

Contents

PART I. OPERATORS WITH INDEX

1. Fredholm Operators	1
A. Hierarchy of Mathematical Objects	1
B. Concept of Fredholm Operator	3
2. Algebraic Properties. Operators of Finite Rank	5
A. The Snake Lemma	6
B. Operators of Finite Rank and Fredholm Integral Equations	10
3. Analytic Methods. Compact Operators	12
A. Analytic Methods	12
B. The Adjoint Operator	15
C. Compact Operators	17
D. The Classical Integral Operators	23
4. The Fredholm Alternative	26
A. The Riesz Lemma	26
B. Sturm-Liouville Boundary-Value Problem	27
5. The Main Theorems	34
A. The Calkin Algebra	34
B. Perturbation Theory	37
C. Homotopy-Invariance of the Index	42
6. Families of Invertible Operators. Kuiper's Theorem	47
A. Homotopies of Operator-Valued Functions	47
B. The Theorem of Kuiper	54
7. Families of Fredholm Operators. Index Bundles	60
A. The Topology of \mathcal{F}	60
B. The Construction of Index Bundles	62
C. The Theorem of Atiyah-Jänich	71
D. Homotopy and Unitary Equivalence	75
8. Fourier Series and Integrals (Fundamental Principles)	79
A. Fourier Series	79
B. The Fourier Integral	82
C. Higher Dimensional Fourier Integrals	85
9. Wiener-Hopf Operators	85
A. The Reservoir of Examples of Fredholm Operators	85
B. Origin and Fundamental Significance of Wiener-Hopf Operators	87
C. The Characteristic Curve of a Wiener-Hopf Operator	88
D. Wiener-Hopf Operators and Harmonic Analysis	89
E. The Discrete Index Formula	92
F. The Case of Systems	95
G. The Continuous Analogue	97

PART II. ANALYSIS ON MANIFOLDS

1. Partial Differential Equations	103
A. Linear Partial Differential Equations	103
B. Elliptic Differential Equations	107
C. Where Do Elliptic Differential Operators Arise?	109
D. Boundary-Value Conditions	112
E. Main Problems of Analysis and the Index Problem	114
F. Numerical Aspects	115
G. Elementary Examples	116
2. Differential Operators over Manifolds	126
A. Motivation	126
B. Differentiable Manifolds - Foundations	126
C. Geometry of C^∞ Mappings	130
D. Integration on Manifolds	134
E. Differential Operators on Manifolds	136
F. Manifolds with Boundary	141
3. Pseudo-Differential Operators	144
A. Motivation	144
B. "Canonical" Pseudo-Differential Operators	148
C. Pseudo-Differential Operators on Manifolds	152
D. Approximation Theory for Pseudo-Differential Operators	168
4. Sobolev Spaces (Crash Course)	172
A. Motivation	172
B. Definition	173
C. The Main Theorems on Sobolev Spaces	177
D. Case Studies	178
5. Elliptic Operators over Closed Manifolds	182
A. Continuity of Pseudo-Differential Operators	182
B. Elliptic Operators	184
6. Elliptic Boundary-Value Systems I (Differential Operators)	189
A. Differential Equations with Constant Coefficients	189
B. Systems of Differential Equations with Constant Coefficients	194
C. Variable Coefficients	196
7. Elliptic Differential Operators of First Order with Boundary Conditions	199
A. The Topological Interpretation of Boundary-Value Conditions (Case Study)	199
B. Generalizations (Heuristic)	203
8. Elliptic Boundary-Value Systems II (Survey)	208
A. The Poisson Principle	208
B. The Green Algebra	210
C. The Elliptic Case	213

PART III. THE ATIYAH-SINGER INDEX FORMULA

1. Introduction to Algebraic Topology	218
A. Winding Numbers	219
B. The Topology of the General Linear Group	224
C. The Ring of Vector Bundles	230
D. K-Theory with Compact Support	236
E. Proof of the Periodicity Theorem of R. Bott	239
2. The Index Formula in the Euclidean Case	246
A. Index Formula and Bott Periodicity	246
B. The Difference Bundle of an Elliptic Operator	247
C. The Index Formula	252
3. The Index Theorem for Closed Manifolds	256
A. The Index Formula	256
B. Comparison of the Proofs: The Cobordism Proof	259
C. Comparison of the Proofs: The Imbedding Proof	262
D. Comparison of the Proofs: The Heat Equation Proof	262
4. Applications (Survey)	269
A. Cohomological Formulation of the Index Formula	272
B. The Case of Systems (Trivial Bundles)	274
C. Examples of Vanishing Index	275
D. Euler Number and Signature	277
E. Vector Fields on Manifolds	281
F. Abelian Integrals and Riemann Surfaces	284
G. The Theorem of Riemann-Roch-Hirzebruch	289
H. The Index of Elliptic Boundary-Value Problems	293
J. Real Operators	300
K. The Lefschetz Fixed-Point Formula	300
L. Analysis on Symmetric Spaces	303
M. Further Applications	304

PART IV. THE INDEX FORMULA AND GAUGE-THEORETICAL PHYSICS

1. Physical Motivation and Overview	305
A. Classical Field Theory	306
B. Quantum Theory	313
2. Geometric Preliminaries	331
A. Principal G-Bundles	332
B. Connections and Curvature	333
C. Equivariant Forms and Associated Bundles	334
D. Gauge Transformations	339
E. Curvature in Riemannian Geometry	342
F. Bochner-Weitzenböck Formulas	348
G. Chern Classes as Curvature Forms	355
H. Holonomy	358
3. Gauge-Theoretic Instantons	359
A. The Yang-Mills Functional	360
B. Instantons on Euclidean 4-Space	363
C. Linearization of the "Manifold" of Moduli of Self-Dual Connections	373

D. Manifold Structure for Moduli of Self-Dual Connections	380
E. Gauge-Theoretic Topology in Dimension Four	390
Appendix: What are Vector Bundles?	402
Literature	417
Index of Notation	
Parts I, II, III	428
Part IV	433
Index of Names/Authors	436
Subject Index	441