» Grundlagen, Anwendung, Referenz
» OOP, aktuelle ECMAScript-Features, mobile Anwendungen
» Inkl. Web-APIs, Node.js und Internet of Things

@ Mit allen Beispielen zum Download 9 Rhelnwerk
Computing

Kapitel 2
Erste Schritte

Nach wie vor wird JavaScript hauptsdchlich fiir die Erstellung dynamischer
Webseiten, sprich innerhalb eines Browsers eingesetzt. Bevor wir uns in spdte-
ren Kapiteln im Detail mit anderen Anwendungsgebieten befassen, werde ich
lhnen in diesem Kapitel zeigen, auf welche Weisen Sie JavaScript in eine Web-
seite einbinden und einfache Ausgaben erzeugen kénnen. Dieses Kapitel bildet
somit gewissermafSen die Grundlage fiir die folgenden Kapitel.

Bevor wir uns ausfiihrlicher mit der Sprache JavaScript an sich beschaftigen, sollten Sie
zunidchst wissen, in welchem Zusammenhang JavaScript mit HTML (Hypertext Markup Lan-
guage) und CSS (Cascading Stylesheets) innerhalb einer Webseite steht, wie man JavaScript in
eine Webseite einbindet und wie man Ausgaben erzeugen kann.

2.1 Einfiihrung JavaScript und Webentwicklung

Die wichtigsten drei Sprachen fir die Erstellung von Web-Frontends sind sicherlich HTML,
CSS und JavaScript. Jede dieser Sprachen hat dabei ihre eigene Bestimmung,.

2.1.1 Der Zusammenhang zwischen HTML, CSS und JavaScript

Mithilfe von HTML legen Sie iber HTML-Elemente die Struktur einer Webseite und die Bedeu-
tung (die Semantik) einzelner Komponenten auf einer Webseite fest. Sie beschreiben bei-
spielsweise, welcher Bereich auf der Webseite den Hauptinhalt darstellt, welcher die
Navigation, und definieren Komponenten wie Formulare, Listen, Schaltflachen, Eingabefel-
der oder, wie in Abbildung 2.1 zu sehen, Tabellen.

Artist Album Release Date Genre
Monster Magnet Powertrip 1998 Spacerock
Kyuss Welcome to Sky Valley 1994 Stonerrock
Ben Harper The Will to Live 1997 Singer/Songwriter
Tool Lateralus 2001 Progrock
Beastie Boys Il Communication 1994 Hip Hop

Abbildung 2.1 HTML verwenden Sie, um die Struktur einer Webseite zu definieren.

55

2 Erste Schritte

Uber CSS dagegen gestalten Sie mithilfe von speziellen CSS-Regeln, wie die einzelnen Kom-
ponenten, die Sie zuvor in HTML definiert haben, dargestellt werden sollen, sprich Sie legen
das Design und Layout einer Webseite fest. Sie definieren hierbei beispielsweise Textfarbe,
Textgrofle, Umrandungen, Hintergrundfarben, Farbverlaufe etc. In Abbildung 2.2 ist zu
sehen, wie CSS dazu genutzt wurde, die Schriftart und Schriftgrofle der Tabellentiberschrif-
ten sowie der Tabellenzellen anzupassen, Rahmen zwischen Tabellenspalten und Tabellen-
zeilen hinzuzufiigen und die Hintergrundfarbe der Tabellenzeilen im Wechsel mit einer
jeweils anderen Hintergrundfarbe einzufirben. Das Ganze sieht dann schon um einiges
ansprechender aus als die Variante ohne CSS.

Artist Album Release Date Genre

Monster Magnet Powertrip 1998 Spacerock

Kyuss Welcome to Sky Valley 1994 Stonerrock

Ben Harper The Will to Live 1997 Singer/Songwriter
Tool Lateralus 2001 Progrock

Beastie Boys Il Communication 1994 Hip Hop

Abbildung 2.2 Mit CSS definieren Sie das Layout und das Aussehen einzelner Elemente
der Webseite.

