Table of Contents

Introduc	etion			. 1
Part A.	The Fundamental Concepts of Recursion Theory	•		
Chapter	I. Recursive Functions	•		. 7
1.	An Informal Description			
2.	Formal Definitions of Computable Functions			
	2.1. Primitive Recursive Functions			. 8
	2.2. Diagonalization and Partial Recursive Function	ons		. 10
	2.3. Turing Computable Functions			. 11
3.	The Basic Results			. 14
4.	Recursively Enumerable Sets and Unsolvable Problem			. 18
5.	Recursive Permutations and Myhill's Isomorphism		•	
	Theorem			. 24
		•	•	. 27
Chapter	II. Fundamentals of Recursively Enumerable Sets			
•	and the Recursion Theorem			. 27
1				
1.	Equivalent Definitions of Recursively Enumerable S			
2	Their Basic Properties			
2.	Uniformity and Indices for Recursive and Finite Sets			. 32
3.	The Recursion Theorem			
4.	Complete Sets, Productive Sets, and Creative Sets	٠		. 40
Chapter	III. Turing Reducibility and the Jump Operator			. 46
1.	Definitions of Polotics Commutability			40
	Definitions of Relative Computability		•	. 46
2.	Turing Degrees and the Jump Operator	٠		. 52
3.	The Modulus Lemma and Limit Lemma		•	. 56
Chapter	IV. The Arithmetical Hierarchy			. 60
1.	Computing Levels in the Arithmetical Hierarchy			. 60
2.	Post's Theorem and the Hierarchy Theorem			
3.	Σ_n -Complete Sets			
4.	The Relativized Arithmetical Hierarchy and High at Degrees			

Part B.	Post's Problem, Oracle Constructions and the Finite Injury Priority Method
Chapter	V. Simple Sets and Post's Problem
1.	Immune Sets, Simple Sets and Post's Construction
2.	Hypersimple Sets and Majorizing Functions
3.	The Permitting Method
4.	Effectively Simple Sets Are Complete
5.	A Completeness Criterion for R.E. Sets
Chapter	VI. Oracle Constructions of Non-R.E. Degrees
1.	A Pair of Incomparable Degrees Below 0'
2.	Avoiding Cones of Degrees
3.	Inverting the Jump
4.	Upper and Lower Bounds for Degrees
5.*	Minimal Degrees
	Ç
Chapter	VII. The Finite Injury Priority Method
1.	Low Simple Sets
2.	The Original Friedberg-Muchnik Theorem 1
3.	Splitting Theorems
Part C.	Infinitary Methods for Constructing R.E. Sets and Degrees
Chapter	VIII. The Infinite Injury Priority Method
1.	The Obstacles in Infinite Injury and the Thickness
_	Lemma
2.	The Injury and Window Lemmas and the Strong Thickness Lemma
0	
3.	2110 V 4111 p = 11101 1111
4.	
5.*	The Pinball Machine Model for Infinite Injury
Chapter	
	into the R.E. Degrees
1.	Minimal Pairs and Embedding the Diamond Lattice 1
2.*	Embedding Distributive Lattices
3.	The Non-Diamond Theorem
4.*	
5 *	Noncappable Degrees 1

	Table of Contents
Chapter	X. The Lattice of R.E. Sets Under Inclusion
1.	Ideals, Filters, and Quotient Lattices
2.	Splitting Theorems and Boolean Algebras
3.	Maximal Sets
4.	Major Subsets and r-Maximal Sets
5.	Atomless r-Maximal Sets
6.	Atomless hh-Simple Sets
7.*	Σ_3 Boolean Algebras Represented as Lattices of
	Supersets
Chapter	
	the Degree of an R.E. Set
1.	Martin's Characterization of High Degrees in Terms of
	Dominating Functions
2.	Maximal Sets and High R.E. Degrees
3.	Low R.E. Sets Resemble Recursive Sets
4.	Non-Low ₂ R.E. Degrees Contain Atomless R.E. Sets
5.*	Low ₂ R.E. Degrees Do Not Contain
	Atomless R.E. Sets
Chapter	XII. Classifying Index Sets of R.E. Sets
1.	Classifying the Index Set $G(A) = \{ x : W_x \equiv_{\mathrm{T}} A \}$
2.	Classifying the Index Sets $G(\leq A)$, $G(\geq A)$,
	and $G(A)$
3.	Uniform Enumeration of R.E. Sets and Σ_3 Index Sets
4.	Classifying the Index Sets of the $High_n$, Low_n , and
	Intermediate R.E. Sets
5.	Fixed Points up to Turing Equivalence
6.	A Generalization of the Recursion Theorem and
	the Completeness Criterion to All Levels of
	the Arithmetical Hierarchy
Part D.	Advanced Topics and Current Research Areas in the R.E.
	Degrees and the Lattice of R.E. Sets
Chapter	
	R.E. Degrees, and an Algebraic Decomposition of the R.E. Degrees
1	Promptly Simple Sets and Degrees

2.	Coincidence of the Classes of Promptly Simple Degrees, Noncappable Degrees, and Effectively Noncappable Degrees	2
3.	A Decomposition of the R.E. Degrees Into the Disjoint	
	Union of a Definable Ideal and a Definable Filter	2
4.	Cuppable Degrees and the Coincidence of Promptly Simple	
	and Low Cuppable Degrees	2
Chapter	XIV. The Tree Method and $0'''$ -Priority Arguments	3
1.	The Tree Method With 0'-Priority Arguments	3
2.	The Tree Method in Priority Arguments and the	
	Classification of $0'$, $0''$, and $0'''$ -Priority Arguments	9
3.	The Tree Method With 0"-Priority Arguments	3
	3.1. Trees Applied to an Ordinary 0"-Priority	
	Argument	;
	3.2. A 0"-Priority Argument Which Requires the Tree	
	Method	
4.	The Tree Method With a 0"'-Priority Argument:	
	The Lachlan Nonbounding Theorem	
	4.1. Preliminaries	
	4.2. The Basic Module for Meeting a Subrequirement .	
	4.3. The Priority Tree	;
	4.4. Intuition for the Priority Tree	
	and the Proof	
	4.5. The Construction	
	4.6. The Verification	;
Chapter	XV. Automorphisms of the Lattice of R.E. Sets	
1.	Invariant Properties	
2.	Some Basic Properties of Automorphisms of ${\cal E}$	
3.	Noninvariant Properties	
4.	The Statement of the Extension Theorem	
7.		
5.	and Its Motivation	
0.	for Maximal Sets	
C		
6.	The Proof of the Extension Theorem	
	6.1. The Machines	
	6.2. The Construction	4
	6.3. The Requirements and the Motivation	
	for the Rules	
	6.4. The Rules	;

6.5. The Verification	368
Chapter XVI. Further Results and Open Questions About R.E. Sets and Degrees	374
1. Automorphisms and Isomorphisms of the Lattice	
	374
	379
	383
	385
4. The Aigebraic office of it	
References	389
	419
Notation Index	113
Subject Index	429

Table of Contents

xvii