Contents

Continu	ium Th	ermodynamic and Rate Variational Formulation of		
Models	for Ext	tended Continua	1	
Bob Sve	ndsen			
1	1 Introduction			
2				
3	Euclidean Frame-Indifference of the Energy Balance			
4				
5	Dissipation Principle and Reduced Evolution-Field Relations			
6	•			
7	Disci	ussion	13	
Ref	erences	8	15	
		Models to Extended Continua	19	
Stefan L		Daniel Scharding		
1		duction	19	
2	Lattice Models		21	
	2.1	Honeycomb Structure	21	
	2.2	Effective Shear Modulus	23	
	2.3	Reference Data	25	
3	Exte	nded Continuum Theories	26	
	3.1	The Linear Cosserat Theory	27	
	3.2	Analytical Solution for Shear	28	
4	Parar	Parameter Identification		
	4.1	Gradient-Based Methods	30	
	4.2	Evolution Strategies	32	
5	Conc	clusions and Outlook	34	
Ref	erences	s	35	
Λn	nandiv		38	

		Degrees of Freedom in Modeling Materials with Intrinsic ale		
		ale 4 ternak, Hans-Bernd Mühlhaus, Arcady V. Dyskin		
1 2				
2		Non-standard Continua for Modeling Materials with Microstructure		
_				
3		$\boldsymbol{\mathcal{C}}$		
		3.2 Homogenization by Integral Transformation (Non-local Cosserat Continuum)		
		,		
4	1 -	Homogenization by Differential Expansions in 3D		
5		Cosserat Model of Layered Materials with Sliding Layers and		
		Stress Concentrations		
6		Path-Independent Integrals in Cosserat Continuum		
7		Conclusions 6		
H	Refer	ences		
		phic vs. Phase-Field Approaches for Gradient		
		icity and Phase Transformations 6		
Samu		rest, Kais Ammar, Benoît Appolaire		
1		Introduction		
2	2	Thermomechanics with Additional Degrees of Freedom 7		
		2.1 General Setting 7		
		2.2 Micromorphic Model as a Special Case		
		2.3 Phase-Field Model as a Special Case		
3	3	Constitutive Framework for Gradient and Micromorphic		
		Viscoplasticity 7		
		3.1 Introduction of Viscous Generalized Stresses 7		
		3.2 Decomposition of the Generalized Strain Measures 7		
4	4	Phase-Field Models for Elastoviscoplastic Materials 7		
		4.1 Coupling with Diffusion		
		4.2 Partition of Free Energy and Dissipation Potential 8		
		4.3 Multi-phase Approach for the Mechanical Contribution 8		
		4.4 Voigt/Taylor Model Coupled Phase-Field Mechanical		
		Theory		
5	5	Conclusion		
I		ences		
~	. •			
		cally Nonlinear Continuum Thermomechanics Coupled to		
		A Framework for Case II Diffusion		
		McBride, Swantje Bargmann, Paul Steinmann		
_		Introduction		
2	2	Preliminaries: Notation and Key Concepts		

			Contents	XIII
	3	Gove	erning Equations	94
		3.1	Conservation of Solid Mass	94
		3.2	Conservation of Diffusing Species Mass	94
		3.3	Balance of Linear and Angular Momentum	96
		3.4	Balance of Internal Energy	96
		3.5	Balance of Entropy	97
		3.6	Constitutive Relations	99
		3.7	Temperature Evolution Equation	101
	4	Kev I	Features of the Helmholtz Energy Required to Reproduce	
			II Diffusion	102
		4.1	Energy Associated with Viscoelastic Effects	103
		4.2	Energy Associated with Mixing	104
	5	Discu	ussion and Conclusions	104
	Refe			106
Eff	fective	Electi	romechanical Properties of Heterogeneous	
Pie	ezoele	ctrics .	-	109
Ma	arc-An	dré Ke	rip, Jörg Schröder	
	1		duction	109
	2	Boun	dary Value Problems on the Macro- and the Mesoscale	112
		2.1	Macroscopic Electro-Mechanically Coupled BVP	112
		2.2	Mesoscopic Electro-Mechanically Coupled BVP	114
	3	Effec	etive Properties of Piezoelectric Materials	116
	4	Nume	erical Example	120
		4.1	Invariant Formulation and Material Parameters	121
		4.2	Investigation of the "Wolfgang Ehlers 60"	
			Mesostructure	122
	5	Conc	clusion	124
	Ref		S	125
Co	upled	Thern	no- and Electrodynamics of Multiphasic Continua	129
Ве	rnd M	arkert		
	1	Mixt	ure and Porous Media Theories	129
		1.1	The Macroscopic Mixture Approach	130
		1.2	Volume Fractions, Saturation and Density	130
	2	Kine	matical Relations	132
		2.1	Mixture Kinematics	132
		2.2	Deformation and Strain Measures	134
	3	Some	e Aspects of Electrodynamics	138
		3.1	Preliminaries	138
		3.2	The Macroscopic Maxwell Equations	139
		3.3	Fusion of Electrodynamics and Thermodynamics	141

	4	Baland	ce Relations	142
		4.1	Stress Concept and Dual Variables	142
		4.2	Master Balance Principle for Mixtures	144
	5	Concl	usion	150
	Refe	rences		151
			n Porous Media	153
Joa	chim I	Bluhm,	Tim Ricken, Moritz Bloßfeld	
	1		uction	153
	2		·	155
	3	Simpli	ified Quadruple Model	157
		3.1	Field Equations	157
		3.2	Constitutive Theory	158
	4	Examp	ples	166
		4.1	Example 1: Capillary Suction during Freezing	167
		4.2	Example 2: Heat of Fusion during Phase Transition	170
	5	Concl	usion	171
	Refe	rences		172
			ements for a Cold-Box Sand and Aspects of Direct and	
			ns for Micropolar Elasto-Plasticity	175
Rol	f Mah		smail Caylak	
	1		uction	175
	2	Specir	mens and Testing Equipment	178
		2.1	Materials and Specimen Preparation	178
		2.2	Experimental Equipment	178
	3		ial Compression and Tension Tests	180
		3.1	SD-Effect and Optical Measurements	180
		3.2	Rate Dependency and Reproducibility	183
		3.3	Influence of Storage Time	183
	4	Therm	no-Mechanical Characterization	184
		4.1	Heat Exchanger Variation for Thermal Loading	184
		4.2	Mechanical Loading for Different Isothermal	
			Conditions	186
	5	Triaxi	al Characterization	187
	6	Model	ling of Micropolar Continua	188
		6.1	Basic Equations	188
		6.2	Yield Function and Plastic Potential	189
	7	Direct	and Inverse Problems for Micropolar Solids	191
		7.1	Direct Problem: Weak Formulation	191
		7.2	Inverse Problem: Constrained Least Squares Problem	192
	8	Summ	ary and Outlook	194
	Refe			195

		on for Complex Continua – At the Example of Fissue in the Nasal Area	107
	-	acher, Stefanie Reese	197
1	Indro	duction	197
2	Mode	l Reduction for Non-linear Structural Mechanics	200
	2.1	SVD-Based Reduction	200
	2.2	Error Definition	203
3	Biome	echanical Structural Applications	203
	3.1	Examples	203
	3.2	Study of Convergence	205
	3.3	Study of Parameters	205
	3.4	Human Nose Model	213
4	Concl	usion	215
Refe	erences		215
Author I	ndex .		219