

Contents

1	Radical Substitution Reactions at the Saturated C Atom	1
1.1	Bonding and Preferred Geometries in Carbon Radicals, Carbenium Ions and Carbanions	2
1.1.1	Preferred Geometries	3
1.1.2	Bonding	4
1.2	Stability of Radicals	5
1.2.1	Reactive Radicals	6
1.2.2	Unreactive Radicals	10
1.3	Relative Rates of Analogous Radical Reactions	12
1.3.1	The Bell-Evans-Polanyi Principle	12
1.3.2	The Hammond Postulate	14
1.4	Radical Substitution Reactions: Chain Reactions	15
1.5	Radical Initiators	17
1.6	Radical Chemistry of Alkylmercury(II) Hydrides	18
1.7	Radical Halogenation of Hydrocarbons	21
1.7.1	Simple and Multiple Chlorinations	21
1.7.2	Regioselectivity of Radical Chlorinations	23
1.7.3	Regioselectivity of Radical Brominations Compared to Chlorinations	25
1.7.4	Rate Law for Radical Halogenations; Reactivity/Selectivity Principle and the Road to Perdition	27
1.7.5	Chemoselectivity of Radical Brominations	29
1.7.6	Radical Chain Chlorination Using Sulfuryl Chloride	35
1.8	Autoxidations	38
1.9	Synthetically Useful Radical Substitution Reactions	41
1.9.1	Simple Reductions	41
1.9.2	Formation of 5-Hexenyl Radicals: Competing Cyclopentane Formation	44
1.10	Diazene Fragmentations as Novel Alkane Syntheses	46
2	Nucleophilic Substitution Reactions at the Saturated C Atom	53
2.1	Nucleophiles and Electrophiles; Leaving Groups	53
2.2	Good and Poor Nucleophiles	54
2.3	Leaving Groups: Good, Bad and Ugly	58
2.4	S_N2 Reactions: Kinetic and Stereochemical Analysis—Substituent Effects on Reactivity	60
2.4.1	Energy Profile and Rate Law for S_N2 Reactions: Reaction Order . .	60
2.4.2	Stereochemistry of S_N2 Substitutions	62

2.4.3	A Refined Transition State Model for the S_N2 Reaction; Crossover Experiment and Endocyclic Restriction Test	63
2.4.4	Substituent Effects on S_N2 Reactivity.	66
2.5	S_N1 Reactions: Kinetic and Stereochemical Analysis; Substituent Effects on Reactivity	69
2.5.1	Energy Profile and Rate Law of S_N1 Reactions; Steady State Approximation	69
2.5.2	Stereochemistry of S_N1 Reactions; Ion Pairs	72
2.5.3	Solvent Effects on S_N1 Reactivity	73
2.5.4	Substituent Effects on S_N1 Reactivity.	76
2.6	When Do S_N Reactions at Saturated C Atoms Take Place According to the S_N1 Mechanism and When Do They Take Place According to the S_N2 Mechanism?	83
2.7	Getting by with Help from Friends, or a Least Neighbors: Neighboring Group Participation	83
2.7.1	Conditions for and Features of S_N Reactions with Neighboring Group Participation	83
2.7.2	Increased Rate through Neighboring Group Participation	85
2.7.3	Stereoselectivity through Neighboring Group Participation	86
2.8	S_Ni Reactions	89
2.9	Preparatively Useful S_N2 Reactions: Alkylations	91
3	Electrophilic Additions to the C=C Double Bond	103
3.1	The Concept of <i>cis</i> - and <i>trans</i> -Addition	104
3.2	Vocabulary of Stereochemistry and Stereoselective Synthesis I	104
3.2.1	Isomerism, Diastereomers/Enantiomers, Chirality	104
3.2.2	Chemoselectivity, Diastereoselectivity/Enantioselectivity, Stereospecificity/Stereoconvergence	106
3.3	Electrophilic Additions that Take Place Diastereoselectively as <i>cis</i> -Additions	109
3.3.1	A Cycloaddition Forming Three-Membered Rings.	109
3.3.2	Additions to C=C Double Bonds That Are Related to Cycloadditions and Also Form Three-Membered Rings	114
3.3.3	<i>cis</i> -Hydration of Alkenes via the Hydroboration/Oxidation/Hydrolysis Reaction Sequence	118
3.3.4	Heterogeneous Hydrogenation	126
3.4	Enantioselective <i>cis</i> -Additions to C=C Double Bonds.	128
3.4.1	Vocabulary of Stereochemistry and Stereoselective Synthesis II: Topicity, Asymmetric Synthesis.	128
3.4.2	Asymmetric Hydroboration of Achiral Alkenes	129
3.4.3	Thought Experiment I on the Hydroboration of Chiral Alkenes with Chiral Boranes: Mutual Kinetic Resolution	131

