Contents

1.	Resonant Multiphoton Interactions and the Generalized	
	Two-Level System	1
	1.1 The Basic Equations Describing the Evolution of Radiation	
	Interacting with Matter	4
	1.2 The Truncated Equations for the Density Matrix	8
	1.2.1 The Two-Level Model and the First Approximation	
	of the Averaging Method	10
	1.2.2 Second-Order Resonances and an Example of the	
	Simultaneous Realization of Two Resonance Conditions	12
	1.2.3 The Hamiltonian of the Averaged Motion	15
	1.2.4 The Truncated Equations for Resonances of Arbitrary	
	Order Involving Many Levels	17
	1.3 Polarization of Matter and the Generalized Dipole Moment	21
	1.4 The Generalized Two-Level System	25
	1.1 The Generalized 1 to 2000 by stone	-
2.	The Molecular Response to the Resonant Effects of	
	Quasimonochromatic Fields	27
	2.1 The Change of Populations of the Generalized Two-Level	-
	System in Quasimonochromatic Fields	27
	2.1.1 Saturation of Populations of Resonant Levels and the	2
	Effect Which the Level Shift Under the Influence of	
	Light Has on Saturation	28
	2.1.2 Balance Equations and Interference of Transition	20
	•	
	Probability Amplitudes in Resonant Parametric	34
	Interactions	36
	2.2 Susceptibility in Incoherent Multiphoton Processes	
	2.2.1 Expressions for Susceptibility	36
	2.2.2 The Imaginary Part of Susceptibility as a Function	
	of Fields and the Energy Absorbed by Matter	39
	2.2.3 The Real Part of Susceptibility for the Single-Photon	
	Resonance	4:
	2.2.4 The Real Part of Susceptibility for Two-Photon	
	Absorption (TPA) and Stimulated Raman Scattering	
	(SRS)	48
	2.2.5 The Real Part of Susceptibility Generated by Light	
	Pulses	5
	2.3 Spectroscopy of Polarizabilities of Excited States	54
	2.4 Molecular Response for Resonant Parametric Interactions	60
	-	

Χl

3.	The Dynamics of Quantum Systems for Resonant	
	Interactions with Strong Nonstationary Fields	6
	3.1 The Equation of Motion and Its Properties	6
	in a Strong Quasi-Resonant Field	6
	3.1.2 The Equation of Population Motion	6
		U
	3.1.3 Equation of Population Dynamics for Two-Photon	7
	Processes	7
	3.2 Amplitude Modulation for Exact Frequency Resonance, $\omega \equiv 0$,
	(Exact Solutions)	7
	3.2.1 Equal Relaxation Times $(T = \tau)$	7
	3.2.2 The Case of Unequal Relaxation Times $(T \neq \tau)$	8
	3.2.3 Relaxation in the Field of a Single Pulse for $T \neq \tau$,	^
	and Methods for Exact Solutions	8
	3.3 Amplitude-Frequency Modulation of the Field	•
	(Exact Solutions)	9
	3.3.1 The Case of Equal Relaxation Times $(T = \tau)$	9
	3.3.2 The Non-Equal Relaxation Times $(T \neq \tau)$	9
	3.4 Approximate Solutions in Various Limiting Cases	10
	3.5 Relaxation in a Stationary Field	10
	3.6 Polarization Dynamics in a Nonstationary Field	10
Į.	Polarization of Resonant Media	11
	4.1 Nonlinear Polarization of Gaseous Media	11
	4.1.1 Probability of Stimulated Multiphoton Transitions	11
	and Polarization of Freely Self-Orienting Systems	11
	4.1.2 The Local Coherence of Parametric Interaction	11
	4.1.3 Influence of the Doppler Effect on the Shape	11
	of the Absorption Line for Multiphoton Interactions	11
	4.2 Dispersion Properties of the Resonant Susceptibility of Media	11
	with Identically Oriented Particles	11
	4.3 The Equation for the Nonlinear Susceptibility	11
		1.0
	for the Single-Photon Resonance	12
	4.4 The Properties of Spatial Harmonics of Susceptibility	12
	4.4.1 Relationships Between Direct and Mixed Susceptibilities	12
	4.4.2 The Connection Between Susceptibilities χ , a and b	12
	4.4.3 Potential Function for Susceptibilities	13
5.	Structure of One-Dimensional Waves for the Single-Photon	
	Resonance	13
	5.1 Conservation Laws for One-Dimensional Waves in Resonant Media	13
	5.2 Stationary Oscillations in a Layer of Identical Molecules	1.
	Without Distributed Losses	13
	77 1011O40 Distilluted Doses	1.

