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Preface

Thank you for taking the time to read this book on plastic recycling. We hope you 
benefit from reading our summary and research regarding this topic. With differ-
ent backgrounds and states in our scientific careers, we are united by the interest 
in using our knowledge to educate and make the world a little better—one topic and 
one word at a time. 

It all began when I had started as an assistant professor at the University of Wis-
consin-Madison and a new potential graduate student was sitting in front of me to 
discuss our collaboration. With many topics in my head and finally a position 
where I could explore topics close to my heart, Chuanchom Aumnate wanted to 
work on recycling of plastics. I thought to myself that I should probably still wait 
some more years with such a topic, get more established first, and then start work-
ing on it. 

But in reality, I could not resist and we started formulating a project. Our aim was 
to focus on a topic that would make an impact and could solve problems around the 
globe. We decided to start with plastic packaging, due to its huge worldwide mar-
ket share, and wanted to investigate the necessity of sorting, a process which is 
still immature for typical packaging materials and therefore limits the amount of 
recycled plastic. 

Thus we worked on blending of typical packaging materials like polypropylene and 
polyethylene as an alternative for the sorting process to increase the amount of 
recycled plastic waste. We used scientific as well as industrial tests to analyze the 
resulting material properties. Our goal was to identify promising combinations as 
well as practical test methods for their analysis.

Very early on we realized that in addition to our technical study, we needed to un-
derstand the cost benefit of eliminating the sorting process and compare it to both 
conventional recycling and other waste management strategies. We could expand 
our work when Raphael Kiesel, on a scholarship from Germany, came to UW-Mad-
ison and decided to work on this topic. He combines the solid technical and busi-
ness background needed to look at all of those aspects in combination. Soon after 
Raphael started on the topic, we realized that all of us were driven by understand-
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ing recycling holistically—including the technical, economic, and ecological advan-
tages and disadvantages.

The idea for the book was born from my colleague and mentor, Prof. Tim A. Osswald, 
when he attended Raphael’s Master defense and suggested that we should publish 
our very interesting analysis in a book to reach a broader audience. And this is 
what we did.

We compiled our own analysis results together with data from other research 
groups and summarized it in the present book.

The book starts with a general overview of waste handling strategies and their 
shares of the U.S. market are presented (Chapters 1 and 2). In Chapter 3 special 
focus is placed on the technical aspects of recycling for various applications and 
specific polymers. 

In separate chapters their economic (Chapter 4) and ecological value and costs 
(Chapter 5) are evaluated and compared. The analysis shows the advantages of 
plastic recycling as well as the necessary boundary conditions for future growth. 
In Chapter 6 different scenarios to increase the profitability of recycling are ana-
lyzed and blending of plastic materials is identified as a suitable strategy.

Last but not least, the findings for the U.S. are put into context to the worldwide 
potential for waste handling and in particular plastic recycling using Europe and 
China as examples in Chapter 7. All the data and calculations presented in the 
book and summarized in the tables in the Appendix in Chapter 8 can be down-
loaded as spreadsheets for the reader’s own analysis and updates in a fast chang-
ing economy.

Thus, the book is an entry level book for decision makers in the plastics industry 
as well as students, researchers, and industry experts new to the field of plastic 
recycling.

True to our mission, this book is printed on recycled paper. We hope you enjoy 
reading it.

Madison, March 2017� Natalie Rudolph
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directly related to the price of virgin resins for that type of plastic, which is related 
to the price of oil (see Section 4.4.5). Low oil prices result in low costs for the virgin 
resins. In these times, recycled resins are too expensive to be used by comparison, 
and the recycling rates drop. Therefore, the goal of any sustainable growth in re
cycling should be the maximization of efficiency of energy utilization in every step 
of the process, from the initial production of plastic goods to the disposal or re
covery of plastic wastes. [2]

3.1 Plastics Recycling Methods

There are three common methods for plastics recycling: mechanical recycling (pri-
mary and secondary recycling) and chemical recycling (tertiary recycling). Based 
on the degree of contamination of the plastics (Section 3.5) with organic or inor-
ganic substances (other polymers or impurities), one of these three recycling 
methods is chosen. The molecular structure of the plastics as well as existing 
cross-links, such as in thermosets or rubbers, also influence the decision process. 
[3, 4]

