Table of Contents

		18
2.1		ical Mechanics and Phase Transitions
	2.1.1	Modern theories of phase transitions and critical pheno-
		mena
	2.1.2	Statistical mechanics, order parameters, fluctuations,
		critical exponents, scaling, and universality
2.2		erical Simulation Techniques
	2.2.1	Monte Carlo methods
	2.2.2	A Monte Carlo importance-sampling method
	2.2.3	A realization of a Monte Carlo method
	2.2.4	General limitations of the Monte Carlo method
	2.2.5	Broken ergodicity
	2.2.6	Distribution functions
	2.2.7	Coarse-graining techniques and criteria of convergence
	2.2.8	Finite-size effects
	2.2.9	Determining the nature of a phase transition
		Computational details
	2.2.11	General advantages of the Monte Carlo method: Appli-
2.2	ъ.	cations
2.3		Configurational Counting and Series Expansions
	2.3.1 2.3.2	A general approach
	2.3.2	The moment method
	2.3.3	Principles of the calculation
	2.3.4	Step 1. Determination of all distinct graphs and their multiplicities
	2.3.5	Step 2. Embedding of connected graphs into a lattice
	2.3.6	General correlation function series
	2.3.7	Capabilities and limitations of a general approach
	2.3.1	Capabilities and inilitations of a general approach
Moi	nte Car	rlo Pure-model Calculations
		al Behavior of the Three-dimensional Ising Model
J. 1		The Ising model and its order parameter

		3.1.2	Numerical evidence of a phase transition in the Ising model on a diamond lattice	41
		3.1.3	Finite-size scaling analysis and critical behavior	43
		3.1.4	Are Monte Carlo techniques practicable in the study of	15
		3.1.4	critical phenomena?	47
	2.2	Dhaaa	Behavior of Ising Models with Multi-spin Interactions	48
	3.2		•	48
		3.2.1	Higher-order exchange in magnetic systems	
		3.2.2	Ising models with multi-spin interactions	48
		3.2.3	First-order phase transitions of Ising models with pure	40
			multi-spin interactions	49
		3.2.4	Universality and tricritical behavior of Ising models	
			with two- and four-spin interactions: Pair interactions	
			as a symmetry-breaking field	57
	3.3	Thern	nodynamics of One-dimensional Heisenberg Models	67
		3.3.1	One-dimensional magnetic models	67
		3.3.2	The anisotropic Heisenberg model in a magnetic field	69
		3.3.3	Comparison with theoretical calculations on a conti-	
			nuum model	72
		3.3.4	A model of the linear magnet $CsNiF_3$?	74
١.	Tes	ting M	odern Theories of Critical Phenomena	77
	4.1	Flucti	uation-induced First-order Phase Transitions	78
		4.1.1	The role of fixed points in the renormalization group	
			theory	78
		4.1.2	Motivation for computer studies of fluctuation-induced	
			first-order phase transitions	79
		4.1.3	Phase transitions in antiferromagnets with order para-	
			meters of dimension $n=6$ and $n=3$	80
		4.1.4	Crossover from first-order to continuous transitions in	
			a symmetry-breaking field	85
		4.1.5	Fluctuation-induced first-order phase transitions in	0.0
			Ising models with competing interactions	90
	4.2	Critic	al Phenomena at Marginal Dimensionality	93
		4.2.1	The role of a marginal spatial dimension	93
		4.2.2	Computer experiments of hypercubic Ising models:	,,
			»A romance of many dimensions«	95
		4.2.3	Susceptibility and critical isotherm of the four-dimen-),
		7.2.5	sional Ising model	99
		4.2.4	Conclusions on critical behavior in marginal dimen-	"
		7.2.7		100
	4.3	Rasia	Assumptions of Critical Correlation Theories	100
	4.3	4.3.1	Review of a critical correlation theory	101
		4.3.1	Testing the basic assumption by Monte Carlo calcula-	101
		4.3.2	- · · · · · · · · · · · · · · · · · · ·	102
			tions	103

5.	Nui	nerical	Experiments	107
	5.1	Phase	Transitions in Lipid Bilayers and Biological Membranes	108
		5.1.1	What are biological membranes and what do they do?.	108
		5.1.2	Lipid bilayers are model membranes	109
		5.1.3	Phase behavior of lipid bilayers	110
		5.1.4	Back to biology: Are phase transitions at all relevant to	
			the biological functions of the membrane?	110
		5.1.5	Theories of lipid bilayer phase transitions	111
		5.1.6	Computer simulations of lipid bilayers	112
		5.1.7	Multi-state models of lipid bilayers	113
		5.1.8	Computer simulations of the q-state models for the	
			gel-fluid phase transition	116
		5.1.9	Computer simulation of the phase behavior of lipid	
			bilayers with »impurities«: cholesterol, proteins, and	
			polypeptides	124
		5.1.10	Have computer studies provided any new insight into	
			the properties of biological membranes?	127
	5.2	Nucle	ar Dipolar Magnetic Ordering and Phase Transitions	128
		5.2.1	Nuclear dipolar magnetic ordering	128
		5.2.2	The secular dipolar Hamiltonian	129
		5.2.3	Perspectives in studies of nuclear dipolar magnetic	
			ordering	130
		5.2.4	Motivation for a numerical simulation study of nuclear	
		/	dipolar magnetic ordering	131
		5.2.5	Monte Carlo studies of systems with truncated classical	
			secular dipolar interactions	132
		5.2.6	Nature of the spin structures: »Permanent« structures	
			or the devil's staircase?	133
		5.2.7	Double-layered spin structures in CaF ₂ -like systems:	
			Continuous transitions and critical behavior	138
		5.2.8	Multi-layered spin structures in CaF ₂ -like systems:	
			Firstorder phase transitions	144
		5.2.9	Can series expansions provide information on the	
			nature of the phase transitions?	145
		5.2.10	Nuclear antiferrimagnetic susceptibilities of systems	
			with two spin species: LiF and LiH	146
	5.3		Transitions of Adsorbed Monolayers	148
		5.3.1	Two-dimensional phases of molecules adsorbed on	
			solid surfaces	148
		5.3.2	N_2 physisorbed on graphite: The anisotropic-planar	
			rotor model	149
		5.3.3	The Heisenberg model with cubic anisotropy	152
		5.3.4	Fluctuation-induced first-order phase transition in the	
			anisotropic-planar rotor model	153

5.3.5	Comparison with experiments on N_2 physisorbed on	
	graphite	160
5.3.6	Phase behavior on the anisotropic-planar rotor model	
	with vacancies	162
5.3.7	Physical realizations of the anisotropic-planar rotor	
	model with vacancies	170
5.4 Kinet	ics of Growth	170
5.4.1	Growth	170
5.4.2	Computer simulation of domain-growth kinetics	172
5.4.3	Domain-growth kinetics of herringbone phases	173
5.4.4	Domain-growth kinetics of pinwheel phases	181
5.4.5	Kinetics of growth and critical phenomena	182
Bibliograp	ohy	185
Subject In	dex	197