißem Tee. Grundsätzlich gilt: Polare Stoff e lösen sich in polaren Lösungs-
mitteln , unpolare Stoff e hingegen in unpolaren Lösungsmitteln (lat. similia similibus solvuntur = Ähn-
liches wird von Ähnlichem gelöst).
Eine Besonderheit ergibt sich beim Aufl ösen von ionischen Verbindungen wie NaCl (Kochsalz) in Was-
ser. Im Feststoff , den Salzkristallen, bilden die Na+- und Cl–-Ionen ein dreidimensionales Gitter, in dem 
jedes Na+-Ion von sechs Cl–-Ionen und jedes Cl–-Ion von sechs Na+-Ionen umgeben ist. Beim Aufl ösen in 
Wasser  dissoziiert (zerfällt) das NaCl; die Na+- und die Cl–-Ionen werden einzeln von Wassermolekülen 
umgeben (hydratisiert ) und sind dadurch frei beweglich. Durch eine gerichtete Bewegung der Ionen in 
der wässrigen Lösung kann Ladung transportiert werden und es kann ein elektrischer Strom fl ießen. Sol-
che Substanzen werden Elektrolyte  genannt.

Konzentration 

Im Alltag wird die Menge eines gelösten Stoff s häufi g in Prozent (z. B. bei alkoholischen Getränken) oder als 
Masse pro Volumen (z. B. 1 kg Gelierzucker auf 1 l Fruchtsaft beim Marmeladekochen) angegeben. Diese An-
gaben sind in der Chemie oft wenig hilfreich, da bei Reaktionen einzelne Moleküle miteinander reagieren, 
die eine unterschiedliche Masse aufweisen. Der Chemiker „zählt“ daher lieber, wie viele Moleküle sich in 
der Lösung befi nden. Um nicht immer sehr große Zahlen verwenden zu müssen, verwendet er dabei die Ein-
heit Mol  für die Stoff menge  (1 mol = 6,022 × 1023 Teilchen).
Konzentrationen werden in Mol pro Liter Lösung angegeben, was auch als „molar“ bezeichnet wird. Der 
Umrechnungsfaktor zwischen der Stoff menge und der Masse ist die molare Masse . Sie gibt an, wie viel 
Gramm eines Stoff s einem Mol entsprechen. Um 1 l einer 2-molaren Lösung von Saccharose (molare Masse: 
342 g/mol) herzustellen, müssen 1 l ∙ 2 mol/l ∙ 342 g/mol = 684 g Saccharose abgewogen und muss so lange 
Wasser dazugegeben werden, bis 1 l Lösung entstanden ist. In Formeln wird die Konzentration eines Stoff s 
oft durch eckige Klammern symbolisiert: [Saccharose] ist also die Saccharosekonzentration.

Im fl üssigen Wasser zerfallen und bilden sich 
Wasserstoff brücken ständig neu.
Flüssiges Wasser hat eine geringere Dichte als 
Eis, da die Wassermoleküle im Eiskristall eine 
gitterähnliche Anordnung annehmen, was zur 
Volumenzunahme führt (Dichteanomalie  des 
Wassers).

Polare Stoff e lösen sich gut in Wasser
Wasser mit seinen polaren Eigenschaften ist ein 
gutes Lösungsmittel für polare oder geladene 
Stoff e.
Hydrophile  (wasserliebende) Stoff e lösen sich 
gut in Wasser, hydrophobe  (wasserfürchtende) 
Stoff e dagegen nicht oder nur sehr schlecht.
Polare Stoff e lösen sich in polaren Lösungsmit-
teln , unpolare Stoff e hingegen in unpolaren Lö-
sungsmitteln.

Beim Aufl ösen von ionischen Verbindungen in 
Wasser dissoziieren (zerfallen) diese in ihre Io-
nen. Dabei werden die vorher im starren Gitter 
angeordneten Ionen von Wassermolekülen ge-
trennt umgeben (hydratisiert) und können sich 
frei bewegen.
Stoff e, deren wässrige Lösungen den elektri-
schen Strom besser leiten als reines Wasser, 
werden als Elektrolyte  bezeichnet.

a b

H-Donor H-Akzeptor

  Abb. 1.3  Wasserstoffbrückenbindungen zwischen zwei Wassermolekülen (a) und im Eiskristall (b). Jedes Wassermole-
kül kann vier Wasserstoffbrückenbindungen ausbilden (durch arabische Zahlen gekennzeichnet). [L253]
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Der pH-Wert
Nicht nur ionische Verbindungen, sondern auch Wasser selbst liegt, wenn auch nur zu einem sehr gerin-
gen Teil, dissoziiert vor. Man spricht von der Autoprotolyse  des Wassers (› Formel .):

HO  H+ + OH–  Formel .

Die entstehenden H+-Ionen (Protonen) liegen hydratisiert als HO+ (Hydronium-Ion) oder in noch grö-
ßeren Komplexen vor. In diesem Buch verwenden wir der Einfachheit halber dennoch die Bezeichnung 
H+. In jeder wässrigen Lösung kommen also immer H+- und OH–-Ionen vor. Der Dissoziationsgrad wird 
durch das  Ionenprodukt des Wassers beschrieben (› Formel .):

[H+] ∙ [OH–] = – mol/l  Formel .

