Contents

PART A	1
CHAPTER I	
Introduction	3
§1. An Example from Group Theory	4
§2. An Example from the Theory of Equivalence Relations	5
§3. A Preliminary Analysis	7
§4. Preview	9
CHAPTER II	
Syntax of First-Order Languages	10
§1. Alphabets	10
§2. The Alphabet of a First-Order Language	12
§3. Terms and Formulas in First-Order Languages	14
§4. Induction in the Calculus of Terms and in the Calculus of Formulas	17
§5. Free Variables and Sentences	. 23
CHAPTER III	
Semantics of First-Order Languages	25
§1. Structures and Interpretations	26
§2. Standardization of Connectives	28
§3. The Satisfaction Relation	30
§4. The Consequence Relation	32
§5. Coincidence Lemma and Isomorphism Lemma	35
§6. Some Simple Formalizations	41
§7. Some Remarks on Formalizability	45
§8. Substitution	49

VIII Contents

CHAPTER IV	
A Sequent Calculus	57
§1. Sequent Rules	58
§2. Structural Rules and Connective Rules	60
§3. Derivable Connective Rules	61
§4. Quantifier and Equality Rules	65
§5. Further Derivable Rules and Sequents	67
§6. Summary and Example	69
§7. Consistency	72
CHAPTER V	•
The Completeness Theorem	76
§1. Henkin's Theorem	76
§2. Satisfiability of Consistent Sets of Formulas (the Countable Case)	80
§3. Satisfiability of Consistent Sets of Formulas (the General Case)	84
§4. The Completeness Theorem	87
CHAPTER VI	
The Löwenheim-Skolem Theorem and the Compactness Theorem	88
§1. The Löwenheim-Skolem Theorem	88
§2. The Compactness Theorem	89
§3. Elementary Classes	91
§4. Elementarily Equivalent Structures	94
CHAPTER VII	
The Scope of First-Order Logic	100
§1. The Notion of Formal Proof	101
§2. Mathematics Within the Framework of First-Order Logic	101
§3. The Zermelo-Fraenkel Axioms for Set Theory	108
§4. Set Theory as a Basis for Mathematics	111
CHAPTER VIII	115
Appendix	115
§1. Extensions by Definitions	115
§2. Relativization and Substructures §3. Normal Forms	122 124
93. Normai Porms	124
PART B	129
CHAPTER IX	
Extensions of First-Order Logic	131
§1. Second-Order Logic	132
§2. The System $\mathscr{L}_{\omega_1\omega}$	136
§3. The System \mathscr{L}_{Q}	142

Contents ix

CHAPTER X	
Limitations of the Formal Method	144
§1. Decidability and Enumerability§2. Register Machines§3. The Halting Problem for Register Machines	145 150 156
§4. The Undecidability of First-Order Logic §5. Trahtenbrot's Theorem and the Incompleteness of Second-Order Logic	159 162
§6. Theories and Decidability§7. Self-Referential Statements and Gödel's Incompleteness Theorems	165 172
CHAPTER XI	
An Algebraic Characterization of Elementary Equivalence	179
§1. Partial Isomorphisms §2. Fraissé's Theorem	180 185
§3. Proof of Fraissé's Theorem	187
§4. Ehrenfeucht Games	191
CHAPTER XII	
Characterizing First-Order Logic	193
§1. Logical Systems	193
§2. Compact Regular Logical Systems	196
§3. Lindström's First Theorem §4. Lindström's Second Theorem	198 203
	200
References	209
Index of Notation	211
Subject Index	213