

Contents

Part I

General Observations on Syngensis and Epigenesis

Textures of Ore Minerals and Their Genetic Significance

Genetic Significance of Ore Fabric: Some Examples from the Apuseni Mountains Ore Deposits C. Lazăr (With 2 Figures)	3
Syngenetic and Epigenetic Textures of Manganese Oxide Ores in the Supergene Weathering Zone S.J. Kim	12
Chalcopyrite-Sphalerite Textures in Some Spanish Syngenetic and Epigenetic Deposits: Guadarrama Mountains, Aznalcollar, and La Unión J.L. Amorós, J.A. Lopez, R. Lunar, J. Martínez, J. Sierra, and E. Vindel (With 14 Figures)	18
Iron Sulfides in Sedimentary Rocks. Some Occurrences in Romania G. Udubaşa (With 7 Figures)	28
Sedimentary Pyrite from Pb-Zn Deposits of the Zawar and Rajpura-Dariba Regions and Its Bearing on the Genesis of Base Metal Sulfides D.S. Chauhan (With 8 Figures)	36
Observations on the Morphology and Texture of Pyrite from Amjhore, Bihar, India N.G.K. Nair and A. Ray (With 12 Figures)	43
Ore Microscopy of the Silver Minerals in the Epigenetic Ag-W-Sn Deposits in the Silver Mine District, Southeastern Missouri, U.S.A. R.D. Hagni (With 14 Figures)	52

Contributions of a Regional Character

Mineral Deposits in Relation to the Global Tectonic Megacycles T.P. Trurnit (With 12 Figures)	62
Strata-Bound Deposits of Argentina M.K. de Brodtkorb and A. Brodtkorb (With 1 Figure)	92
Syngensis and Epigenesis in Strata-Bound Metamorphosed Precambrian Sulfide Deposits of India A.M. Patwardhan and S.S. Oka (With 12 Figures)	102
Sulfide Minerals in Coal with Emphasis on Australian Occurrences D.J. Swaine (With 1 Figure)	120

Geochemical Investigations and Their Genetic Significance

On the Isotopic Composition of Carbon in Epigenetic Graphites F.V. Chukhrov, L.P. Ermilova, and L.P. Nosik	130
Sampling Chaotic Variation, an Essay into Scientific Methodology for Geochemical Prospecting G.J. Neuerburg	138

Part II**Ores Associated with Clastic Sediments and Their Genetic Origin****Ores in Shales**

Ore Flats in the Zechstein Copper-Bearing Shales of the Fore-Sudetic Monocline in Lower Silesia, Poland Cz. Harańczyk (With 8 Figures)	153
Synmetamorphic Uranium Mineralization in the Needle Lake-Keefe Lake Area, Wollaston Fold Belt, Saskatchewan, Canada E. von Pechmann, A. Höhndorf, and V. Voultsidis (With 7 Figures)	160
Zell am Ziller, a Syngenetic Old Paleozoic Gold Deposit in the Innsbruck Quartz Phyllite Belt O. Schulz (With 1 Figure)	170
Reflections on the Origin of Sparry Magnesite Deposits W. Siegl (With 2 Figures)	177

Ores in Sandstone

Characteristics and Problematics of the Metallogenesis of Proterozoic Vein-Like Type Uranium Deposits F.J. Dahlkamp	183
Copper Mineralization at the Shackleton Mine, Zimbabwe: Syngenetic or Epigenetic? H.V.R. von Rahden and J.J. de Wet (With 3 Figures)	193
Criteria on Syngensis and Epigenesis of Lead-Zinc Ores in Triassic Sandstones in Germany H.W. Walther (With 3 Figures)	212
Study of Manganese Nodules from the Malvinas (Falkland) Plateau, South Atlantic Ocean C.R. Cortelezzi, G. Espósito, and R. Iasi (With 3 Figures)	221
Manganiferous Grits from Southeastern New South Wales, Australia E.R. Segnit (With 10 Figures)	228

Ores in Conglomerates

Nickel-Cobalt Sulfides in Precambrian Gold and Uranium-Bearing Quartz-Pebble Conglomerates of South Africa R. Saager and T. Oberthür (With 13 Figures)	237
Different Populations of Gold Particles as Outlined by Their Silver Content: A Regional Investigation in the Precambrian Kimberley Reef Placer of the East Rand Goldfield/Witwatersrand/South Africa W. Hirdes (With 5 Figures)	247
Summary of the Present View of the Nature and Genesis of the Cornish Stanniferous Placers of SW England K.F.G. Hosking and G.S. Camm (With 8 Figures)	260

Part III**Ores Associated with Carbonate Rocks and Their Genetic Origin****Geochemical Investigations and Their Genetic Significance**

A Nonsteady State Model for Dolomite, Evaporite, and Ore Genesis K.J. Hsü (With 4 Figures)	275
---	-----