3.1.1 Mechanical Recycling

Amongst the recycling methods, mechanical recycling is the most desirable ap-
proach because of its low cost and high reliability. In general, mechanical recycling 
keeps the molecular structure of the polymer molecule basically intact. After 
grinding of the plastics waste material, the main processing step is remelting of 
the regrind material, which limits the use of mechanical recycling to thermoplastic 
polymers. Since remelting causes a degradation of the polymer chain, virgin mate-
rial is often mixed with recycled material to reduce the effects of degradation on 
the product properties. The mixing leads to a dilution of the virgin material, which 
is described in Section 3.2.1.2. [5]

Mechanical recycling is divided into primary and secondary mechanical recycling, 
depending on whether the source of the waste is preconsumer or postconsumer, 
respectively. Preconsumer manufacturing scrap plastic is usually clean and of a 
single type or at least of a known composition and requires no further treatment, 
whereas postconsumer waste is highly contaminated and requires additional steps 
like collecting, sorting, and cleaning.
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3.1.2 Chemical Recycling

Chemical recycling is used for cross-linked polymers or for thermoplastic polymers if 
no sufficient quality can be achieved using mechanical recycling. Chemical pro-
cesses are used to convert the polymer chains to low molecular weight compounds 
or, in some cases, the original plastic monomer (feedstock). The monomers can 
be used for polymerization to generate the original polymer again, whereas the 
low molecular weight compounds are used as feedstock for the petrochemical in-
dustry. Common processes for this recycling method are hydrolysis, hydrocrack-
ing, and depolymerization. Because of the large amounts of energy and chemicals 
consumed by these processes, chemical recycling is only economically and eco
logically reasonable for a very limited number of polymers such as polymethyl 
methacrylate (PMMA) and polyether ether ketone (PEEK). Chemical recycling of 
polyethylene terephthalate (PET) has been successfully developed. However, it is 
hindered by the processing cost. Furthermore, the chemical processing has been 
proven to be technically possible for polyolefins but is still in the laboratory stage 
of development. [3, 4, 6, 7, 8]

�� 3.2 �Recycling Different Types of 
Plastic Waste

As mentioned before, plastic waste can be divided into preconsumer waste (manu-
facturing scrap) and postconsumer waste (recovered waste). These different plastic 
waste types are recycled differently.

3.2.1 Preconsumer Waste

3.2.1.1 Manufacturing Scrap
Preconsumer waste, such as runners, gates, sprues, and trimming, is normally 
recycled using primary mechanical recycling. It is ground and remelted in-house.

3.2.1.2 Dilution Effect
Manufacturing scrap is often mixed into virgin material to reduce material cost 
while at the same time minimizing the effects of degradation on part performance. 
Depending on the mixing ratio, either the virgin material is diluted with regrind or 
the regrind is refreshed with virgin material. By using a constant mixing ratio 
during continuous processing, the regrind waste itself is diluted by material that 
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has been reprocessed once, twice, three times, etc. The composition of a material 
with a proportion of recyclate q after n processing cycles can be calculated using 
Equation (3.1).

	 (3.1)

For small proportions of recyclate, the regrind material contains only minimal 
amounts of material that has passed through a large number of processing cycles 
and therefore is highly degraded. 

Figure 3.1 shows the composition of material with different mixing ratios of recy-
cled and virgin material. The first column shows 30 % recycled and 70 % virgin 
material. Under these conditions, the regrind material contains less than 0.8 % of 
material that has been reprocessed five times or more. Seventy percent of the ma-
terial is virgin material, 21 % has been processed once, 6.3 % twice, and 1.9 % three 
times. As proportions of material smaller than 1 % do not have a significant in
fluence on the material properties and can be neglected [9], the properties will be 
dominated by fractions that have been processed four times or less. Thus, it can be 
concluded that the properties of a material with small amounts of recyclate will not 
fall below a certain level. [10]

Figure 3.1 Composition of recycled plastics material after n reprocessing steps for 30 %, 50 %, 
and 70 % recycled material
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Another controversial subject of waste-to-energy plants, more than any other plas-
tic handling method, is noise. Trucks bringing solid waste to the facility, plant op-
erations, and fans are sources of noise pollution. [21]

The biggest issue of burning plastic is the generation of pollutants, especially CO2. 
Since plastic is created from a fossil fuel, its combustion is considered an anthro
pogenic source of carbon emissions. An EPA study revealed that incinerators are 
the dirtiest electricity production option, releasing more greenhouse gases than 
coal-fired power stations per unit of energy generated. 

