
Inhalt

Vorwort XIII

1 Einführung 1
Muster 1

JavaScript: Konzepte 3

Objektorientiert 3

Keine Klassen 4

Prototypen 4

Umgebung 5

ECMAScript 5 5

JSLint 6

Die Konsole 6

2 Grundlagen 9
Wartbaren Code schreiben 9

Wenige globale Variablen verwenden 10

Das Problem mit globalen Variablen 11

Nebenwirkungen eines vergessenen var 12

Zugriff auf das globale Objekt 13

Single-var-Muster 14

Hoisting: Ein Problem mit verstreuten vars 15

for-Schleifen 16

for-in-Schleifen 18

Eingebaute Prototypen (nicht) erweitern 20

switch-Muster 21

Implizite Typecasts vermeiden 21

eval() vermeiden 22

VII

Bibliografische Informationen
http://d-nb.info/1010364340

digitalisiert durch

http://d-nb.info/1010364340


Zahlen umwandeln mit parselnt() 23

Code-Richtlinien 24
Einrücken 24
Geschweifte Klammern 25
Position der öffnenden Klammer 26
Leerraum 27

Namenskonventionen 28
Konstruktoren mit Großbuchstaben beginnen 29
Wörter trennen 29
Andere Namens-Muster 29

Kommentare schreiben 31
Eine API-Dokumentation schreiben 31

YUIDoc-Beispiel 32
Schreiben, um gelesen zu werden 35
Peer Reviews 36
Minifizieren ... in der Produktionsumgebung 37
JSLint nutzen 38
Zusammenfassung 39

Literale und Konstruktoren 41
Objekt-Literale 41

Die Objekt-Literal-Syntax 42
Objekte aus einem Konstruktor 43
Object-Konstruktor-Überraschung 43

Eigene Konstruktor-Funktionen 44
Rückgabewerte von Konstruktoren 46

Muster zum Erzwingen von new 46
Namenskonventionen 47
that verwenden 47
Selbst aufrufender Konstruktor 48

Array-Literal 49
Die Array-Literal-Syntax 49

Kuriositäten im Array-Konstruktor 49
Auf »Arrayhaftigkeit« prüfen 50

JSON 51
Mit JSON arbeiten 51

Regexp-Literal 52
Regexp-Literal-Syntax 53

VIII 1 Inhalt



Wrapper für Primitive 54

Fehler-Objekte 56

Zusammenfassung 56

Funktionen 59
Hintergrund 59

Mehrdeutige Terminologie 60

Deklarationen versus Ausdrücke: Namen und Hoisting 61

name-Eigenschaft von Function 62

Funktions-Hoisting 63

Callback-Muster 65

Ein Callback-Beispiel 65

Callbacks und Scope 67

Asynchrone Event Listener 68

Timeouts 69

Callbacks in Bibliotheken 69

Funktionen zurückgeben 70

Selbst-definierende Funktionen 70

Immediate Function 72

Parameter einer Immediate Function 73

Rückgabewerte aus Immediate Functions 74

Vorteile und Anwendungsfälle 75

Immediate-Object-Initialisierung 76

Verzweigungen beim Initialisieren (Init-Time Branching) 77

Funktions-Eigenschaften - Ein Memoisierungs-Muster 79

Konfigurations-Objekte 80

Curry 82

Anwenden einer Funktion 82

Partielle Anwendung 83

Currying 84

Wann man Currying nutzt 86

Zusammenfassung 87

Objekt-Erzeugungs-Muster 89
Namensraum-Muster 89

Namensraum-Funktion 91

Abhängigkeiten deklarieren 93

Private Eigenschaften und Methoden 94

Private Member 94

Inhalt



Bevorzugte Methoden 95

Privacy-Lücken 95

Objekt-Literale und Privacy 97

Eigenschaften und Privacy 97

Private Funktionen als öffentliche Methoden bereitstellen (Revelation-Muster) 98

Modul-Muster 99

Bereitstellungs-Modul-Muster 101

Module, die Konstruktoren erzeugen 102

Globale Variablen in ein Modul importieren 103

Sandbox-Muster 103

Ein globaler Konstruktor 104

Module hinzufügen 105

Den Konstruktor implementieren 106

Statische Member 108

Öffentliche statische Member 108

Private statische Member 110

Objekt-Konstanten 111

Verkettungs-Muster 113

Vor- und Nachteile des Verkettungs-Musters 114

methodO-Methode 114

Zusammenfassung 116

Muster zum Wiederverwenden von Code 117
Klassische versus moderne Vererbungs-Muster 117

Erwartete Ergebnisse bei klassischer Vererbung 118

Klassisches Muster Nr. 1 - Das Standard-Muster 119

Der Prototypen-Kette folgen 119

Nachteile bei Muster Nr. 1 122

Klassisches Muster Nr. 2 - Rent-a-Constructor 122

Die Prototypen-Kette 123

Mehrfachvererbung bei geliehenen Konstruktoren 124

Vor- und Nachteile des Geliehener-Konstruktor-Musters 125

Klassisches Muster Nr. 3 - Rent-and-Set-Prototyp 125

Klassisches Muster Nr. 4 - Gemeinsamer Prototyp 127

Klassisches Muster Nr. 5 - Ein temporärer Konstruktor 128

Die Superklasse speichern 129

Den Konstruktor-Zeiger zurücksetzen 130

Klass 131

X | binait



Prototypische Vererbung 133

Diskussion 135

Ergänzung in ECMAScript 5 135

Vererbung durch das Kopieren von Eigenschaften 136

Mix-Ins 138

Methoden ausleihen 139

Beispiel: Von Array ausleihen 140

Ausleihen und Binden 140

Function.prototype.bindO 141

Zusammenfassung 142

7 Entwurfsmuster 143
Singleton 143

new verwenden 144

Instanz in einer statischen Eigenschaft 145

Instanz in einem Closure 146

Fabrik/Factory 148

Eingebaute Object-Fabrik 150

Iterator 151

Dekorierer/Decorator 153

Anwendung 153

Implementierung 154

Implementierung mit einer Liste 156

Strategie/Strategy 158

Beispiel: Datenvalidierung 158

Fassade/Façade 161

Stellvertreter/Proxy 162

Ein Beispiel 163

Stellvertreter als Cache 170

Vermittler/Mediator 170

Vermittler-Beispiel 171

Beobachter/Observer 174

Beispiel Nr. 1: Zeitungs-Subskription 174

Beispiel Nr. 2: Das Tastatur-Spiel 178

Zusammenfassung 181

8 DOM- und Browser-Muster 183
Separation of Concerns 183

Inhalt



DOM Scripting 185

DOM-Zugriff 185

Veränderungen am DOM 186

Events 188

Event Handling 188

Event Delegation 190

Langlaufende Skripten 191

setTimeoutO 192

Web Workers 192

Remote Scripting 193

XMLHttpRequest 193

JSONP 195

Frames und Image Beacons 198

JavaScript-Code ausliefern 198

Skripten kombinieren 198

Minifizieren und Komprimieren 199

Expires-Header 200

Ein CDN verwenden 200

Strategien zum Laden 200

Die Position des <script>-Elements 201

HTTP Chunking 202

Dynamisches <script>-Element für nicht-blockierende Downloads 204

Lazy-Loading 205

Loading on Demand 206

JavaScript im Voraus laden 208

Zusammenfassung 209

Index 211

XII I Inhalt