JavaScript zu guter Letzt dient dazu, der Webseite (bzw. den Komponenten auf einer Web-
seite) dynamisches Verhalten hinzuzufiigen bzw. die Interaktivitat auf der Webseite zu er-
hohen. Beispiele hierfir sind die bereits in Kapitel 1, »Grundlagen und Einfiihrung«, ange-
sprochene Sortierung und Filterung von Tabellendaten (siehe Abbildung 2.3 und Abbildung
2.4). Wahrend CSS also fir das Design einer Webseite zustindig ist, kann mithilfe von Java-
Script die Nutzerfreundlichkeit und die Interaktivitat einer Webseite erhoht werden.

Q. = Search artist

Artist ~ Album Release Date Genre

Beastie Boys Il Communication 1994 Hip Hop

Ben Harper The Will to Live 1997 Singer/Songwriter
Kyuss Welcome to Sky Valley 1994 Stonerrock
Monster Magnet Powertrip 1998 Spacerock
Tool Lateralus 2001 Progrock

Abbildung 2.3 JavaScript ermoglicht es Ihnen, eine Webseite nutzerfreundlicher und interaktiver
zu gestalten, z. B. um wie hier die Daten in einer Tabelle sortierbar ...

56

2.1 Einfiihrung JavaScript und Webentwicklung

Q | Be

Artist ~ Album Release Date Genre

Beastie Boys Il Communication 1994 Hip Hop

Ben Harper The Will to Live 1997 Singer/Songwriter

Abbildung 2.4 ... oder, wie hier zu sehen, die Daten filterbar zu machen.

Eine Webseite besteht also (in den allermeisten Féllen) aus einer Kombination von HTML-,
CSS- und JavaScript-Code (siehe Abbildung 2.5). Wobei gilt: Auch wenn ich eben gesagt habe,
dass JavaScript fir das Verhalten einer Webseite zustidndig ist, kann man funktionsfahige
Webseiten auch ginzlich ohne JavaScript erstellen. Ja, prinzipiell kann man Webseiten auch
ohne CSS erstellen. Prinzipiell schon. Dann wird eben nur das HTML vom Browser ausgewer-
tet. Wobei in so einem Fall die Webseite nur weniger schick (ohne CSS) und weniger interak-
tiv und nutzerfreundlich (ohne JavaScript) ist (siehe wiederum Abbildung 2.1).

HTML
(Struktur)
—>
(Lac?)i 1) > Webseite
y 5

JavaScript

(Interaktion)

Abbildung 2.5 In der Regel wird innerhalb einer Webseite eine
Kombination aus HTML, CSS und JavaScript verwendet.

Merke

HTML dient der Struktur einer Webseite, CSS dem Layout und dem Design, JavaScript dem
Verhalten und der Interaktivitat.

Definition
Web- und Software-Entwickler sprechen in diesem Zusammenhang auch gerne von drei

Schichten: HTML bildet die Inhaltsschicht, CSS die Darstellungsschicht und JavaScript die Ver-
haltensschicht.

57

2 Erste Schritte

Trennen des Codes fiir die einzelnen Schichten

Guter Entwicklungsstil sieht vor, die einzelnen Schichten nicht zu vermischen, sprich HTML-,
CSS- und JavaScript-Code unabhangig voneinander und in separaten Dateien vorzuhalten.
Dies erleichtert den Uberblick Uber ein Webprojekt und sorgt letztendlich dafir, dass Sie
effektiver entwickeln kdnnen. Darliber hinaus kdnnen Sie auf diese Weise ein und dieselben
CSS- und JavaScript-Dateien auch in verschiedenen HTML-Dateien einbinden (siehe Abbil-
dung 2.6) und damit dieselben CSS-Regeln bzw. denselben JavaScript-Quelltext in verschie-
denen HTML-Dateien wiederverwenden.

JS < HTML —
<«
-
—_— HTML
— — >
) Css
s
JS <« HTML
<«
HTML —

Abbildung 2.6 Wenn Sie CSS- und JavaScript-Code nicht direkt in den HTML-Code schreiben,
sondern in separate Dateien, erleichtert das die Wiederverwendbarkeit.