3.4.4	Thought Experiments II and III on the Hydroboration of Chiral Alkenes with Chiral Boranes: Reagent Control of Diastereoselectivity, Matched/Mismatched Pairs, Double Stereodifferentiation. . .	133
3.4.5	Thought Experiment IV on the Hydroboration of Chiral Olefins with Chiral Dialkylboranes: Kinetic Resolution	134
3.4.6	Catalytic Asymmetric Synthesis: Sharpless Oxidations of Allylic alcohols	136
3.5	Additions that Take Place Diastereoselectively as <i>trans</i> -Additions (Additions via Onium Intermediates)	142
3.5.1	Addition of Halogens	144
3.5.2	The Formation of Halohydrins; Halolactonization and Haloetherification	144
3.5.3	Solvomercuration of Alkenes: Hydration of C=C Double Bonds through Subsequent Reduction	148
3.6	Additions that Take Place or Can Take Place without Stereocontrol Depending on the Mechanism	150
3.6.1	Additions via Carbenium Ion Intermediates	150
3.6.2	Additions via “Carbanion” Intermediates.	152
4	β-Eliminations	157
4.1	Concepts of Elimination Reactions	157
4.1.1	The Concepts of α,β - and 1, <i>n</i> -Elimination	157
4.1.2	The Terms <i>syn</i> - and <i>anti</i> -Elimination	158
4.1.3	When Are <i>syn</i> - and <i>anti</i> -Selective Eliminations Stereoselective? . .	159
4.1.4	Formation of Regioisomeric Alkenes by β -Elimination: Saytzeff and Hofmann Product(s).	161
4.1.5	The Synthetic Value of Het ¹ /Het ² in Comparison to H/Het-Eliminations	163
4.2	β -Eliminations of H/Het via Cyclic Transition States	164
4.3	β -Eliminations of H/Het via Acyclic Transition States: The Mechanistic Alternatives	167
4.4	E2 Eliminations of H/Het and the E2/S _N 2 Competition	168
4.4.1	Substrate Effects on the E2/S _N 2 Competition	169
4.4.2	Base Effects on the E2/S _N 2 Competition	170
4.4.3	A Stereoelectronic Effect on the E2/S _N 2 Competition	171
4.4.4	The Regioselectivity of E2 Eliminations	173
4.4.5	The Stereoselectivity of E2 Eliminations	176
4.4.6	One-Pot Conversion of an Alcohol to an Alkene	177
4.5	E1 Elimination of H/Het from R _{tert} —X and the E1/S _N 1 Competition	179
4.5.1	Energy Profiles and Rate Laws for E1 Eliminations	179
4.5.2	The Regioselectivity of E1 Eliminations	185
4.5.3	E1 Eliminations in Protecting Group Chemistry	187
4.6	E1 _{cb} Eliminations	189
4.6.1	Unimolecular E1 _{cb} Eliminations: Energy Profile and Rate Law . .	189

