

Contents

Section I.

Movement of Genetic Information from the Environment to the Plant

Chapter 1 **Viruses** 1

H. Fraenkel-Conrat, Berkeley, Calif., U.S.A.

Chapter 2 **DNA Flux Across Genetic Barriers: The Crown Gall Phenomenon**

G. Gheysen, P. Dhaese, M. Van Montagu, Gent, Belgium, and J. Schell, Köln, Federal Republic of Germany

- I. Introduction: *Agrobacterium tumefaciens*, a Natural Instance of Genetic Engineering 12
 - A. General Introduction 12
 - B. In Search of the TIP 12
 - C. A More Precise Picture of the T-DNA 14
- II. The T-DNA Is Designed to Be Functional in the Plant Cell 16
 - A. T-DNA Gene Structure and Its Expression in Plant Cells 16
 - B. Functional Organization of the T-DNA 19
 - C. *Agrobacterium rhizogenes*, an Analogous System 22
 - D. Some Speculations About the Origin of the T-DNA 23
- III. Transfer and Integration of the T-DNA in the Plant Cell Nucleus 25
 - A. *Agrobacterium* Holds the Key 25
 - B. Early Interactions Between *Agrobacterium* and Plant Cells 25
 - C. T-region and T-DNA Border Sequences 26
 - D. The 25-bp Repeat Sequence 28
 - E. T-DNA Integration Compared to Other Mobile Elements 29
 - F. Crossing the Cellular and Genetic Barriers 30
 - G. T-DNA Stability 31
 - H. Domestication of the Ti Plasmid 33
- IV. Conclusion 35
- V. Acknowledgements 36
- VI. References 36

Section II.

Movement of Genetic Information Between the Plant Organelles

Chapter 3

Movement of Genetic Material Between the Chloroplast and Mitochondrion in Higher Plants

David M. Lonsdale, Cambridge, U. K.

I. Inter-Organelle DNA Transposition	52
II. Sequences Homologous to Chloroplast DNA in Higher Plant Mitochondrial Genomes	53
A. The Genome of <i>Zea mays</i>	53
B. Other Higher Plant Species	55
III. Functionality of the Chloroplast Pseudogene Sequences in the Mitochondrial Genome	55
IV. Mechanism of Sequence Transfer	56
V. Rate of Sequence Transposition and Selection of Novel Genotypes	56
VI. References	58

Chapter 4

Movement of Genetic Information Between the Chloroplast and Nucleus 61

J. N. Timmis and N. Steele Scott, Adelaide, Australia

Chapter 5

Movement of Genetic Information Between Plant Organelles: Mitochondria-Nuclei

R. J. Kemble, Mississauga, Canada, S. Gabay-Laughnan and
J. R. Laughnan, Urbana, Illinois, U.S.A.

I. Introduction	79
II. Organisms Exhibiting Common Mitochondrial and Nuclear DNA Sequences	80
III. Common Mitochondrial and Nuclear DNA Sequences in Maize	81
IV. Concluding Remarks	85
V. References	85

Section III.

Movement of Genetic Information Within Plant Organelles**Chapter 6 Supernumerary DNAs in Plant Mitochondria**
R. R. Sederoff and C. S. Levings III, Raleigh, N. C., U.S.A.

- I. Diversity of Genetic Organization in Plant Mitochondrial DNA 91
- II. Structure of Plasmid-like DNAs 97
- III. Reversion to Fertility in *cms-S* 100
- IV. A. The Diversity Paradox for Maize Mitochondrial DNA 101
B. Evolutionary Mechanisms in Maize mtDNA 102
- V. References 105

Chapter 7 Plant Mitochondrial DNA: Unusual Variation on a Common Theme
Arnold J. Bendich, Seattle, Wash., U.S.A.

- I. Introduction 111
- II. The "Extra" DNA in Plant Mitochondria 113
 - A. The Number of Translation Products Does Not Vary with Genome Size 113
 - B. The Sequence Complexity of Mitochondrial RNA Is Large 114
 - C. Are There More Mitochondrial Genes in Plants than in Other Organisms? 115
 - D. Does Mitochondrial DNA Have a Sequence-Independent Function? 115
 - E. Is Mitochondrial DNA Selfish or Ignorant? 116
 - F. Interorganellar DNA 117
 - G. Why Is the Mitochondrial Genome so Large? 117
- III. Circular Mitochondrial DNA 119
 - A. A Brief History 119
 - B. Circles in Native Plant Tissue 119
 - C. Circles in Cultured Cells 121
 - D. What Do the Circles Represent? 124
 - E. Evidence for a Circular Mitochondrial Genome 125
 - 1. Site-Specific Versus General Recombination 125
 - 2. Circular Molecules Are Not Common in Mitochondrial DNA from Whole Plant Tissue 127
 - 3. Circles and mtDNA Replication 129
 - 4. Is the Genome Really Circular? 130
 - 5. Is Circularity of the Genome Important for Mitochondrial Function? 131
- IV. Summary and Conclusions 131
 - A. The "Extra" DNA 131
 - B. Circles 132
- V. References 133

Chapter 8 Repeated Sequences and Genome Change
R. B. Flavell, Cambridge, U.K.