Migration of Fluids During Diagenesis: An Ore-Forming Process in Carbonate Rocks Y. Fuchs (With 3 Figures)	287
Geochemical Indicator Parameters of Lead-Zinc Ore Deposits in Carbonate Rocks E. Schroll (With 4 Figures)	294
Geochemistry of Minor Elements in Host Rocks of the Fankou Pb-Zn Deposit, South China X. Song	306
Electron Microprobe Investigation of the Dolomitization and Its Relationship with the Sulfide Mineralizations in the Polymetallic Deposits Confined to the Triassic Calcareous Sediments in the Western Balkan J. Minčeva-Stefanova (With 1 Figure and 2 Plates)	317
Fluid Inclusion Studies in Fluorite at Milpo Mine (Atacocha District), Central Peru M. Gunnesch and H. Jaksch (With 7 Figures and 1 Plate)	328
Iron Preconcentration in Stromatolites/Oncolites: An Example from the Lower Permian of the Central Alps C. Cannizzaro, I. Venerandi Pirri, and P. Zuffardi (With 8 Figures)	342
Pb-Zn-Bearing Carbonate Rocks	
Sedimentary and Diagenetic Features in the Sulfide-Bearing Sedimentary Dikes and Strata of Lower Ordovician Dolomites, Decaturville, Missouri, U.S.A. R.A. Zimmermann and A.C. Spreng (With 20 Figures and 3 Plates)	350
Strata-Bound Low Temperature Pb-Zn-Ba±F Deposits in Carbonate Rocks of Western Asia: Geotectonic Setting and Main Metallogenic Features S. Janković (With 3 Figures)	373
Geology and Mineralization of the Ozbak-Kuh Mine and the Genesis of the East Iran Pb-Zn Deposits J.G. Haditsch (With 12 Figures)	391
Syngenetic and Epigenetic Ores in SW Sardinia: Examples from the Malacalzetta (Iglesias) Mining Area M. Boni (With 4 Figures)	401
The Sasa Lead-Zinc Deposit (Macedonia/Yugoslavia) and Its Position in the Serbian-Macedonian Ore Province W. Tufar and I. Štruc (With 16 Figures)	412

Syngenesis and Epigenesis at the Largentière (Ardèche, France) Pb-Zn-Ag Deposit J. Bouladon (With 2 Figures)	422
The Lithology and Mineralization of Upper Silesian Zinc-Lead Ore Deposits H. Gruszczyk and M. Basta-Grzywacz (With 1 Figure)	431
Paleokarstic Lead-(Zinc)-Fluorite Deposits in Shallowing Upward Sequences in the Triassic of the Alpujarrides (Betic Cordillera, Southern Spain) J.M. Martín, J. Torres-Ruiz, N. Velilla, and P. Fenoll Hach-Alí (With 10 Figures)	438
The Atacocha District, Central Peru: Some Metallogenetic Aspects K.A. Gunnesch and A. Baumann (With 5 Figures)	448
Strata-Bound and Stratiform Iron Sulfides, Sulfur, and Galena in the Miocene Evaporites, Ranga, Red Sea, Egypt (With Special Emphasis on Their Diagenetic Crystallization Rhythmites) M.M. El Aref (With 11 Figures)	457
Sb-Hg-W-Bearing Carbonate Rocks	
First Occurrence of a Strata-Bound Sb-W-Hg Deposit in the Spanish Hercynian Massif A. Arribas and P. Gumié (With 13 Figures)	468
Ore-Controlling Factors in the Hg-Sb Province of Southern Tuscany, Italy D.D. Klemm and N. Neumann (With 6 Figures)	482
Part IV	
Ores Associated Directly with Magmatic Activity and Their Genetic Origin	
<hr/>	
Ores Associated with Intrusive Magmatic Activity	
A Model Illustrating the Formative Process of the Podiform Chromite Deposits in Some Alpine Orogenic Terrains T. Bamba (With 4 Figures)	507
Magmatic Rocks vs. Rest Fluids as Sources of Uranium Ore Fluids J.W. Gabelman (With 5 Figures)	519
Ores Associated with Extrusive Magmatic Activity	
Syngenetic Models for the Pyrite and Polymetallic Sulfide Ore Province of the East Carpathians H.G. Kräutner (With 8 Figures)	537

On the Genesis of Some Manganese Deposits from Eastern Greece A.G. Panagos and S.P. Varnavas (With 3 Figures)	553
Red Island (NZ) and Its Submarine-Exhalative Mn-Fe Mineralization H.W. Kobe and J.R. Pettinga (With 6 Figures)	562
Isotopic Constraints on the Origin of Sulfur in Oceanic Igneous Rocks C.W. Field, H. Sakai, and A. Ueda (With 4 Figures)	573
Contributions of a Regional Character	
The Savage River Ore Formation Theories H.W. Matzat† (With 2 Figures)	590
“Tactites” Formed by Ca-Al Metasomatism on Amphibolites in the Seridó Scheelite Province – NE Brazil H. Beurlen (With 14 Figures)	598
Syngensis and Epigenesis of Ore Deposits Related to Calc-Alkaline Extrusive- Intrusive Complexes in Northern Chile J.M. Oyarzún (With 1 Figure)	608
The Copará and the Patap Metallotect on the Western Side of Central Peru M. Cardozo and A. Wauschkuhn (With 12 Figures)	616
Subject Index	647