Eine gute Vorgehensweise bei der Entwicklung einer Webseite ist es, sich erst iber deren
Struktur Gedanken zu machen: Welche Bereiche gibt es auf der Webseite? Welche Uber-
schriften gibt es? Gibt es Daten, die in tabellarischer Form dargestellt werden? Aus welchen
Eintragen besteht die Navigation? Welche Informationen sind im Fuf3bereich der Seite ent-
halten, welche im Kopfbereich? Hierbei verwendet man ausschlief3lich HTML. Die Webseite
sieht dann zwar noch nicht schon aus und ist nur wenig interaktiv, aber darum soll es in die-
sem ersten Schritt bewusst nicht gehen, um nicht vom Wesentlichen, dem Inhalt der Web-
seite, abzulenken.

Aufbauend auf dieser strukturellen Grundlage, setzt man anschliefiend das Design mit CSS
und das Verhalten der Webseite mit JavaScript um. Dabei konnen diese beiden Schritte prin-
zipiell parallel auch von verschiedenen Personen vorgenommen werden. Beispielsweise
kann ein Webdesigner sich um das Design mit CSS kiimmern, wahrend ein Webentwickler
die Funktionalitdt in JavaScript programmiert (in der Praxis sind zwar Webdesigner und
Webentwickler haufig ein und dieselbe Person, aber insbesondere in grofien Projekten mit
vielen, vielen Webseiten ist eine Verteilung der Zustiandigkeiten nicht selten).

58

2.1 Einfiihrung JavaScript und Webentwicklung

Phasen der Website-Entwicklung

Bei der Entwicklung professioneller Websites gehen der reinen Entwicklung naturlich meh-
rere Phasen voraus. Bevor tiberhaupt mit der Entwicklung begonnen wird, werden in Kon-
zept- und Designphasen Prototypen (entweder digital oder ganz klassisch mit Stift und
Papier) entworfen. Das eben beschriebene schrittweise Vorgehen (erst HTML, dann CSS,
dann JavaScript) bezieht sich somit nur auf die Entwicklung.

Auszeichnungssprache HTML und Stilsprache CSS

HTML und CSS sind tibrigens keine Programmiersprachen! HTML ist eine Auszeichnungsspra-
che und CSS eine Stilsprache, nur JavaScript ist von den drei genannten eine Programmier-
sprache. Daher sind auch Aussagen wie »Das lasst sich doch mit HTML programmieren«
genau genommen nicht korrekt. Vielmehr misste man sagen: »Das lasst sich doch mit HTML
umsetzen.«

Definition

Der Prozess des Darstellens einer Webseite durch den Browser wird auch Rendern genannt.
Man sagt unter Entwicklern auch: »Der Browser rendert eine Webseite.« Dabei wird HTML-,
CSS- und JavaScript-Code ausgewertet, ein entsprechendes Modell der Webseite erstellt (auf
das wir in Kapitel 5, »Webseiten dynamisch verandern«, noch zu sprechen kommen) und die
Webseite in das Browserfenster »gezeichnet«. Im Detail ist dieser Prozess recht komplex,
und wenn Sie sich mehr fiir dieses Thema interessieren, kann ich lhnen den Blogbeitrag
unter www.html5rocks.com/de/tutorials/internals/howbrowserswork/ empfehlen.

2.1.2 Dasrichtige Werkzeug fiir die Entwicklung

Fir das Erstellen von JavaScript-Dateien wiirde prinzipiell zwar auch ein einfacher Textedi-
tor ausreichen (und fiir einfache Codebeispiele ist dies auch durchaus in Ordnung). Was Sie
sich allerdings friher oder spater zulegen sollten, ist ein guter Editor, der Sie beim Schreiben
von JavaScript unterstitzt (sofern Sie nicht ohnehin schon einen auf Ihrem Rechner instal-
liert haben) und der speziell fiir die Entwicklung von JavaScript-Programmen ausgelegt ist.
Ein solcher Editor unterstiitzt Sie beispielsweise dahingehend, dass er den Quelltext farblich
hervorhebt, Ihnen Schreibarbeit bei wiederkehrenden Quelltextbausteinen abnimmt, Fehler
im Quelltext erkennt und vieles mehr.