In reinem Wasser ist daher [H+] = [OH-] = – mol/l. Somit ist weniger als jedes Millionste Wassermole-
kül dissoziiert. Als einfacheres Maß für die H+-Konzentration verwendet man den pH-Wert , der als ne-
gativer dekadischer Logarithmus der Protonenkonzentration defi niert ist (› Formel .):

pH = -log [H+]  Formel .

Für reines Wasser ist pH = -log (–) =  (neutraler pH-Wert; › Tab. .). Der pH-Wert sinkt, wenn [H+] 
steigt. Da der pH-Wert ein logarithmisches Maß ist, entspricht der Abfall des pH-Werts um eine Einheit 
einer Steigerung von [H+] um den Faktor . Das erklärt, warum bereits scheinbar „kleine“ Schwankungen 
des pH-Werts fatale Folgen für den Organismus haben können.

 Werden Säuren oder Basen in Wasser gelöst, verändert sich der pH-Wert. Säuren  sind Protonendonato-
ren . Sie dissoziieren in Wasser und geben dabei H+-Ionen ab. Beispielsweise dissoziiert Salzsäure beim 
Lösen in Wasser: HCl  H+ + Cl–. Dadurch steigt [H+], entsprechend sinkt der pH-Wert  und die wässrige 
Lösung wird sauer. Die durch Zugabe der Säure entstandenen H+-Ionen reagieren zum Teil mit den vor-
handenen OH–-Ionen zu Wasser, sodass das Ionenprodukt des Wassers konstant bleibt. Bei einem pH-
Wert von , wie er im Magen vorherrscht, betragen folglich [H+] = – mol/l und [OH–] = – mol/l. Ge-
schmacksknospen auf unserer Zunge messen den pH-Wert (› ..). Sobald wir in eine Zitrone beißen, 
signalisieren sie dem Gehirn den durch die Zitronensäure abgesenkten pH-Wert: Es schmeckt sauer.
Basen  wie die Natronlauge führen dagegen zur Erhöhung des pH-Werts. Sie sind Protonenakzeptoren  
und setzen bei ihrer Dissoziation OH–-Ionen (Hydroxid-Ionen) frei: NaOH  Na+ + OH–. Wieder reagiert 
ein Teil der OH–-Ionen mit H+-Ionen. Dadurch sinkt [H+], der pH-Wert  steigt, die Lösung wird basisch. 
Andere Basen wie Ammoniak reagieren mit Wasser unter Bildung von zusätzlichen OH–-Ionen: 
NH + HO  NH

+ + OH–. Dadurch steigt ebenfalls [OH–] und somit der pH-Wert.

KLINIK

Verätzungen 

Die Haut des menschlichen Körpers hat einen physiologischen Säureschutzmantel mit einem pH-Wert von 
ca. 5,5. Bei Kontakt mit starken Säuren, wie Salzsäure, verklumpen die Proteine der Haut ähnlich wie beim 
Braten eines Spiegeleis. Die Säure kann dadurch nur schlecht in tiefere Gewebeschichten eindringen.
Starke Laugen verfl üssigen dagegen die Haut, sodass Verätzungen hier zu weit ausgedehnteren Schädigun-
gen führen. Als Erstmaßnahme sollte in beiden Fällen der betroff ene Bereich lange mit Wasser gespült wer-
den, um die Säure oder Lauge abzuspülen bzw. zu verdünnen und so den pH-Wert in die Nähe des neutra-
len Bereichs zu bringen. Von Neutralisierungsreaktionen ist in den meisten Fällen abzusehen, da die dabei 
entstehende Hitze zu weiteren Schäden führen kann.

1.1.3   Abgrenzung von der Umgebung durch Lipidmembran en
Unter den Produkten des Miller-Versuchs (› ..) befanden sich auch Lipide  (gr. lipos = Fett ). Sie be-
stehen überwiegend aus C- und H-Atomen, die aufgrund ihrer ähnlichen Elektronegativität untereinan-
der unpolare Bindungen ausbilden. Da sie somit weder als H-Donor noch als H-Akzeptor wirken können, 
bilden sie keine Wasserstoffb  rücken aus. Lipide sind deshalb weitestgehend lipophil (= hydrophob) und 
haben nur einzelne vergleichsweise kleine polare Bereiche. So wie sich polare Substanzen gut im polaren 
Wasser lösen, lieben die unpolaren Lipide unpolare Lösungsmittel wie Benzol (CH).

Der pH-Wert
Als Autoprotolyse  des Wassers bezeichnet man 
die geringgradig stattfi ndende Dissoziation des 
Wassers in Protonen (H+) und Hydroxidionen 
(OH–):
H2O  H+ + OH–

Das Ionenprodukt  des Wassers beschreibt den 
Dissoziationsgrad des Wassers:
[H+] ∙ [OH–] = 10–14 mol2/l2

In reinem Wasser ist also [H+] = [OH–] = 10–7 mol/l.
Um mit einfacheren Zahlen zu rechnen, wird 
statt [H+] der pH-Wert  angegeben:
pH = -log10 [H+]
Reines Wasser hat einen pH-Wert von 7 (neutra-
ler pH-Wert).
Eine Steigerung von [H+] um den Faktor 10 ent-
spricht einem Abfall des pH-Werts um eine Ein-
heit und umgekehrt.

