Contents

1		omimetics: Its Technological and Societal Potentialerbert Stachelberger, Petra Gruber, and Ille C. Gebeshuber			
Pa	rt I N	Aaterial	Structure		
2	Bion	ic (Nano) Membranes	9	
	Jovai	n Matovi	c and Zoran Jakšić		
	2.1	Artifici	ial Nanomembranes	10	
	2.2	Biolog	ical Nanomembranes	12	
	2.3	Function	onalization of Artificial Nanomembranes		
		Toward	d Bionic Structures at ISAS: TU Wien	13	
		2.3.1	Nanomembrane-Based Bionic Structures		
			for Energy Harvesting	13	
		2.3.2	Nanomembranes as Bionic Detectors		
			of Electromagnetic Radiation	19	
	2.4	Conclu	asion	22	
3	Bion	nimetics	in Tribology	25	
	I.C. 0	I.C. Gebeshuber, B.Y. Majlis, and H. Stachelberger			
	3.1	Introdu	action: Historical Background and Current		
		Develo	ppments	26	
	3.2	Biolog	y for Engineers	28	
	3.3	Metho	d: The Biomimicry Innovation Method	30	
	3.4	Results	s: Biomimetics in Tribology – Best Practices		
		and Po	ssible Applications	32	
		3.4.1	Application of the Biomimicry Innovation		
			Method Concerning Mechanical Wear	33	
		3.4.2	Application of the Biomimicry Innovation		
			Method Concerning Shear	35	

vii

viii Contents

		3.4.3	Application of the Biomimicry Innovation	
			Method Concerning Tension	35
		3.4.4	Application of the Biomimicry Innovation	
			Method Concerning Buckling, Fatigue,	
			Fracture (Rupture) and Deformation	35
		3.4.5	Application of the Biomimicry Innovation	
			Method Concerning Attachment	37
	3.5	Summa	ary and Outlook	40
4			n as a Biomimetic Analogue for the Design	
			stic Tribosurfaces	51
	H.A.	Abdel-A	al and M. El Mansori	
	4.1	Introdu	ection	52
	4.2	Backgr	round	56
		4.2.1	The Python Species	56
		4.2.2	Structure of Snake Skin	58
		4.2.3	Skin Shedding	59
	4.3	Observ	ration of Shed Skin	60
		4.3.1	Initial Observations	60
		4.3.2	Optical Microscopy Observations	62
		4.3.3	Scan Electron Microscopy Observations	63
	4.4	Metrolo	ogy of the Surface	69
		4.4.1	Topographical Metrology	69
		4.4.2	Bearing Curve Analysis	70
	4.5	Correla	ation to Honed Surfaces	73
	4.6	Conclu	sions and Future Outlook	77
5	Mult	iscale H	omogenization Theory: An Analysis Tool	
	for I	Revealing	Mechanical Design Principles in Bone	
	and	Bone Rej	placement Materials	81
	Chris	stian Hell	mich, Andreas Fritsch, and Luc Dormieux	
	5.1	Introdu	oction	84
	5.2	Fundan	nentals of Continuum Micromechanics	85
		5.2.1	Representative Volume Element	85
		5.2.2	Upscaling of Elasto-Brittle and Elastoplastic	
			Material Properties	86
	5.3	Bone's	Hierarchical Organization	88
	5.4	Elastic	and Strength Properties of the Elementary	
			onents of Bone: Hydroxyapatite, Collagen, Water	88
	5.5		cale Micromechanical Representation of Bone	91
	5.6	Experimental Validation of Multiscale		
			nechanics Theory for Bone	93
	5.7		one Works: Mechanical Design Characteristics	
			e Revealed Through Multiscale Micromechanics	96
	5.8		Conclusions from a Biological Viewpoint	98

Contents ix

6		-	Cellular Structures: Additive Manufacturing		
	and Mechanical Properties				
	J. S	J. Stampfl, H.E. Pettermann, and R. Liska			
	6.1	Introduction			
	6.2	5.2 Fabrication of Bioinspired Cellular Solids Using			
			raphy-Based Additive Manufacturing	107	
		6.2.1	Laser-Based Stereolithography	108	
		6.2.2	Dynamic Mask-Based Stereolithography	108	
		6.2.3	Inkjet-Based Systems	110	
		6.2.4	Two-Photon Polymerization	111	
	6.3	Photop	polymers for Additive Manufacturing Technologies	112	
		6.3.1	Principles of Photopolymerization	112	
		6.3.2	Radical and Cationic Systems in Lithography-		
			Based AMT	114	
		6.3.3	Biomimetic, Biocompatible,		
			and Biodegradable Formulations	115	
	6.4	Mecha	anical Properties: Modeling and Simulation	118	
		6.4.1	Linear Elastic Behavior	118	
		6.4.2	Nonlinear Response	119	
		6.4.3	Sample Size and Effective Behavior	119	
	6.5	Conch	usion	121	
Pa	rt II	Form an	nd Construction		
7	Bio	mimetics	in Architecture [Architekturbionik]	127	
	Peti	a Gruber			
	7.1	Introdu	uction	127	
	7.2	Histor	y: Different Approaches	128	
		7.2.1	Analogy and Convergence	129	
		7.2.2	Strategic Search for the Overlaps Between		
			Architecture and Nature	130	
	7.3	Strateg	gies: What is Transferred and How is it Done?	131	
		7.3.1	What is Transferred?	131	
		7.3.2	Methods	131	
	7.4	Applic	cation Fields: Successful Examples	134	
		7.4.1	Emergence and Differentiation: Morphogenesis	134	
		7.4.2	Interactivity	135	
		7.4.3	Dynamic Shape	135	
		7.4.4	Intelligence	136	
		7.4.5	Energy Efficiency	136	
		7.4.6	Material/Structure/Surface	137	
		7.4.7	Integration	137	
	7.5	Case S	Studies	138	
		7.5.1	Biomimetics Design Exercise	138	
			S		