Editoren

Es gibt mittlerweile eine Reihe wirklich guter Editoren, mit denen sich effektiv arbeiten lasst.
In der Entwickler-Community sind beispielsweise Sublime Text (www.sublimetext.com),

59

2 Erste Schritte 2.1 Einfiihrung JavaScript und Webentwicklung

Coda 2 (https://panic.com/coda/) oder auch die noch jingeren Editoren Atom (https:// 00 ® main,js - /Users/ackermann/WebstormProjects/Beispielprojekt - Atom 7
atom.io) oder Microsoft Visual Studio Code (https://code.visualstudio.com) beliebt. : main s
Sublime Text (siehe Abbildung 2.7) kostet 70 US$ und steht fiir Windows, macOS und Linux (funit ion() { » o
. ; unction add(x, y)
zur Verfiigung. Coda 2 (siehe Abbildung 2.8) kostet 99 USS, ist allerdings nur fiir macOS ver- e ;
fligbar. Der kostenlose, relativ junge Editor Atom (siehe Abbildung 2.9) dagegen ist wie Sub- B indexhimi }
lime Text fiir alle drei Betriebssysteme verfiigbar, ebenso der Editor Visual Studio Code von var x = document.getElementById('x').value;
Microsoft (siehe Abbildung 2.10). var y = document.getElementById('y').value;
var result = add(x, y);
enon |8 main.js — Beispielprojekt UNREGISTERED @ document.getElementById('result').value = value;
OPEN FILES ==
main.js
| me
RO 1 |(function() {
2 function add{x, y) {
WV Beispielprojekt ! X vi
¥ scripts }
: var x = document.getElementById('x").value;
e l € var y = document.getElementById('y').value;
- styles 7 var result = add(x, y);
index.html 8 document.getElementById(' result').value = value;
no;
4 WORKING FILES
4 BEISPIELPROJEKT Daciix, ylid
- nX +y;
4 geripts
main js ar x = document.getElementById('x').value;
b siyles y = document.getElementById('y').value;
= s S result = add(x, y};
Line 1, Column 1 Tab Size: 4 JavaSeript index.htrnl document.getElementById{ 'result’).value = value;
Abbildung 2.7 Der Editor Sublime Text 0
&)
8]
0 +
s |
Sites Dateien main Ln1,Col1 UTF-8 LF JavaScript &
2 k P2 Proj > ispielprojekt > scri | v h +=
O & achwwwnn 7 Wabsomnrolecis 2 Iniphtipramit > sl SRR © Vorche ffE B8 1% Abbildung 2.10 Der Editor Microsoft Visual Studio Code

1 {function() {

function add{x, y) { Beispielprojekt

return x + yj
} i , €' Index.hml Im Detail haben alle der genannten Editoren ihre eigenen Features und Starken, sind prinzi-
var x = document.getElementById('x").value; . s
ool ol sttt el = piell aber doch recht dhnlich. Probieren Sie einfach aus, welcher Thnen am meisten zusagt
d t.getEl tById(' result').value = value; o o1s
pyyyment gETEenentRyRCl resuh I vatue = vatue (fiir Sublime Text und Coda 2 stehen {ibrigens auf den jeweiligen Homepages kostenlose
Testversionen zum Download bereit).
Entwicklungsumgebungen
PPy s e o Software-Entwickler, die von Sprachen wie Java oder C++ zu JavaScript wechseln, sind von
v & I i view i =l

. »ihren Programmiersprachen« in den meisten Fillen sogenannte Entwicklungsumgebungen
Abbildung 2.8 Der Editor Coda 2 gewohnt (im Englischen kurz: IDE fiir Integrated Development Environment). Eine Entwick-

lungsumgebung konnen Sie sich gewissermafien wie einen sehr, sehr machtigen Editor vor-

60 61

2 Erste Schritte

stellen, der gegentliber einem »normalen« Editor noch diverse andere Features bereitstellt,
wie beispielsweise die Synchronisation mit einem Sourceverwaltungssystem, das Ausfihren
von automatischen Builds oder die Integration von Test-Frameworks. (Wenn Sie jetzt nur ver-
standnislos den Kopf schiitteln und sich fragen, was sich hinter all diesen Begriffen verbirgt,
warten Sie bis Kapitel 20, »Mikrocontroller mit JavaScript steuern«, da gehe ich auf diese
fortgeschrittenen Themen der Software-Entwicklung mit JavaScript ein.)