Säuren  sind Protonendonatoren  und geben 
beim Lösen in Wasser H+-Ionen ab. Der pH-Wert 
sinkt und die Lösung wird sauer.
Damit das Ionenprodukt des Wassers konstant 
bleibt, reagieren die H+-Ionen der Säure zum Teil 
mit OH–-Ionen zu Wasser, wodurch [OH–] sinkt.

Basen  sind Protonenakzeptoren  und geben 
beim Lösen in Wasser OH–-Ionen ab oder neh-
men ein Proton auf, wobei sich OH–-Ionen bil-
den. Dies führt zur Abnahme von [H+] bzw. Zu-
nahme von [OH–] und somit zu einer Erhöhung 
des pH-Werts. Die Lösung wird basisch.

1.1.3 Abgrenzung von der Umgebung durch 
 Lipidmembranen

Lipide  (Fette) sind Stoff e, die v. a. aus C- und H-
Atomen bestehen und aufgrund der ähnlichen 
Elektronegativitäten dieser beiden Atome wei-
testgehend unpolar und somit hydrophob bzw. 
lipophil (fettliebend) sind.

 Tab. 1.2  H+-Konzentrationen und zugehörige pH-Werte

[H+] in mol/l pH-Wert

10–1  1

10–6  6

10–7  7

10–8  8

10–13  13
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Eine vermutlich früh entstandene Form der Lipide sind die Fettsäuren , langkettige Kohlenwasserstoff -
ketten, die an einem Ende eine Carboxylgruppe  besitzen (› Abb. .). Durch die lange unpolare Koh-
lenwasserstoffk  ette sind sie in Wasser praktisch unlöslich.
 Gesättigte Fettsäuren  enthalten zwischen den C-Atomen nur Einfachbindungen, die frei drehbar sind. 
Die stabilste, energieärmste Anordnung liegt bei einer lang gestreckten C–C-Kette vor (› Abb. .a). 
Natürlich vorkommende  ungesättigte Fettsäuren enthalten Doppelbindungen in der cis-Konfi guration, 
wodurch die C–C-Kette einen dauerhaft en Knick bekommt (› Abb. .b).

Einfach- und Doppelbindungen

Ein C-Atom kann vier kovalente Bindungen eingehen. Meistens bildet es Einfachbindungen  zu vier anderen 
Atomen aus. Dabei zeigen die Einfachbindungen in die Ecken eines Tetraeders. Alle Bindungswinkel betra-
gen dann 109,5°, wodurch die Bindungen jeweils am weitesten voneinander entfernt sind. Einfachbindungen 
sind frei drehbar. Bei langen Ketten von Einfachbindungen ist die energieärmste Anordnung so, dass die C-
Atome eine nahezu lineare Zickzackkette bilden (› Abb. 1.4a). Bei Energiezufuhr, z. B. durch eine Erhöhung 
der Temperatur, kann die lineare Anordnung durch Drehung der Bindungen jedoch aufgehoben werden.
Zwei C-Atome, die über eine Doppelbindung  miteinander verbunden sind, weisen eine trigonal planare An-
ordnung mit Bindungswinkeln von 120° auf. Durch die besondere Anordnung der Elektronen sind Doppel-
bindungen nicht frei drehbar. Eine C=C-Doppelbindung kann daher zwei Anordnungen annehmen: Liegen 
die beiden H-Atome (= Substituenten) auf derselben Seite der C–C-Doppelbindung (= Referenz ebene), so 
liegt eine cis-Konfi guration  vor, andernfalls eine trans-Konfi guration . Eine cis-Doppelbindung ist nicht oh-
ne Weiteres in eine trans-Doppelbindung überführbar und umgekehrt. Die cis-/trans-Isomerie ([Z]-/[E]-Iso-
merie) ist eine spezielle Form der Konfi gurationsisomerie (› Abb. 1.8).

ca b

 

Die einfachste Form der Lipide sind die Fettsäu-
ren : lange unpolare Kohlenwasserstoff ketten mit 
einer polaren endständigen Carboxylgruppe.

Gesättigte Fettsäuren  enthalten zwischen den 
C-Atomen lediglich Einfachbindungen, ungesät-
tigte  Fettsäuren hingegen auch Doppelbildun-
gen.

a b

  Abb. 1.4  Grundstrukturen der Lipide. a Gesättigte Fettsäure (Stearinsäure). b Ungesättigte Fettsäure (Ölsäure). [L253]
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Unter Zufuhr von Energie können Fettsäuren mit Alkoholen zu Fettsäureester n reagieren. Dabei bildet 
sich unter Abspaltung von Wasser (= Kondensation) eine Bindung zwischen der OH-Gruppe des Alko-
hols und der Carboxylgruppe der Fettsäure.
Glycerin  (Glycerol ; › Abb. .a) ist ein dreiwertiger Alkohol (Kohlenwasserstoff  mit drei OH-Gruppen), 
der vermutlich bereits in der „Ursuppe“ entstanden ist und mit drei Fettsäuren verestert werden kann. 
Dadurch entstehen Triacylglyceride  (› Abb. .b). Sie sind durch die langen C–H-Ketten (= hydropho-
be Reste) und die nur wenigen polaren Bindungen sehr hydrophob. Alternativ kann das Glycerin auch 
nur mit zwei Fettsäuren verestert sein, während die dritte OH-Gruppe an eine Phosphorsäure und einen 
weiteren Alkohol gebunden ist. Das dabei entstehende Lipid ist ein Phospholipid  (› Abb. .c). Diese 
amphiphilen Moleküle (gr. amphi = auf beiden Seiten, philos = liebend) weisen einen hydrophilen Be-
reich (= Kopfgruppe) und zwei hydrophobe Fettsäurereste auf.