- I. Introduction 139
- II. Concerted Evolution 145
- III. Transposable Elements and Dispersed Repeats 147
- IV. Repeated DNA Flux and Species Divergence 149
- V. Concluding Remarks 152
- VI. References 153

Chapter 9 Sequence Variation and Stress
C. A. Cullis, Norwich, U.K.

- I. Introduction 157
- II. Environmentally Induced DNA Changes in Flax 158
- III. Nuclear DNA Variation 159
- IV. Analysis of Nuclear DNA 159
- V. Ribosomal DNA Variation 160
- VI. 5 S DNA Variation 161
- VII. Satellite DNA 161
- VIII. Other Repetitive Sequences 161
- IX. Somaclonal Variation 162
- X. Instabilities in Hybrid Plants 164
- XI. Discussion 165
- XII. References 166

Chapter 10 The Activation of Maize Controlling Elements
S. L. Dellaporta and P. S. Chomet, Cold Spring Harbor,
N.Y., U.S.A.

- I. Introduction 170
- II. Unstable Mutations in Maize 170
 - A. Genetic Loci 170
 - B. General Considerations 171
 - C. Two-Element Systems in Maize 172
 - D. Controlling Element Families 175
- III. Induction of Controlling Element Activity 177
 - A. Behavior of Broken Chromosomes 177
 - B. Unorthodox Type of Chromosome Rearrangements in BFB Plants 182
 - C. Burst of Mutability Following Chromosome Breakage 183
 - D. Examples of Controlling Element Activation by BFB Cycles 184

IV. Biology of <i>Ac/Ds</i> Elements	186
A. Chromosome Breakage at <i>Ds</i>	186
B. The <i>Ac/Ds</i> Family of Transposable Controlling Elements	187
C. Mutator Function of <i>Ac</i>	187
D. Molecular Biology of <i>Ac/Ds</i>	190
E. Relationship Between Autonomous and Non-autonomous Components	192
F. <i>Ds</i> Elements That Are Structurally Related to <i>Ac</i>	192
G. <i>Ds</i> Elements Capable of Chromosome Dissociation	193
H. Type I <i>Ds</i> Elements	194
I. Transposition of <i>Ac</i> from a Gene Locus	196
V. Cryptic and Active Forms of <i>Ac/Ds</i> Elements	202
A. General Considerations	202
B. Cryptic <i>Ac</i> -like DNA	204
C. Differences Between Active and Cryptic Copies of <i>Ac</i>	204
D. Cycling Activity of the <i>Mutator</i> Component of <i>Ac</i>	208
VI. Concluding Remarks	210
VII. Acknowledgements	211
VIII. References	211

Chapter 11 Somaclonal Variation: The Myth of Clonal Uniformity
W. R. Scowcroft, Canberra City, Australia

I. Introduction	218
II. <i>In Vitro</i> Culture and Genetic Flux	218
A. Tissue Culture Instability	218
1. Chromosomal Instability	218
2. Morphological Changes	219
3. Biochemical Changes	219
B. Somaclonal Variation	220
1. Ubiquity of Somaclonal Variation	220
2. Maize	225
3. Wheat	226
4. Tomato	227
5. Sugarcane	227
6. Potato	228
III. Factors Influencing Somaclonal Variation	229
A. Sexual Versus Asexual Species	229
B. Preexisting Versus Culture Induced Variation	230
C. Genotype	231
D. Explant Type and Culture Mode	232
E. Duration of Culture	232

IV.	Origin of Tissue Culture Instability and Somaclonal Variation	233
A.	Chromosomal Aberrations	234
B.	DNA Amplification	235
C.	Transposable Elements	236
D.	Somaclonal Variation — Analysis and Understanding	237
V.	Benefits and Disbenefits of Somaclonal Variation	238
VI.	Conclusions	239
VII.	Acknowledgements	240
VIII.	References	240

Subject Index 247