x Contents

		7.5.2	Biomimetics Design Programmes, Workshops and Studies	140
	7.6	Future	Fields, Aims and Conclusion	144
		7.6.1	Aims	144
		7.6.2	Considerations About Future Developments	145
8	Biom	orphisn	n in Architecture: Speculations on Growth	
	and l	Form		149
	Dörte	Kuhlm	ann	
	8.1		action	149
	8.2	The Es	sence of Nature	150
	8.3	Nature	as a Source for Form	152
	8.4	Natura	l Processes	153
	8.5	Organi	c Versus "Mechanical" Form	156
	8.6	Bionic	s and Cyborgs	159
	8.7	Ecolog	;y	162
	8.8	From I	Fractals to Catastrophies	165
	8.9	Form I	Follows Function	167
	8.10	The Co	oncept of Organic Unity	171
	8.11	Conclu	ision	174
9	Frac	tal Geor	netry of Architecture	179
	Wolf	gang E. l	Lorenz	
	9.1	Fractal	Concepts in Nature and Architecture	179
		9.1.1	From the Language of Fractals to Classification	179
	9.2	Fractal	s: A Definition from a Mathematical	
		and an	Architectural Point of View	182
		9.2.1	Roughness and Length Measurement	182
		9.2.2	Scale Range and Distance	184
		9.2.3	Self-Similarity: An Important Attribute of Fractals	184
		9.2.4	Architectural Examples	186
		9.2.5	Developed Through Iteration	187
		9.2.6	Differences Between Architectural	
			and Mathematical Fractals	189
		9.2.7	Fractals as a Design Aid	189
		9.2.8	Fractals Are Common to Nature	190
		9.2.9	The Factor Chance	191
	9.3	From S	Simulation to Measurement	192
		9.3.1	Curdling	192
		9.3.2	Fractal Dimension	194
		9.3.3	Perception and Distance	196
	9.4		Dimension and Architecture	196
		9.4.1	Fractal Dimension and Approaching a Building	197
		9.4.2	Results of Measurement	198
	9.5		sions and Outlook	199

Contents xi

Part III Information and Dynamics

10		imetics in Intelligent Sensor and Actuator	203			
		Automation Systems				
	Dietmar Bruckner, Dietmar Dietrich, Gerhard Zucker, and Brit Müller					
	10.1					
	10.1	Automation	204 204			
	10.2		204			
	10.3	Intelligence and Communication	200			
	10.4	Open Problems: Challenges in Research	207			
	10.5	Intelligence of Bionic Systems				
		10.5.1 Hierarchical Model Conception	209 210			
		10.5.3 Definition of Intelligence	211			
		10.5.4 Choice of the Right Model	212			
		10.5.5 Top-Down Methodology	212			
		10.5.6 A Unitary Model	213			
		10.5.7 Differentiation Between Function, Behavior,	010			
		and Projection	213			
		10.5.8 Indispensible Interdisciplinarity	214			
	10.6	The Psychoanalytical Model	214			
	10.7	Conclusion	217			
11	Techi	echnical Rebuilding of Movement Function Using				
	Func	tional Electrical Stimulation	219			
	Margit Gföhler					
	11.1	Introduction	219			
	11.2	Principle	220			
	11.3	Actuation	220			
		11.3.1 Stimulation Signal	222			
		11.3.2 Electrodes	223			
	11.4	Stimulators	224			
	11.5	Control	225			
		11.5.1 Modeling/Simulation	225			
		11.5.2 Control Systems	227			
	11.6	Sensors	229			
		11.6.1 Artificial Sensors	229			
		11.6.2 Natural Sensors in the Peripheral Nervous System	229			
		11.6.3 Volitional Biological Signals	230			
	11.7	Applications for the Lower Limb	231			
		11.7.1 Cycling	231			
		11.7.2 Rowing	239			
		11.7.3 Gait	241			
	11.8	Applications for the Upper Limb	242			
	11.9	••				
		ences	243 244			
	140101	· · · · · · · · · · · · · · · · · · ·	477			

xii Contents

12	Improving Hearing Performance Using Natural Auditory Coding Strategies Frank Rattay		
	12.1	The Hair Cell Transforms Mechanical into Neural Signals	249
	12.2	The Human Ear	251
	12.3	Place Theory Versus Temporal Theory	253
	12.4	Noise-Enhanced Auditory Information	253
	12.5	Auditory Neural Network Sensitivity Can be Tested	
		with Artificial Neural Networks	257
	12.6	Cochlear Implants Versus Natural Hearing	258
	12.7	Discussion	259
	12.8	Conclusion	260
	Refer	ences	260
Ind	ev		263