 Mizellen
Die in der „Ursuppe“ entstandenen Moleküle waren im Wasser gelöst und nur in sehr geringen Konzen-
trationen vorhanden. Möglicherweise kam es durch thermische Eff ekte (Th ermophorese) in den Poren 
der hydrothermalen Quellen oder das Austrocknen der Tümpel lokal zu höheren Lipidkonzentrationen. 
So angereichert konnten sich amphiphile Lipide spontan zu Mizellen  zusammenlagern (› Abb. .a). 
Das Innere einer Mizelle besteht vollständig aus hydrophoben Molekülanteilen, während die hydrophilen 
Lipidanteile zur wässrigen Phase nach außen weisen. Die Wassermoleküle bilden eine Art Käfi g um die 
Lipidtropfen, wobei sie eine höhere Ordnung annehmen, als wenn sie von anderen Wassermolekülen 
umgeben wären. Diese höhere Ordnung ist energetisch ungünstiger als in reinem Wasser. Wenn sich 
zwei kleine Lipidtropfen zu einem größeren vereinigen, ist die Oberfl äche des größeren Lipidtropfens 
kleiner als die der beiden kleineren zusammen. Der größere Tropfen ist jetzt insgesamt von weniger Was-
sermolekülen umgeben, sodass einige Wassermoleküle nun wieder weniger stark geordnet vorliegen und 
Energie frei wird (= hydrophobe Wechselwirkung). Innerhalb der Mizellen können die Lipide Van-der-
Waals-Wechselwirkungen ausbilden. Beispiele für Mizellen im menschlichen Körper sind die im Ver-
dauungstrakt durch Einwirkung der Gallensäuren gebildeten Mizellen (› ..).

Van-der-Waals-Wechselwirkung en

Van-der-Waals-Wechselwirkungen sind sehr schwache Anziehungskräfte zwischen Molekülen (2–4 kJ/mol). 
Sie entstehen, wenn die Elektronen an einem Atom zufälligerweise nicht symmetrisch verteilt sind. Dadurch 
ist die Seite des Atoms mit der Überzahl an Elektronen für einen kurzen Zeitraum negativ, die entgegenge-
setzte Seite positiv geladen. Dieser Dipol induziert im benachbarten Atom ebenfalls einen Dipol, da dessen 
Elektronen von der negativen Ladung abgestoßen werden. Da die zueinander gewandten Seiten der Atome 
jetzt gegensätzlich geladen sind, ziehen sie sich an. Diese Wechselwirkungen haben nur eine sehr kurze 
Reichweite. Nennenswerte Auswirkungen haben sie dann, wenn sich größere hydrophobe Moleküle sehr 
nahe kommen. In diesem Sonderfall der Van-der-Waals-Wechselwirkung spricht man von London-Kräfte n. 
Ein Beispiel ist die Aneinanderlagerung mehrerer parallel ausgerichteter Fettsäuren. Zwischen den einzel-
nen Fettsäuremolekülen treten Van-der-Waals-Wechselwirkungen auf. Im Gegensatz zu den Van-der-Waals-
Wechselwirkungen entstehen die hydrophoben Wechselwirkungen  durch die höhere Ordnung polarer Mo-
leküle oder Molekülteile an Grenzfl ächen zu hydrophoben Bereichen.

Die Carboxylgruppe einer Fettsäure kann mit der 
OH-Gruppe eines Alkohols zu einem Fettsäure-
ester  reagieren. Der dreiwertige Alkohol Glyce-
rin  kann dabei u. a. zu folgenden Stoff klassen 
reagieren:
• Hydrophobes Triacylglycerid : mit drei Fett-

säuren verestertes Glycerin
• Amphiphiles Phospholipid : mit zwei Fettsäu-

ren verestertes Glycerin (lipophiler Anteil) und 
Bindung der dritten OH-Gruppe an Phosphor-
säure und ggf. einen weiteren Alkohol (hydro-
phile Kopfgruppe)

Mizellen
Amphiphile Lipide können sich spontan zu Mi-
zellen  zusammenlagern. Deren Inneres besteht 
aus hydrophoben Lipidanteilen, die untereinan-
der Van-der-Waals-Wechselwirkungen aus-
üben. Die hydrophilen Lipidanteile zeigen zur 
wässrigen Phase nach außen.
Mizellen neigen dazu, sich zu größeren Mizellen 
zu vereinigen, da sich dabei ihre Gesamtoberfl ä-
che verkleinert und somit weniger Wasser käfi g-
artig um die Mizellen angeordnet ist: Die Ge-
samtentropie nimmt zu (hydrophobe Wechsel-
wirkung).

