Contents

Chapter 1. General Introduction	
1.1 Introduction	
1.2 Boundary Value Problems and Initial Problems	
1.3 One-Dimensional Unsteady Flow Characteristics	
1.4 Steady Supersonic Plane or Axi-Symmetric Flow. Equa	
Motion in Characteristic Form	
1.5 Basic Concepts Used in Finite Difference Methods	
References	27
Chapter 2. The Godunov Schemes	
2.1 The Origins of Godunov's First Scheme	28
2.2 Godunov's First Scheme. One-Dimensional Eulerian Equ	ations . 33
2.3 Godunov's First Scheme in Two and More Dimensions	39
2.4 Godunov's Second Scheme	41
2.5 The Double Sweep Method	
2.6 Execution of the Second Scheme on the Intermediate La	
2.7 Boundary Conditions on the Intermediate Layer	50
2.8 Procedure on the Final Layer	52
2.9 Applications of the Second Godunov Scheme	
2.10 Glimm's Method	50
2.11 Outline of Solution for Gas Dynamic Equations	
2.12 The Glimm Scheme for Simple Acoustic Waves	58
2.13 Random Choice for the Gas Dynamic Equations	
2.14 Solution of the Riemann Problem	63
2.15 Extension to Unsteady Flow with Cylindrical or Spherical	
Symmetry	6.
2.16 Remarks on Multi-Dimensional Problems	63
References	60
Chapter 3. The BVLR Method	
3.1 Description of Method for Supersonic Flow	67
3.2 Extensions to Mixed Subsonic-Supersonic Flow. The Blu	
Problem	•

3.3	The Double Sweep Method for Unsteady Three-Dimensional Flow	77
3.4	Worked Problem. Application to Circular Arc Airfoil	79
3.5	Results and Discussion	86
Appe	ndix—Shock Expansion Theory	87
Refe	ences	89
Chap	ter 4. The Method of Characteristics for Three-Dimensional Proble	ms
	in Gas Dynamics	
4.1	Introduction	
4.2		93
4.3	Optimal Characteristics Methods (BRUHN and HAACK, SCHAETZ) 1	.00
4.4	Near Characteristics Method (SAUER)	
Refe	rences	13
Chaj	ter 5. The Method of Integral Relations	
5.1	Introduction	14
5.2	General Formulation. Model Problem	
5.3	Flow Past Ellipses	
5.4	The Supersonic Blunt Body Problem	
5.5	Transonic Flow	
5.6	Incompressible Laminar Boundary Layer Equations.	
	Basic Formulation	131
5.7	The Method in the Compressible Case	
5.8	Laminar Boundary Layers with Suction or Injection	
5.9	Extension to Separated Flows	
	Application to Supersonic Wakes and Base Flows	
	Application to Three-Dimensional Laminar Boundary Layers	
	A Modified Form of the Method of Integral Relations	
	Application to Viscous Supersonic Conical Flows	
5 14	Extension to Unsteady Laminar Boundary Layers	178
	Application to Internal Flow Problems	
	el Problem (CHU and GONG)	
	rences	
~ 1		,
Cha	oter 6. Telenin's Method and the Method of Lines	
6.1	Introduction	199
6.2	Solution of Laplace's Equation by Telenin's Method	
6.3	Solution of a Model Mixed Type Equation by Telenin's Method	203
6.4	Application of Telenin's Method to the Symmetrical Blunt Body	
	Problem	209
6.5	Extension to Unsymmetrical Blunt Body Flows	215
6.6	Application of Telenin's Method to the Supersonic Yawed Cone	
	Problem	221

Conte	ents	ΧI
6.7	The Method of Lines. General Description	233
6.8	Applications of the Method of Lines	237
6.9	Powell's Method Applied to Two Point Boundary Value Problems	249
Tele	nin's Method. Model Problems (KLOPFER)	254
	` ,	