4.6.2	Nonunimolecular E1 _{cb} Eliminations: Energy Profile and Rate Law	190
4.6.3	Alkene-Forming Step of the Julia-Lythgoe Olefination	191
4.6.4	E1 _{cb} Eliminations in Protecting Group Chemistry	192
4.7	β-Eliminations of Het ¹ /Het ²	194
4.7.1	Fragmentation of b-Heterosubstituted Organometallic Compounds	194
4.7.2	Peterson Olefination	195
4.7.3	Oxaphosphetane Fragmentation, Last Step of Wittig and Horner-Wadsworth-Emmons Reactions	196
5	Substitution Reactions on Aromatic Compounds	201
5.1	Electrophilic Aromatic Substitutions via Sigma Complexes ("Ar-SE Reactions").	201
5.1.1	Mechanism: Substitution of H [⊕] vs <i>ipso</i> -Substitution.	201
5.1.2	Thermodynamic Aspects of Ar-S _E Reactions	205
5.1.3	Kinetic Aspects of Ar-S _E Reactions: Reactivity and Regioselectivity in Reactions of Electrophiles with Substituted Benzenes	209
5.2	Ar-S _E Reactions via Sigma Complexes: Individual Reactions	215
5.2.1	Ar—Hal Bond Formation by Ar-S _E Reaction.	215
5.2.2	Ar—SO ₃ H Bond Formation by Ar-S _E Reaction	218
5.2.3	Ar—NO ₂ Bond Formation by Ar-S _E Reaction	219
5.2.4	Ar—N=N Bond Formation by Ar-S _E Reaction	223
5.2.5	Ar—Alkyl Bond Formations by Ar-S _E Reaction	225
5.2.6	Ar—C(OH) Bond Formation by Ar-S _E Reactions and Associated Secondary Reactions	228
5.2.7	Ar—C(=O) Bond Formation by Ar-S _E Reaction.	229
5.2.8	Ar—C(=O)H Bond Formation through Ar-S _E Reaction	233
5.3	Electrophilic Substitution Reactions on Metalated Aromatic Compounds	234
5.3.1	Electrophilic Substitution Reactions of <i>ortho</i> -Lithiated Benzene and Naphthalene Derivatives	234
5.3.2	Electrophilic Substitution Reactions in Aryl Grignard and Aryllithium Compounds That Are Accessible from Aryl Halides	237
5.3.3	Electrophilic Substitutions of Arylboronic Acids and Arylboronic Esters	242
5.4	Nucleophilic Substitution Reactions of Aryldiazonium Salts	243
5.5	Nucleophilic Substitution Reactions via Meisenheimer Complexes	247
5.5.1	Mechanism	247
5.5.2	Examples of Reactions of Preparative Interest	249
5.6	Nucleophilic Aromatic Substitution via Arynes, <i>cine</i> Substitution	251
6	Nucleophilic Substitution Reactions at the Carboxyl Carbon	259
6.1	C=O-Containing Substrates and Their Reactions with Nucleophiles	259
6.2	Mechanisms, Rate Laws, and Rate of Nucleophilic Substitution Reactions at the Carboxyl Carbon	261