a cb

  Abb. 1.5  Struktur von Glycerin (a), einem Triacylglycerid (b) und einem Phospholipid (Phosphatidylcholin; c). [L253]
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Vesikel und Membranen
Bei den meisten Phospholipiden ist jedoch die hydrophile Kopfgruppe im Vergleich zu den hydrophoben 
Anteilen nicht groß genug, um die Oberfl äche großer, energetisch günstiger Mizellen abzudecken. Daher 
bilden sie in Wasser spontan Vesikel  (lat. = Bläschen). Im Gegensatz zu Mizellen (› Abb. .a) bestehen 
Vesikel aus einer Hülle und einem wässrigen Innenraum. Die Hülle der Vesikel wird von einer – nm 
dicken Lipiddoppelschicht (Membran) gebildet, bei der sich die hydrophoben Molekülteile in der Mitte 
der Schicht zusammenlagern, während die hydrophilen Kopfgruppen innen und außen mit den Wasser-
molekülen interagieren. Das Innere des Vesikels enthält Wasser und ist anders als bei Mizellen hydrophil 
(› Abb. .b). Schon in den hydrothermalen Quellen könnten so aus amphiphilen Molekülen Vesikel 
entstanden sein, in deren Inneren sich bestimmte Moleküle anreicherten und miteinander reagierten. Ein 
erstes Merkmal von Lebewesen – die Abgrenzung von Reaktionsräumen zur Umwelt – war entstanden.
Die Lipiddoppelschicht  (› Abb. .c) ist für Ionen und die meisten polaren Moleküle praktisch undurch-
lässig. Eine Ausnahme ist Wasser, das wohl aufgrund seiner geringen Größe relativ schnell über Membra-
nen diff undieren kann. Ansonsten gilt: Je unpolarer kleine Moleküle sind, desto besser können sie die 
Membran durchqueren. Besonders gut können Gase wie Sauerstoff  oder Kohlendioxid diese passieren. 
Auch menschliche Zellen sind von ihrer Umgebung durch eine Lipiddoppelschicht abgegrenzt, welche 
die unkontrollierte Aufnahme bzw. Abgabe der meisten Moleküle verhindert.

Diff usion  und Osmose 

Abhängig von der Temperatur besitzen alle Moleküle thermische Energie, die zur schnellen ungerichteten 
Bewegung von Molekülen in Flüssigkeiten und noch schnelleren Bewegungen in Gasen führt. Sie wird auch 
Brown’sche Molekularbewegung  genannt. Diese Bewegung führt zur gleichmäßigen Ausbreitung gelöster 
Substanzen (Diff usion) und so zum Ausgleich von Konzentrationsunterschieden in einer wässrigen Lösung. 
Deshalb wird sich bei einem Caff è Latte nach und nach die obere Milchschicht mit dem darunter liegenden 
Kaff ee vermischen. Die Diff usion in Flüssigkeiten ist über Entfernungen von Zentimetern wie beim Caff è Latte 
relativ langsam, sodass man für ein schnelles Vermischen durch Umrühren nachhelfen muss. Bei Abständen 
wie in menschlichen Zellen (Mikrometer) oder zwischen Molekülen (Nanometer) erfolgt sie sehr schnell.
Diff usion führt auch zum Ausgleich von Konzentrationen auf den beiden Seiten einer biologischen Mem-
bran, wenn diese für die jeweiligen Stoff e durchlässig ist. Kann ein Molekül die Membran z. B. aufgrund sei-
ner Größe oder Polarität nur sehr schlecht passieren, erfolgt dieser Konzentrationsausgleich sehr langsam.
Zellmembranen sind für Wasser relativ gut, für viele andere Substanzen aber nur schlecht durchlässig; sie 
sind semipermeabel. Wenn die Konzentration eines in Wasser gelösten Stoff s innerhalb einer Zelle höher 
als außen ist, wird daher Wasser in die Zelle diff undieren, bis die Konzentrationen der gelösten Stoff e aus-
geglichen sind. Dieser Vorgang wird als Osmose bezeichnet. Die Summe der Konzentrationen der gelösten 
Teilchen wird auch als Osmolarität  bezeichnet. Ein Wassereinstrom aufgrund einer erhöhten Osmolarität 
kann zum Platzen einer Zelle führen. Die intra- und extrazellulären Flüssigkeiten im menschlichen Körper 
weisen daher eine ähnliche Osmolarität auf. Bakterien- und Pfl anzenzellen platzen auch dann nicht, wenn 
sie in reines Wasser gelegt werden, da sie um die Zellmembran herum eine stabile Zellwand besitzen.
Infusionen sind meist isoton, sie weisen also dieselbe Osmolarität wie das Blut auf. Diese entspricht einer 
0,15 mol/l bzw. 0,9%igen Lösung von NaCl, die als isotonische (umgangssprachlich auch „physiologische“) 
Kochsalzlösung bezeichnet wird. Hypertone Infusionen erhöhen die Osmolarität des Bluts, was zum Was-
seraustritt aus den Erythrozyten führt. In weniger konzentrierten, hypotonen Lösungen dagegen nehmen 
Erythrozyten Wasser auf und können letztlich platzen.

Vesikel und Membranen
Vesikel  sind von einer Lipiddoppelschicht 
(Membran) begrenzte Strukturen und bestehen 
aus einer Hülle und einem abgeschlossenen 
wässrigen Innenraum. Hydrophobe Molekülteile 
zeigen in die Mitte der Schicht, wohingegen die 
hydrophilen Kopfgruppen inner- und außerhalb 
des Vesikels mit Wassermolekülen interagieren.