	5.3	Stationary Oscillations in a Layer of Identical Molecules in	140
	- 1	the Presence of Distributed Losses	140
	5.4	Rotation of Polarization Planes of Countertravelling Waves	1.45
		in an Isotropic Nonlinear Medium	147
6.		ree-Photon Resonant Parametric Processes	152
	6.1	Addition and Doubling of Frequencies for a Transition	
		Frequency in Matter That Coincides with the Sum	
		Frequency or the Frequency of the Harmonic	154
		6.1.1 Addition and Doubling of Frequencies in a Medium with	
		Identically Oriented Molecules	155
		6.1.2 On Resonant Frequency Doubling in Vapors and Gases	163
		Generation of the Second Harmonic of Resonant Pumping	169
		Resonant Division of Frequency	173
	6.4	Generation of the Difference Frequency During Stimulated	
		Raman Scattering	178
		6.4.1 Generation of Resonant Radiation During SRS in a	
		Medium Consisting of Identically Oriented Molecules	179
		6.4.2 Generation of the Difference Frequency During SRS	
		in Gases	186
		6.4.3 Generation of the Difference Frequency During SRS	
		in the Presence of a Nonuniform Electrostatic Field	193
7.	For	ur-Photon Resonant Parametric Interactions (RPI)	206
	7.1	Anti-Stokes Stimulated Raman Scattering	210
		7.1.1 Specific Features of ASRS	210
		7.1.2 Basic Equations	211
		7.1.3 Spatial Distribution of the Anti-Stokes Component	212
		7.1.4 Energy Characteristics of ASRS	218
		7.1.5 The Experimental Analysis of Energy Characteristics	218
	7.2	The Influence of Four-Photon RPIs on the Dynamics	
		of the Stokes Components of SRS	222
		7.2.1 Generation of the Stokes Components of SRS During	
		Biharmonic Pumping	222
		7.2.2 The Effect of Strong Pumping TPA on Weak	
		Pumping SRS	232
		7.2.3 Discussion of Experimental Results	235
	7.3	Radiation Frequency Transformation in Four-Photon RPIs	
		Based on Pumping Field TPA and SRS	240
		7.3.1 Introductory Remarks and Basic Equations	240
		7.3.2 Generation of the Difference Frequency During TPA	243
		7.3.3 Generation of the Sum Frequency During TPA	246
		7.3.4 The Effect of Wave Detuning	248
		7.3.5 Transformation Length and Effect of Population	
		Saturation	25

	7.3.6 Four-Photon RPI's Based on SRS of the Pumping Field	2 54
	7.3.7 Generation of the Difference Frequency During SRS	255
	7.3.8 Generation of the Sum Frequency During SRS	257
	7.3.9 Discussion	258
	On Soft Excitation of Stimulated Two-Photon Radiation	261
3.	lf-Action of Light Beams Caused by Resonant	
	teraction with the Medium	270
	Specific Features and Threshold Characteristics	
	of Self-Focussing in an Absorbing Medium	270
	8.1.1 The Equation for the Beam Radius	272
	8.1.2 The Threshold for Weak Attenuation	274
	8.1.3 The Threshold for Strong and Intermediate Attenuation	278
	2 The "Weak" Self-Focussing and Self-Defocussing	
	of a Gaussian Beam in an Absorbing Medium	281
	3 Self-Bending of Trajectories of Asymmetric Light Beams	
	in Nonlinear Media	284
	4 Conditions for the Existence of Self-Action Caused	
	by Resonant Absorption	289
	5 Self-Action of Light Caused by Stimulated Raman	
	Scattering	295
	8.5.1 Formation of a Thin Lens in the Region	
	of SRS-Transformation	295
	8.5.2 The Threshold of SRS Self-Focussing and Self-Bending .	297
	Self-Action Effects at Nonlinear Interface	301
	8.6.1 Nonlinear Properties of Interfaces	301
	8.6.2 The Main Equations and Conditions	304
	8.6.3 Effects at "Positive" Nonlinearity	306
	8.6.4 Experiments on a Nonlinear Interface	309
	8.6.5 Effects at "Negative" Nonlinearity Longitudinally	
	Inhomogeneous Traveling Waves (LITW)	313
	8.6.6 Theorems of LITW Existence for Arbitrary Kinds	
	of Nonlinearity	317
	7 Optical Bistability Based on Mutual Self-Action	
	of Counterpropagating Light Beams	318
	8.7.1 Experimental Observation of Bistability Based	
	on Self-Trapping	318
	8.7.2 Mutual Self-Action of Counterpropagating Beams	
	in the General Case	3 20
Re	ences	327
C 1	et Index	330