

Contents

On the Approach to Isotropy of Homogeneous Turbulence: Effect of the Partition of Kinetic Energy Among the Velocity Components

By L. Le Penven, J. N. Gence and, G. Comte-Bellot (With 16 Figures)	1
1. Introduction	1
2. Experimental Arrangements	4
3. Measuring Equipment and Procedure	7
4. Experimental Results	8
5. Consequences for Turbulence Modeling in the Physical Space	12
6. Anisotropy of the Spectral Tensor	15
7. Conclusions	19
Appendix	20
References	21

Random Incompressible Motion on Two and Three-Dimensional Lattices and Its Application to the Walk on a Random Field

By M.J. Karweit (With 14 Figures)	22
1. Introduction	22
2. Description and Generation of Discrete Fields	24
3. Production of Markovian and Correlated Discrete Fields	27
4. Statistics of the Fields	30
5. Statistics of Particle Dispersion	35
6. Extending the Work to Three-Dimensional Discrete Fields	38
7. Conclusions	39
References	39

Transition and Turbulence in Fluid Flows and Low-Dimensional Chaos

By K.R. Sreenivasan (With 18 Figures)	41
1. Introduction	41
2. Experiments	45
3. Results from Spectral Measurements	47
4. Results from the Dimension of the Attractor	58
5. Discussion of Results	63
Appendix	64
References	66

Some Contributions of Two-Point Closure to Turbulence

By J.R. Herring (With 9 Figures)	68
1. Introduction	68

2. The Decay of Total Energy and Scalar Variance	71
3. Return to Isotropy	75
4. Two-Dimensional Turbulence	76
5. Convection	78
6. Concluding Comments	79
Appendix A	81
Appendix B	83
References	86

Intermittent Turbulent Flow

By W. Kollmann (With 10 Figures)	88
1. Introduction	88
2. Conditional Events and Their Description	89
3. Conditional Moments	92
4. Turbulent Flows with Chemical Reactions	101
5. Applications	104
6. Conclusions	108
References	108
Appendix	111

The Spectra of Single Reactants in Homogeneous Turbulence

By E.E. O'Brien	113
1. Introduction	113
2. Turbulent Mixing Approximation	115
3. Transport in Composition Space Due to Molecular Diffusion and Reaction	117
4. Combined Closures for Turbulent Mixing of a Reactive Scalar	120
References	121

The Dynamics of Turbulent Spots

By J.J. Riley and M. Gad-el-Hak (With 17 Figures)	123
1. Introduction	123
2. The Incipient Spot	124
3. Average Properties of Spots	131
4. Underlying Structure of Turbulent Spots	135
5. Relationship to Other Flows	145
6. Conclusions	149
References	152

Spectral and Statistical Characteristics of Breaking Waves

By O.M. Phillips	156
1. Introduction	157
2. The Statistical Equilibrium of Short Waves	158
3. Constraints on the Constants of Proportionality	164
4. Some Statistical Characteristics of Breaking Events	165
References	169

How Do Liquid Drops Spread on Solids?

By S. Rosenblat and S.H. Davis (With 4 Figures)	171
1. Introduction	171
2. Formulation	172
3. Lubrication Approximation	174
4. Evolution Equation	177
5. Newtonian Liquids	179
6. Non-Newtonian Liquids	181
7. Conclusions	182
References	183

Effects of Streamline Curvature on Turbulence

By M.M. Gibson (With 12 Figures)	184
1. Introduction	184
2. The Analogy Between Streamline Curvature and Buoyancy	186
3. Measurements in Curved Wall Layers	189
4. Modeling the Second Moment Equations	194
References	198

Limitations of Second Order Modeling of Passive Scalar Diffusion

By J.L. Lumley and I. Van Cruyningen (With 15 Figures)	199
1. Introduction	199
2. Pope's Problem	204
3. Equations, Model and Initial Conditions	207
4. Results and Discussion	210
5. Conclusions	216
References	217

Acoustic Wave Propagation in Fluids

By T.S. Margulies and W.H. Schwarz (With 17 Figures)	219
1. Introduction	219
2. Single-Component Newtonian Fluid	221
3. Newtonian Fluid Mixture with Coupled Reactions (Nondiffusive System)	232
4. Binary Mixture of Newtonian Fluids with a Generalized Fick's Law of Diffusion	246
5. Viscoelastic Fluids	255
6. Viscoelastic Fluids with Coupled Reactions	272
7. Conclusions	274
8. List of Symbols	275
References	278

Publications of Stanley Corrsin	281
---------------------------------	-----

Index of Contributors	289
-----------------------	-----