WebStorm von Intelli] (www.jetbrains.com/webstorm/, siehe Abbildung 2.11) ist ein Beispiel
flr eine sehr beliebte und, wie ich finde, auch wirklich sehr gute Entwicklungsumgebung, die
ich personlich auch im beruflichen Alltag nutze. Eine Einzellizenz fiir WebStorm kostet 99 €.
Wer das Programm zunichst testen mochte, kann eine 30-Tage-Testversion von der Home-
page herunterladen. WebStorm steht dabei sowohl fiir Windows als auch fiir macOS und
Linux zur Verfigung.

main.js - Beispielprojekt - [~/WebstormProjects/Beispielprojekt]

D Beispielprojekt D'r
[Project - | : in.css s n.js EI index.html
v [Beispielprojekt
v [scripts
Eltimairl.js
¥ [styles X = .getElementById(
1ain.css -getElementById(

|',r‘_:| dex. html result = add(x, y)
iily External Libraries -getElementByTd(s

% 1:Project

150H 0wy

: Structure

I

vpn=200: Beispielprojekt ackermann$ |:|

X

¥ 2:Favorites

Terminal % 6: TODO Event Log
9:1 LF: UTF-8: &

=

Abbildung 2.11 Die WebStorm-IDE

Als kostenlose Alternative dazu kann ich Thnen die NetBeans IDE (https://netbeans.org, siehe
Abbildung 2.12) empfehlen, die urspriinglich hauptséchlich fiir die Java-Entwicklung verwen-
det wird, aber auch mit JavaScript gut umgehen kann. NetBeans steht ebenfalls fir alle drei
genannten Betriebssysteme zur Verfligung und kann entsprechend von der Homepage he-
runtergeladen werden.

62

2.1 Einfiihrung JavaScript und Webentwicklung

e 00 i Beispielprojekt - NetBeans IDE 8.0.2
- — A 4 : A B : -~
t. ‘r_ ﬁ i i {,'- z Ilj I;j |) E = =y
Projects | Files] Services 2| index.html [i__, main.js ERES R =)
v E Beispielprojekt i 1 = 0 S A 2
|| H] . - =y L i o B =R
v [Site Root Source istory g Q@ &80 & &% o owi =
v G scripts 1 _I'_- (function() {
= mainjs 2l g function add{x, y) {
] styles 3] return x + y;
@ index.html 4 }
5 var x = document.getElementById(Javalue;
MNavigator ? var y = ﬁ'c-_ L‘I;,[qctt;.cmcntﬁvm().value;
= var resy = a X, Y13

<D add(x, v) @ document .getElementByTd().value = value;

5] result 9 ol

9§ x -

'3_; ¥
Filters: | Qs)& | 5

9:6 INS

Abbildung 2.12 Die NetBeans IDE

Eine kurze Ubersicht tiber die oben genannten Editoren und Entwicklungsumgebungen fin-
den Sie in Tabelle 2.1.

Name Preis macOS Linux Windows | Editor/Entwick-
lungsumgebung

Sublime Text 70 USS ja ja ja Editor

Coda 2 99 USS ja nein nein Editor

Atom kostenlos | ja ja ja Editor

Microsoft Visual kostenlos | ja ja ja Editor

Studio Code

WebStorm 99 € ja ja ja Entwicklungs-
umgebung

NetBeans kostenlos | ja ja ja Entwicklungs-
umgebung

Tabelle 2.1 Empfehlenswerte Editoren und Entwicklungsumgebungen fiir die Entwicklung mit
JavaScript

Tipp

Fir den Anfang empfehle ich Ihnen, einen der genannten Editoren zu verwenden und (noch)
keine Entwicklungsumgebung. Letztere haben namlich den Nachteil, dass sie teils mit
Menis und Funktionalitdten tGberfrachtet sind, sodass Sie sich — zusatzlich zum Lernen von
JavaScript — auch noch mit dem Erlernen der Entwicklungsumgebung beschaftigen muissen.
Das mochte ich Ihnen fiir den Moment zumindest moglichst ersparen.