Die Lipiddoppelschicht  ist für die meisten pola-
ren Moleküle undurchlässig, wobei Wasser eine 
Ausnahme darstellt. Je kleiner und unpolarer ein 
Molekül ist (z. B. Gase), desto einfacher kann es 
die Lipiddoppelschicht, die auch menschliche 
Zellen von ihrer Umgebung abgrenzt, durchdrin-
gen.

b ca

  Abb. 1.6  Lipidaggregate in Wasser. a Mizelle. b Vesikel. c Lipiddoppelschicht. [L253]
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KLINIK

Ödem e und Aszites 

Die Osmolarität des Bluts hängt von den Konzentrationen der darin gelösten niedermolekularen Stoff e wie 
Ionen und Zucker, aber auch von der Konzentration der Plasmaproteine ab. Diese werden meist von der Le-
ber synthetisiert und dann in das Blut abgegeben. Das mit Abstand häufi gste Plasmaprotein ist Albumin, 
das an hydrophoben Stellen seiner Oberfl äche Lipide wie Fettsäuren binden und somit transportieren kann. 
Wenn z. B. durch Mangelernährung wie bei Hungersnöten die Leber nicht mehr ausreichend Albumin her-
stellen kann, sinkt die Osmolarität des Bluts und damit auch der kolloidosmotische (onkotische) Druck  . 
Wasser tritt aus den Gefäßen aus und sammelt sich in Form von Ödemen im Gewebe an. In schweren Fällen 
kommt es zum Aszites (Bauchwassersucht), einer Ansammlung von Wasser in der Bauchhöhle, die man 
durch einen vorgewölbten Bauch erkennen kann (Hungerbauch ). In Deutschland ist ein Aszites oft Folge 
 einer durch eine Lebererkrankung bedingten Lebersynthesestörung, z. B. einer alkoholbedingten Leber-
zirrhose.

 

1.1.4   Kohlenhydrate  als Energielieferanten

Monosaccharide 
In den Vesikeln konnten sich Moleküle wie Kohlenhydrate und Nukleotide, die in der „Ursuppe“ nur in 
sehr geringen Konzentrationen auft raten, anreichern. Kohlenhydrate liegen oft  als ringförmige Moleküle 
vor und sind durch Alkoholgruppen  (OH-Gruppen) und eine Carbonylgruppe  (CO-Gruppe) gekenn-
zeichnet, durch die sie sich sehr gut in Wasser lösen (› Abb. .). Viele der einfachsten Kohlenhydrate, 
die Monosaccharide (Einfachzucker ), haben die Summenformel Cn(HO)n, sind also „Kohlenstoff - 
Hydrate“. Das mengenmäßig wichtigste Monosaccharid im menschlichen Körper ist die Glukose  mit 
sechs C-Atomen, andere wie die Ribose bestehen aus fünf C-Atomen. Die mittleren vier C-Atome der 
Glukose tragen jeweils vier unterschiedliche Substituenten, sie sind also chiral. Es existieren daher zwei 
Isomere , die sich wie Bild und Spiegelbild verhalten (› Abb. .). Im Miller-Versuch (› ..) entstan-
den beide Formen in gleicher Menge, in heutigen Lebewesen kommen dagegen fast ausschließlich D-
Zucker  vor (› ..). Es ist noch nicht endgültig geklärt, ob die ersten Enzyme durch Zufall D-Zucker 
präferierten oder ob z. B. sehr geringe Energieunterschiede zwischen den Enantiomeren für deren Selek-
tion verantwortlich waren.
Obwohl die Summenformel der Zucker mit Cn(HO)n meist sehr einfach ist, gibt es eine Vielzahl an iso-
meren Formen mit unterschiedlichen Konfi gurationen an jedem einzelnen Chiralitätszentrum, wodurch 
jeweils ein anderer Zucker mit neuen Eigenschaft en entsteht. Von den vielen möglichen Isomeren haben 
aber nur wenige Zucker besonders wichtige biologische Funktionen.

KLINIK

1.1.4 Kohlenhydrate als Energielieferanten

Monosaccharide
Kohlenhydrate  sind oft ringförmig vorliegende 
Kohlenstoff ketten, die durch mehrere OH-Grup-
pen und eine Carbonylgruppe gekennzeichnet 
sind.
Die einfachsten Kohlenhydrate, wie die aus 
sechs C-Atomen bestehende Glukose, werden 
als Monosaccharide  (Einfachzucker) bezeich-
net.
Nahezu alle Kohlenhydrate enthalten mindes-
tens ein chirales C-Atom. Die in heutigen Lebe-
wesen vorkommenden Kohlenhydrate sind fast 
ausschließlich D-Zucker. Von vielen Zuckern 
gibt es mehrere Konfi gurationsisomere ; be-
kannte biologische Funktionen haben jedoch 
nur wenige.

