Contents

ı.	Con	trolled Fusion and Numerical Simulation	1
	1.1	Controlled Fusion	1
		1.1.1 The Lawson Criterion	1
		1.1.2 Magnetic and Inertial Confinement of Plasma	4
		1.1.3 The Role of Numerical Simulation in Fusion Research	5
	1.2	Tokamaks	7
		1.2.1 Design and Principle of Operation	7
		1.2.2 The Current Status of Tokamak Research	9
		1.2.3 Mathematical Models of Plasma in Tokamak Devices	14
	1.3	Motion of Charged Particles in Tokamaks	17
		1.3.1 Drift Equation of Motion	17
		1.3.2 Tokamak Magnetic Field with a Circular Cross Section	19
		1.3.3 The Motion of Charged Particles in the Tokamak Magnetic	
		Field	21
2.		ulation of Kinetic Processes Involving Coulomb Interaction	29
	2.1	Operator of Coulomb Collisions	29
		2.1.1 Coulomb Collision Operator	29
		2.1.2 Properties of Coulomb Operator	33
		2.1.3 Coulomb Collision Operator for Axisymmetric	
		Velocity Distributions	38
		2.1.4 Coulomb Collision Operator for Isotropic	
		Velocity Distribution of β Particles	39
	2.2	Cauchy Problem. Characteristic Relaxation Times	43
		2.2.1 Cauchy Problem	43
		2.2.2 Collisions Between Particles of the Same Species.	
		The Simplest Relaxation Time	45
		2.2.3 Relaxation of Relative Motion of Electrons and Ions	46
		2.2.4 Energy Exchange and Temperature Equalization in	
		Nonisothermal Plasma	49
		2.2.5 Qualitative Description of the Behavior of the Cauchy	
		Problem Solution for Two-Component Plasma	50
	2.3	Linear Problem on the Interaction Between Fast Ions and	
		Maxwellian Plasma	52
		2.3.1 Mathematical Formulation	52
		2.3.2 Isotropic Problem	55

<i>T/TT</i>	~
IIX	Contents

		2.3.3 Two-Dimensional Problem	58
		2.3.4 Difference Scheme for the Solution of a Linear Kinetic	(3
	- 4	Equation	63
	2.4	Electric Field Effects	67
		2.4.1 Critical Electric Field	67
		2.4.2 Runaway Electrons	69
		2.4.3 Effective Electric Field Acting on Ions	72
		2.4.4 Interaction of Fast Ions with Plasma in the Presence of an	
		Electric Field	75
	2.5	The Problem of RF Current Drive in Plasma	79
		2.5.1 Kinetic Equation for Electrons	79
		2.5.2 Current Drive by Lower Hybrid Waves	81
		2.5.3 Current Drive by Electron Cyclotron Waves	86
		2.5.4 The Role of Trapped Electrons in Current Drive by Electron	
		Cyclotron Waves	91
	2.6	Nonlinear Kinetic Models	93
		2.6.1 Nonlinear Problems and Numerical Methods	93
		2.6.2 Energy Balance in Thermonuclear Plasma with	
		High-Intensity Injection of Deuterium and Tritium	95
3.	Sim	ulation of MHD Processes	98
	3.1	Basic Systems of Equations	98
		3.1.1 Transport Equations	98
		3.1.2 Two-Fluid Hydrodynamics	99
		3.1.3 One-Fluid Hydrodynamics	100
		3.1.4 The Strong Longitudinal Magnetic Field Approximation	
		(Tokamak Approximation)	104
		a) Reduced Equations for High-β Plasma	107
		b) Reduced Equations for Low-β Plasma	
	3.2	Equilibrium	112
		3.2.1 Equilibrium Equations for Tokamaks	
		3.2.2 Equilibrium in the Presence of an Iron Core	116
		3.2.3 Equilibrium Equation for a Cylinder	118
		3.2.4 Helical Equilibria	
		3.2.5 Some Mathematical Properties of the Equilibrium Problem	120
		3.2.6 Equilibrium of a Thin Plasma Column with Circular Cross	
		Section	
		3.2.7 Numerical Solution of Equilibrium Problems	
		3.2.8 Evolution of Equilibrium	134
	3.3	Stability	136
		3.3.1 Introductory Remarks	136
		3.3.2 Basic Equations	137
		3.3.3 Circular Cylindrical Column	
		a) External Helical Mode $(r_s > a)$	146
		b) Internal Modes $(r_s < a)$	