63

2 Erste Schritte

Zudem machen Entwicklungsumgebungen eigentlich auch erst ab einer gewissen Projekt-
grole Sinn, fir kleinere Projekte und die Beispiele in diesem Buch reicht ein Editor allemal
(nicht dass wir nicht auch komplexe Themen behandeln werden!). Hinzu kommt, dass die
Editoren in der Regel im Hinblick auf die Ausfiihrungsgeschwindigkeit schneller als die Ent-
wicklungsumgebungen sind.

Kapitel 5
Webseiten dynamisch verandern

Bisher haben wir den Browser mehr als Mittel zum Zweck eingesetzt, ndmlich
fiir die Ausfiihrung relativ einfacher Beispiele. Seine volle Geltung erreicht die
Sprache innerhalb des Browsers allerdings erst, wenn man mit ihr eine dyna-
mische Webanwendung erstellt. Eine wichtige Grundlage hierbei ist das soge-
nannte Document Object Model, welches den Aufbau einer Webseite in Form
einer Baumstruktur verwaltet und mithilfe von JavaScript dynamisch verdn-
dert werden kann.

Auch wenn einige der bisherigen Beispiele bereits dynamisch Inhalte innerhalb einer HTML-
Seite erzeugt haben, miissen wir uns dieses Thema noch etwas genauer anschauen.

5.1 Aufbau einer Webseite

Sie wissen ja schon, dass man bei der objektorientierten Programmierung versucht, Objekte
aus der realen Welt bei der Modellierung von Programmen ebenfalls als Objekte zu beschrei-
ben. Auch eine Webseite (bei der man sich streiten kann, ob sie zur realen Welt gehort) wird
intern im Browser als Objekt reprasentiert.

5.1.1 Document Object Model

Jedes Mal, wenn Sie eine Webseite aufrufen, erstellt der Browser im Arbeitsspeicher ein ent-
sprechendes Modell der Webseite, welches als sogenanntes Document Object Model oder
kurz DOM bezeichnet wird. Das DOM dient in erster Linie dazu, per JavaScript auf Inhalte der
Webseite zugreifen zu konnen, beispielsweise um bestehende Inhalte zu verandern oder
neue Inhalte hinzuzufligen. Es stellt die Komponenten einer Webseite hierarchisch in einer
Baumdarstellung dar, welche auch als DOM-Baum bezeichnet wird. Ein DOM-Baum wiede-
rum setzt sich aus sogenannten Knoten (engl.: Nodes) zusammen, welche durch ihre hierar-
chische Anordnung den Aufbau einer Webseite widerspiegeln (siehe Abbildung 5.1).

339

5 Webseiten dynamisch verandern

Hintergrundinfo

Die Baumdarstellung ist eine in der Informatik und Programmierung haufig verwendete
Datenstruktur, die insbesondere dann zum Einsatz kommt, wenn Teile-Ganzes-Beziehungen
reprasentiert werden sollen. Im Falle vom DOM steht das Ausgangselement (die Wurzel)
ganz oben, und der Baum »wachst« von dort nach unten.

Dokumentknoten

Abbildung 5.1 Aufbau eines DOM-Baumes

5.1.2 Die verschiedenen Knotentypen

Insgesamt gibt es vier wesentliche Typen von Knoten (es gibt noch einige mehr, insgesamt
zwolf, um genau zu sein, wobei acht davon aber fiir den Anfang weniger relevant sind), die
sich am besten anhand eines Beispiels erlautern lassen. Listing 5.1 zeigt dazu eine Beispiel-
HTML-Datei, in welcher Sie den HTML-Code fiir eine einfache Tabelle zur Darstellung einer
Kontaktliste sehen. Das entsprechende Document Object Model ist in Abbildung 5.2 darge-
stellt (wobei ich aus Platzgriinden und der Ubersicht wegen auf eine vollstandige Abbildung
verzichtet habe).