D-Glukose D-Galaktose

D-Ribose D-Desoxyribose

  Abb. 1.7  Wichtige Monosaccharide in der Ringform [L253]
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Isomerie  und Chiralität 

Isomere  (› Abb. 1.8) sind Moleküle, die dieselbe Summenformel aufweisen, sich aber in der Anordnung 
der Atome unterscheiden. Es gibt unterschiedliche Arten von Isomerie (gr. isos = gleich, meros = Anteil).
Konstitutionsisomere  (Strukturisomere ) unterscheiden sich in der Reihenfolge der verknüpften Atome wie 
Ethanol (CH3-CH2-OH) und Dimethylether (CH3-O-CH3) oder Glukose und Fruktose.
Bei Stereoisomeren  ist hingegen die Reihenfolge der verknüpften Atome identisch, aber ihre räumliche An-
ordnung unterscheidet sich. Je nach Art der Unterschiede in der räumlichen Anordnung werden Konfi gura-
tions- und Konformationsisomere unterschieden.
• Konfi gurationsisomere  können nur ineinander überführt werden, wenn kovalente Bindungen gebrochen 

und neu geknüpft werden.
– Eine Form der Konfi gurationsisomerie sind Enantiomere , die sich wie Bild und Spiegelbild (z. B. rechte 

und linke Hand) zueinander verhalten. Voraussetzung für ihre Bildung ist das Vorhandensein eines 
Chiralitätszentrum s (Stereozentrum, asymmetrisches Atom). Ein C-Atom ist chiral, wenn es vier unter-
schiedliche Substituenten trägt. Dabei sind zwei spiegelbildliche Anordnungen möglich, die nicht al-
lein durch Drehung des Moleküls ineinander überführt werden können. Enantiomere besitzen die Fä-
higkeit, die Polarisationsebene von linear polarisiertem Licht in unterschiedliche Richtungen zu dre-
hen, unterscheiden sich in ihren sonstigen chemischen und physikalischen Eigenschaften aber kaum. 
Sie werden durch die D-/L-Nomenklatur oder die R-/S-Nomenklatur unterschieden (› 19.1.2). Wichtig 
in der Biochemie ist, dass sie sich in Reaktionen mit anderen chiralen Molekülen unterscheiden. So 
entsteht z. B. im Muskel bei starker Anstrengung in der anaeroben Glykolyse L-Laktat. Die Laktat-Dehy-
drogenase in der Leber, selbst ein Protein aus L-Aminosäuren und damit ebenfalls chiral, kann an 
 L-Laktat binden und dieses abbauen, nicht aber an D-Laktat. Sauermilchprodukte wie Joghurt enthalten 
oft ein Racemat , d. h. ein 1 : 1-Gemisch an L- und D-Laktat. Das D-Laktat kann der menschliche Körper 
jedoch nur sehr langsam verwerten. Es muss zunächst von Darmbakterien zu anderen Substanzen ver-
stoff wechselt werden, die dann vom Menschen weiter abgebaut werden können. Damit sich zwei Ver-
bindungen wie Bild und Spiegelbild verhalten, müssen sie sich in allen ihren Chiralitätszentren unter-
scheiden.

– Wenn Moleküle mehrere Chiralitätszentren enthalten, von denen nicht alle in der entgegengesetzten 
Form vorliegen, spricht man von Diastereomere n. Diese unterscheiden sich in ihren chemischen und 
physikalischen Eigenschaften. Eine Sonderform der Diastereomere sind Epimere . Sie unterschieden 
sich in der Stellung genau eines Chiralitätszentrums, wie D-Glukose und D-Galaktose.

• Im Gegensatz zu den Konfi gurationsisomeren lassen sich Konformationsisomere  durch Drehung um Ein-
fachbindungen ineinander überführen. Meist reicht die thermische Energie der Moleküle aus, um schon 
bei Raumtemperatur Konformationsisomere ineinander umzuwandeln. Ein Beispiel hierfür sind die gesät-
tigten Fettsäuren, die in einer lang gestreckten und einer Form mit einem Knick vorliegen können.

D-Glukose D-Galaktose

L-Laktat D-Laktat

Glukose Fruktose

 Abb. 1.8  Isomerie [L253]
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Aus Studentensicht

ÜBUNGSFRAGEN FÜRS MÜNDLICHE MIT LÖSUNGSHILFEN

. Erklären Sie, warum sich Glukose gut in Wasser löst, langkettige Fettsäuren aber nur schlecht!

Die Elektronegativitäten von Sauerstoff  und Wasserstoff  unterscheiden sich deutlich, sodass die Bin-
dung zwischen ihnen polarisiert ist. Wassermoleküle können daher Wasserstoffb  rückenbindungen zu 
den OH-Gruppen der Glukose ausbilden, was deren gute Löslichkeit erklärt. Die langen Kohlenwas-
serstoffk  etten der Fettsäuren bestehen dagegen nur aus Kohlenstoff  und Wasserstoff , deren Elektrone-
gativitäten ähnlich sind. Somit sind sie unpolar und können nur schlecht mit den polaren Wassermo-
lekülen wechselwirken.

. Erklären Sie die Bestandteile eines Nukleotids und die Bindungstypen zwischen ihnen!

Nukleotide bestehen aus einer stickstoffh  altigen aromatischen Base, die über eine N-glykosidische 
Bindung mit dem ʹC-Atom einer (Desoxy-)Ribose verknüpft  ist. Am ʹC-Atom ist ein Phosphatrest 
verestert, der in einer linearen Kette mit – weiteren Phosphatgruppen Säureanhydridbindungen 
ausbilden kann.