				Contents	XIII
			 c) Dissipative Modes (σ≠∞)		151
			$(R/a \neq \infty)$		156
			e) Local Stability Criteria $(m \gg 1, n \gg 1) \dots$		
		3.3.4	Numerical Solution of Stability Problems		
			a) Time Evolution of Solutions of System (3.3		
			b) Investigation of the Potential Energy Sign		
			c) Minimization of Functional (3.3.13) to Obtain		
			Frequency Spectrum		
			d) Examples		166
	3.4	Nonl	inear Problems		167
		3.4.1	Nonlinear Evolution of External Modes		168
		3.4.2	Evolution of the Internal Mode $m/n = 1/1$ and I	Reconnection	
			of Magnetic Surfaces		
			Nonlinear Evolution of Modes $m \ge 2$ and Grov	vth of Islands	175
		3.4.4	Helical Modes with Two Resonant Surfaces		
			("Double Tearing Modes")		
		3.4.5	Interaction Between Helical Modes		179
4	Trai	nenart	Models		183
٠.	4.1		cal Grounds of Transport Models		
	7.1	-	Basic Equations		
			Neoclassical Fluxes of Particles and Energy .		
	42		lopment of the Transport Model		
	7.2		Model of Classical Energy Balance		
			Anomalous Thermal Conductivity of Electron		
			Particle Flux		
			Model for Neutrals		
			The Effect of Magnetic Field Rippling		
			Compression of Plasma by a Magnetic Field		
			a) Compression Along the Minor Radius		
			b) Compression Along the Major Radius		
	4.3	Impu	rities		219
		4.3.1	Influx of Impurities into Plasma		219
		4.3.2	Basic System of Equations		220
		4.3.3	Atomic Processes		221
			Particle Fluxes		
			Approximate Solutions of System (4.3.1)		
			Comparison with Experiments		
			Radiation of Impurities in Energy Balance Mo		
	4.4		erical Solution of Systems (4.1.1, 3.1)		
			Linear Implicit Scheme		
			Nonlinear Implicit Scheme		
			Gear's General Methods for Stiff Systems		
	4.5	Appe	ndix		239

XIV	Content:
AIV	Content

5.	Hyl	brid M	lodels	241
	5.1	Mode	els of Plasma Heating by High-Energy Neutral Injection	241
		5.1.1	Ionization and Capture of Energetic Neutrals	241
			a) Narrow-Beam Model	242
			b) Wide-Beam Model	247
		5.1.2	Simple Model of Energy Balance with Neutral Injection	249
		5.1.3	Hybrid Model of Energy Balance with Neutral Injection	250
		5.1.4	Effect of Multiple Charge Exchange on Energy Transfer from	
			Fast Ions to Bulk Plasma Particles	252
	5.2	Effec	t of MHD Mixing on Energy and Particle Balance	258
		5.2.1	Experimental Data on Mixing	258
		5.2.2	Structure of the Hybrid Model	259
		5.2.3	The Kadomtsev Model of Internal Mixing for Tearing Mode	
			m/n=1/1	260
			Mixing for Nonmonotonic Current Profile	
			Electric Field in Mixing	271
		5.2.6	Properties of the Hybrid Model and Its Application to the	
			Experiment Description	274
	5.3		tic Convective Transport of Ions in Longitudinal Magnetic	
			Ripples	
			Diffusive and Convective Transport	
			Basic Equations	
			Solution of Systems (5.3.5–10) and (5.3.18–21)	
		5.3.4	Numerical Solution of Systems (5.3.5–10), (5.3.28–32)	284
Re	efere	nces .		289
Sm	hiec	t Inde	X	301

•