6.2.1	Mechanism and Rate Laws of S_N Reactions at the Carboxyl Carbon	262
6.2.2	S_N Reactions at the Carboxyl Carbon: The Influence of Resonance Stabilization of the Reacting C=O Double Bond on the Reactivity of the Acylating Agent	268
6.2.3	S_N Reactions at the Carboxyl Carbon: The Influence of the Stabilization of the Tetrahedral Intermediate on the Reactivity	272
6.3	Activation of Carboxylic Acids and of Carboxylic Acid Derivatives.	274
6.3.1	Activation of Carboxylic Acids and Carboxylic Acid Derivatives in Equilibrium Reactions	274
6.3.2	Conversion of Carboxylic Acids into Isolable Acylating Agents	275
6.3.3	Complete <i>in Situ</i> Activation of Carboxylic Acids	278
6.4	Selected S_N Reactions of Heteroatom Nucleophiles at the Carboxyl Carbon	282
6.4.1	Hydrolysis and Alcoholsysis of Esters	287
6.4.2	Lactone Formation from Hydroxycarboxylic Acids	293
6.4.3	Forming Peptide Bonds	296
6.4.4	S_N Reactions of Heteroatom Nucleophiles with Carbonic Acid Derivatives	300
6.5	S_N Reactions of Hydride Donors, Organometallics, and Heteroatom-Stabilized “Carbanions” on the Carboxyl Carbon	306
6.5.1	When Do Pure Acylations Succeed with Carboxylic Acid (Derivative)s, and When Are Alcohols Produced?	306
6.5.2	Acylation of Hydride Donors: Reduction of Carboxylic Acid Derivatives to Aldehydes	311
6.5.3	Acylation of Organometallic Compounds and Heteroatom-Stabilized “Carbanions” With Carboxylic Acid (Derivative)s: Synthesis of Ketones	312
6.5.4	Acylation of Organometallic Compounds and Heteroatom-Stabilized “Carbanions” with Carbonic Acid Derivatives: Synthesis of Carboxylic Acid Derivatives	317
7	Carboxylic Compounds, Nitriles, and Their Interconversion.	321
7.1	Preparation of Nitriles from Carboxylic Acid(Derivative)s.	322
7.2	Transformation of Nitriles and Heteroatom Nucleophiles to Carboxylic Acid (Derivative)s	328
8	Carbonic Acid Derivatives and Heterocumulenes and Their Interconversion	339
8.1	Preparation of Heterocumulenes from Carbonic Acid (Derivatives)	341
8.2	Transformation of Heterocumulenes and Heteroatom Nucleophiles into Carbonic Acid Derivatives	348
8.3	Interconversions of Carbonic Acid Derivatives via Heterocumulenes as Intermediates	356

13.4	Condensation of Enolates with Carbonyl Compounds: Synthesis of Michael Acceptors	565
13.4.1	Aldol Condensations	565
13.4.2	Knoevenagel Reaction	571
13.5	Acylation of Enolates	575
13.5.1	Acylation of Ester Enolates	575
13.5.2	Acylation of Ketone Enolates	579
13.5.3	Acylation of the Enolates of Active-Methylene Compounds	582
13.6	Michael Additions of Enolates	584
13.6.1	Simple Michael Additions	584
13.6.2	Tandem Reactions Consisting of Michael Addition and Consecutive Reactions	586
14	Rearrangements	595
14.1	Nomenclature of Sigmatropic Shifts	595
14.2	Molecular Origins for the Occurrence of [1,2]-Rearrangements	596
14.3	[1,2]-Rearrangements in Species with a Valence Electron Sextet	598
14.3.1	[1,2]-Rearrangements of Carbenium Ions	598
14.3.2	[1,2]-Rearrangements in Carbenes or Carbeneoids	615
14.4	[1,2]-Rearrangements without the Occurrence of a Sextet Intermediate	622
14.4.1	Hydroperoxide Rearrangements	623
14.4.2	Baeyer–Villiger Rearrangements	624
14.4.3	Oxidation of Organoborane Compounds	627
14.4.4	Beckmann Rearrangement	629
14.4.5	Curtius Degradation	630
14.5	Claisen Rearrangement	632
14.5.1	Classical Claisen Rearrangement	632
14.5.2	Ireland-Claisen Rearrangements	634
15	Thermal Cycloadditions	643
15.1	Driving Force and Feasibility of One-Step [4+2]- and [2+2]-Cycloadditions	643
15.2	Transition State Structures of Selected One-Step [4+2]- and [2+2]-Cycloadditions	644
15.2.1	Stereostructure of the Transition States of One-Step [4+2]-Cycloadditions	644
15.2.2	Frontier Orbital Interactions in the Transition States of One-Step [4+2]-Cycloadditions	645
15.2.3	Frontier Orbital Interactions in the Transition States of the Unknown One-Step Cycloadditions of Alkenes or Alkynes to Alkenes	651
15.2.4	Frontier Orbital Interactions in the Transition State of One-Step [2+2]-Cycloadditions Involving Ketenes	652