Table 5.1 shows the net emission factor for combustion of 1 t of high-density poly-
ethylene (HDPE), low-density polyethylene (LDPE), and polyethylene terephthalate 
(PET) in metric tons of a carbon dioxide equivalent (MtCO2E)1 calculated using the 
EPA’s Waste Reduction Model (WARM). This factor includes the emissions associ-
ated with transporting (903 km per shipment) the plastic waste to WTE facilities 
and emission savings associated with the avoided emissions of burning conven-
tional fossil fuels for utilities. It shows that the production of greenhouse gases 
through waste combustion is much higher than the emission savings. [11, 22]

Table 5.1 Net Emissions Factor Due to Combustion for Various Plastics

Material Transportation 
to Combustion  
[MtCO2E/t]

CO2 from  
Combustion  
[MtCO2E/t]

Utility Emis-
sions Avoided 
[MtCO2E/t]

Net Emissions 
Factor  
[MtCO2E/t]

HDPE 0.033 3.075 −1.664 1.444
LDPE 0.033 3.075 −1.664 1.444
PET 0.033 2.249 −0.871 1.411

CO2, dioxins, and particles contribute to negative effects for the environment, such 
as climate change, smog, and acidification, and for the human body, such as 
asthma, lung damage, cardiac problems, and nervous system damage. [15, 23]

�� 5.3 Environmental Analysis of Recycling

The recycling rate of plastic materials in 2013 was 9.2 %, much lower than the re-
cycling rate of the general MSW (34.2 %). Despite this low rate, plastic recycling 
has a big positive ecological impact: it provides opportunities to reduce quantities 
of waste requiring disposal, oil usage, and carbon dioxide emissions. [16, 24]

1	 MtCO2E (metric tons of carbon dioxide equivalent): This describes how much global warming a given type and 
amount of greenhouse gas causes using the equivalent of CO2 as a reference.
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Recycling of plastics means waste reduction. In 2013, the total plastic waste pro-
duced was 35.5 million tons. Even at the relatively low recycling rate of 9.2 %, it 
means 3.27 million tons were neither landfilled nor burned, thus not polluting the 
environment. [16, 25]

Furthermore, plastic recycling is equivalent to the reuse of scarce resources, espe-
cially oil. Nowadays, plastics are almost completely derived from petrochemicals, 
which are produced from fossil oil and gas. Since manufacturing of plastics also 
requires energy, a similar additional quantity of fossil fuels is used for their pro-
duction. Reprocessing plastics is consequently the same as reuse of this important 
resource. [24]

The key benefit of recycling plastic is the reduction of required plastics production: 
less production means less energy use, which simultaneously leads to the reduc-
tion of CO2 and greenhouse gas emissions. Considering the difference between the 
energy use for producing virgin PET and HDPE and for reprocessing these prod-
ucts at the end of their life, recycling only these two plastics in the United States 
could save enough energy each year to power 750,000 homes. [26]

Table 5.2 Net Emissions Factor Due to Combustion and Energy Savings for Recycled versus 
Virgin Plastics

HDPE LDPE PET
Virgin input [MtCO2E/t] Process energy   1.560   1.905   1.796

Transportation energy   0.036   0.036   0.036
Process non-energy   0.172   0.172   0.100

Recycled input [MtCO2E/t] Process energy   0.118   0.118   0.118
Transportation energy   0.045   0.045   0.045
Process non-energy — — —

Savings by recycling [MtCO2E/t] Process energy − 1.442 − 1.787 − 1.678
Transportation energy   0.009   0.009   0.009
Process non-energy − 0.172 − 0.172 − 0.100
Total savings − 1.605 − 1.950 − 1.769

Table 5.2 shows the difference between emissions from manufacturing 100 % vir-
gin material and 100 % recycled material, calculated using the WARM method, 
which breaks down the emission into

�� Process energy emissions
�� Transportation emissions
�� Process non-energy emissions