. Was ist nach der gängigen Evolutionstheorie der Hauptbestandteil des ursprünglichen Ribosoms?

In der RNA-Welt katalysierten wahrscheinlich mehrere RNAs die Synthese von Proteinen. Auch im 
daraus entstandenen Proteinbiosyntheseapparat der heutigen Zellen sind RNAs noch immer von ent-
scheidender Bedeutung.

PRÜFUNGSSCHWERPUNKTE
IMPP
!! pH-Wert, metabolische Azidose und Ionen-

verschiebung, Henderson-Hasselbalch-Glei-
chung

Kompetenzorientierte Lernziele (NKLM)
Die Studierenden können
• den Aufbau der Materie aus Molekülen erklä-

ren.
• Prinzipien der Redoxchemie erklären.
• den Aufbau, die Eigenschaften und die Funk-

tion von biologischen Membranen erklären.
• die Bedeutung der Kompartimentierung erklä-

ren.
• Organellen und Komponenten des Zytoske-

letts identifi zieren sowie deren Struktur und 
Funktion erklären.

• den Aufbau von Bakterien erläutern.
• Prinzipien der Vererbung und Evolution erklä-

ren.
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Biochemie wirklich verstehen und sicher Prüfungen meistern! Das 
engagierte Autorenteam aus Dozenten und Studenten schafft es, das 
ganze Spektrum der Biochemie für die Human- und 
Zahnmedizinstudium übersichtlich, einprägsam und leicht lesbar 
darzustellen. 
 
Das komplett neue Lehrbuch greift die aktuellen Entwicklungen im 
medizinischen Curriculum auf und integriert klinische Inhalte. 
Zahlreiche einprägsame Abbildungen mit einheitlicher Bildsprache 
und Farbcodierung erläutern Ihnen Schritt für Schritt die komplizierten 
Stoffkreisläufe. 
 
Mit hoch2 kommt die Erfahrung von Lehrenden und Lernenden auf 
ideale Art zusammen. Lehrbuch und Exzerpt in einem, hilft es beim 

unterrichtsbegleitenden Erarbeiten des biochemischen Wissens und dem schnellen Wiederholen 
vor der Prüfung.  

 
Die über einen PIN im Buch freischaltbare digitale Version der Inhalte ermöglicht einen fließenden 
Medienwechsel beim Lernen. 
 

2 in 1: 
Lehrbuch 
Das Lehrbuch in der Hauptspalte wurde von erfahrenen Biochemie-Dozent/Innen geschrieben. 
Diesen gelingt es, die Biochemie anschaulich zu erklären und Zusammenhänge verständlich zu 
machen.  
 
Exzerpt von Studenten für Studenten 
In der Randspalte leisten studentische Autoren Orientierungshilfe und -filter für die enorme 
Stofffülle - optimal zum konzentrierten Wiederholen. Sie haben das Fach bereits gelernt und 
wissen, wie schriftliche Klausuren und mündliche Prüfungen am effektivsten und effizientesten zu 
meistern sind. Durch farbige Punkte in der Randspalte haben sie die relevanten Inhalte aus dem 
Lehrbuchtext markiert und sie durch ihre Erfahrung und Tipps ergänzt. So ist die Vorbereitung auf 
das nächste Examen ein Klacks.  
 
 

Lernen leicht gemacht 
Was ist wichtig für ein Lehrbuch? Wie soll ein Lehrbuch strukturiert sein, um gut damit lernen zu 
können? Wir haben Studenten direkt gefragt und die Antworten gleich umgesetzt: 
 
Text: Der Text ist umfassend, gut lesbar und verständlich. In der Randspalte reicht das Wichtigste 
in Stichpunkten. 
Abbildungen: Zusammenhänge lassen sich besser anhand von Schemazeichnungen 
verdeutlichen und lernen. 
Gelbe (Grundlagen-)Kästen: Die Grundlagen im Überblick. Das Allerwichtigste kurz, knapp und 
einprägsam im Grundlagen-Kasten. 
Fall: Kurze Fallbeispiele mit charakteristischer Symptomatik unterstützen den Transfer in den 
klinischen Alltag.  

So verstehen Sie Biochemie wirklich und 
meistern Prüfungen ganz leicht!  



Klinik-Kästen: weisen auf klinische Bezüge hin und unterstützen den Transfer zum ärztlichen 
Alltag. 
 
Prüfungsvorbereitung 
Übungsfragen fürs Mündliche: Wiederholen und Verstehen des Kapitelinhalts – die Fragen 
geben einen kleinen Ausblick auf die nächste mündliche Biochemie-Prüfung. 
IMPP-Prüfungsschwerpunkte: Was bringt Punkte im Staatsexamen? Jedes Kapitel bietet eine 
kurze gewichtete Checkliste mit den prüfungsrelevanten Themen der letzten Jahre.  
NKLM-Lernziele: Orientierungshilfe rund um die Kompetenzen und Fertigkeiten, die die 
Medizinstudierenden beherrschen sollten, aus dem nationalen kompetenzorientierten 
Lernzielkatalog Medizin.  

 
Diese Bände sind bereits erschienen: hoch2 Neurologie, Physiologie und Pädiatrie 
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