15.3	Diels–Alder Reactions	654
15.3.1	Stereoselectivity of Diels–Alder Reactions	655
15.3.2	Substituent Effects on Reaction Rates of Diels–Alder Reactions	661
15.3.3	Regioselectivity of Diels–Alder Reactions	665
15.3.4	Simple Diastereoselectivity of Diels–Alder Reactions	668
15.4	[2+2]-Cycloadditions with Dichloroketene	671
15.5	1,3-Dipolar Cycloadditions	674
15.5.1	1,3-Dipoles	674
15.5.2	Frontier Orbital Interactions in the Transition States of One-Step 1,3-Dipolar Cycloadditions; Sustmann Classification	675
15.5.3	1,3-Dipolar Cycloadditions of Diazoalkanes	677
15.5.4	1,3-Dipolar Cycloadditions of Nitrile Oxides	680
15.5.5	1,3-Dipolar Cycloadditions and 1,3-Dipolar Cycloreversions as Steps in the Ozonolysis of Alkenes	683
15.5.6	A Tricky Reaction of Inorganic Azide	685
16	Transition Metal-Mediated Alkenylations, Arylations, and Alkynylations	691
16.1	Alkenylation and Arylation of Gilman Cuprates	692
16.2	Arylation and Alkynylation of Neutral Organocupper Compounds I	694
16.3	Alkenylation and Arylation of Grignard Compounds (Kumada Coupling)	701
16.4	Palladium-Catalyzed Alkenylations and Arylations of Organometallic Compounds	705
16.4.1	A Prelude: Preparation of Haloalkenes and Alkenylboronic Acid Derivatives, Important Building Blocks for Palladium-Mediated C,C Couplings; Carbocupration of Alkynes	705
16.4.2	Alkenylation and Arylation of Boron-Bound Groups (Suzuki Coupling)	709
16.4.3	Alkenylation and Arylation of Organozinc Compounds (Negishi Couplings) and of Functionalized Organozinc Compounds	714
16.4.4	Alkenylation and Arylation of Tin-bound Groups (Stille Reaction)	717
16.4.5	Arylations, Alkenylations and Alkynylations of Neutral Organocupper Compounds II	721
16.5	Heck Reactions	726
17	Oxidations and Reductions	737
17.1	Oxidation Numbers in Organic Chemical Compounds, and Organic Chemical Redox Reactions	737
17.2	Cross-References to Redox Reactions Already Discussed in Chapters 1–16	742
17.3	Oxidations	748
17.3.1	Oxidations in the Series Alcohol \rightarrow Aldehyde \rightarrow Carboxylic Acid	748
17.3.2	Oxidative Cleavages	758
17.3.3	Oxidations at Heteroatoms	775

17.4	Reductions	777
17.4.1	Reductions $R_{sp^3}-X \rightarrow R_{sp^3}-H$ or $R_{sp^3}-X \rightarrow R_{sp^3}-M$	778
17.4.2	One-Electron Reductions of Carbonyl Compounds and Esters; Reductive Coupling	786
17.4.3	Reductions of Carboxylic Acid Derivatives to Alcohols or Amines	795
17.4.4	Reductions of Carboxylic Acid Derivatives to Aldehydes	800
17.4.5	Reductions of Carbonyl Compounds to Alcohols	800
17.4.6	Reductions of Carbonyl Compounds to Hydrocarbons.	800
17.4.7	Hydrogenation of Alkenes	806
17.4.8	Reductions of Aromatic Compounds and Alkynes	815
17.4.9	The Reductive Step of the Julia–Lythgoe Olefination	819
	Subject Index	827