It can be seen that manufacturing of recycled HPDE, LDPE, and PET significantly 
reduces GHG emissions compared to producing the same amount of virgin mate-
rial. Among these plastics, LDPE recycling shows the largest GHG emission sav-
ings. [11, 26]
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Reduction of waste, energy use, and GHG emissions are several positive effects of 
recycling plastics on the environment. These positive ecological impacts are re-
flected in the EPA’s waste management hierarchy, which superordinates recycling 
to incineration and landfilling of plastics waste. [16, 25]

�� 5.4 �Conclusion: Environmental Necessity 
of Plastics Recycling

Considering all waste handling options from an ecological point of view, it has 
been established that recycling clearly is the best way to handle plastic waste. Be-
sides the reduction of waste, it leads to energy savings and decreased GHG emis-
sions.

Recycling is not only a waste management strategy; it further implements the con-
cept of industrial ecology, that there is no waste but only new products. [27] 

On this account, the recycling process needs to be improved so that it is both eco-
logically and economically desirable. Therefore, Chapter 6 will consider two differ-
ent ways of economically improving the plastics recycling process and making it 
even more indispensable from an ecological perspective.
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7 Plastic Waste of the 
World: Increasing 
Potential of Recycling

In addition to the detailed analysis of the plastics recycling market and its potential 
future, this book provides an outlook on waste handling and recycling in the global 
market. In order to understand the global effects of waste generation in general 
and plastics in particular, differentiating between countries by income is more use-
ful than by geographic region. The following data was collected in the 2012 report 
on global solid waste management by the World Bank. [1] The numbers are only 
estimates because the data from some countries was missing, was from different 
years, and was based on slightly different assessment methodologies. Figure 7.1 
shows the dependence of waste generation on income level. Low-income countries 
produce the least and high-income countries the most solid waste per capita. The 
wide ranges, such as from 0.7 to 14 kg/capita/day for high-income-level countries, 
result from disparities within the income-level groups. The waste generated is pro-
jected to grow in all geographic areas and income levels due to the increase in 
population and urbanization. However, the higher the income level of a country, 
the lower is its projected growth rate of waste generation. 

Waste collection is instrumental to access the resources buried inside the waste. 
However, collection rates vary between 41 % in low-income countries and 98 % in 
high-income countries, mainly due to the associated cost of collection. In low-in-
come countries, collection services account for 80 to 90 % of the municipal solid 
waste (MSW) budget. In high-income countries, they can be as low as 10 % of the 
MSW budget. Consumers can be required to separate their waste at the source, 
such as into different bins, or the unsegregated waste can be separated in sorting 
facilities. Developing countries use mainly single-stream systems where recycla-
bles are collected by waste pickers during the collection process, starting prior to 
collection and ending at the disposal sites. In high-income countries, single-stream 
or multiple-stream systems, such as a combination of curbside pickup and commu-
nity bins, are used, where collection is frequent and sorting facilities are highly 
mechanized and efficient. The total amount of recyclables and their quality depend 
on the degree of separation.
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Figure 7.1 Current waste generation per capita by income level (showing the upper and lower 
limits and the median [dot] waste generation) [1]

The waste composition is important to estimate the potential of recycling valuable 
resources and of energy recovery. Waste composition influences the frequency of 
collection and disposal and is impacted by factors such as economic development, 
climate, energy sources, and cultural norms. 

As shown in Figure 7.2, the organic fraction tends to be highest in low-income 
countries and lowest in high-income countries. With progressing urbanization and 
increase in wealth of a population, more inorganic materials (plastics, paper, and 
aluminum) are consumed. It is important to note that the total amount of organic 
waste per capita is on average still 1.5 times higher in high-income countries than 
in low-income countries. The same is true for all other fractions; for example, the 
total amount of plastic waste and paper waste is 4.9 times and 22 times higher, re-
spectively. Geography and climate influence the waste composition. It determines 
the use of building materials (e. g., wood, brick, or steel), horticultural waste, and 
ash content. The last is related to the predominant energy source as well. Regions 
where energy for cooking, heating, and lighting is generated by coal and wood fires 
have a much higher ash content. See, for example, Figure 7.11, which shows the 
breakdown of waste in China for 2000, where the ash content is included in 
“Other”.
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