<IDOCTYPE html>
<html>
<head lang="de">
<title>Kontaktlistenbeispiel</title>
</head>
<body>
<main id="main">
<hl>Kontaktliste</h1>
<table id="contact-list-table" summary="Kontaktliste">

340

5.1 Aufbau einer Webseite

<thead>
<tr>
<th id="table-header-first-name">Vorname</th>
<th id="table-header-last-name">Nachname</th>
<th id="table-header-email">E-Mail-Adresse</th>

</tr>
</thead>
<tbody>
<tr class="row odd">
<td>Max</td>
<td>Mustermann</td>
<td>max.mustermann@javascripthandbuch.de</td>
</tr>
<tr class="row even">
<td>Moritz</td>
<td>Mustermann</td>
<td>moritz.mustermann@javascripthandbuch.de</td>
</tr>
<tr class="row odd">
<td>Peter</td>
<td>Mustermann</td>
<td>peter.mustermann@javascripthandbuch.de</td>
</tr>
<tr class="row even">
<td>Paul</td>
<td>Mustermann</td>
<td>paul.mustermann@javascripthandbuch.de</td>
</tr>
</tbody>
</table>
</main>
</body>

</html>

Listing 5.1 Beispiel HTML-Seite

Folgende vier Knotentypen werden Sie bei der Arbeit mit dem DOM am héufigsten ver-
wenden:

» Der Dokumentknoten (in Abbildung 5.2 fett umrandet) steht fiir die gesamte Webseite und
bildet die Wurzel des DOM-Baumes. Er wird durch das globale Objekt document reprasen-
tiert, welches Sie ja schon in einigen Listings sehen konnten. Dieses Objekt ist gleichzeitig
das Einstiegsobjekt fir jegliche Arbeiten mit dem DOM. Der Dokumentknoten wird auch
als Wurzelknoten bezeichnet.

341

5 Webseiten dynamisch verandern 5.1 Aufbau einer Webseite

@ Kontaktliste, Vorname, Nachname und E-Mail-Adresse. Textknoten konnen selbst keine
Kindknoten haben und sind damit zwangsweise Bldtter in dem DOM-Baum (im Beispiel
sind aus genannten Platzgriinden nicht alle Textknoten abgebildet).

Hinweis

Das Beispiel aus Listing 5.1 und Abbildung 5.2 bildet die Grundlage fiir die ndchsten Abschnit-
te. Anhand dieses Beispiels werde ich Ihnen im Folgenden zeigen, wie Sie auf Knoten einer
Webseite zugreifen und diese verandern kdnnen.

Das DOM im Browser untersuchen

Das DOM einer Webseite konnen Sie mit den jeweiligen JavaScript-Debugging-Tools der ver-
schiedenen Browser in einer speziellen Ansicht einsehen. In den Chrome Developer Tools
befindet sich diese Ansicht hinter der Registerkarte ELEMENTS (siehe Abbildung 5.3).

Sie konnen lber diese Ansicht in der Regel das DOM sogar handisch andern. Sie konnen das
testen, indem Sie innerhalb des DOM-Baumes auf einen der Knoten, beispielsweise auf
einen Textknoten, doppelt klicken. AnschlieBend konnen Sie den entsprechenden Text des
} Knotens andern.

In der Praxis kann das recht hilfreich sein, um eben mal schnell eine gewisse Konstellation
von HTML zu testen. Die Anderungen, die Sie in dieser Ansicht vornehmen, haben allerdings
keine Auswirkung auf die unterliegende HTML-Datei. Wenn Sie die Datei im Browser neu
} laden, sind die Anderungen verloren.

[w ﬂ Elements Console Sources Network Timeline Profiles

} <html>
» <head lang="de">..</head>
¥ <body
¥ <main id="main"=
<hl=Kontaktliste</hl>
¥v<table id="contact-list-table" summary="Kontaktliste
} v <thead=>
v<tr
th id="table-header-first-name'>Vorname<=/th=
<th id="table-header-last-name"=Nachname</th=
<th id="table-header-email "=Email-Adresse</th=>

Abbildung 5.2 Aufbau des DOM-Baumes fiir das Beispiel

» Elementknoten (in Abbildung 5.2 mit weiflem Hintergrund) reprédsentieren einzelne _ f't‘;;c'l _
HTML-Elemente einer Webseite. Im Beispiel sind dies beispielsweise die Elemente <main>, ¥ <tbody>
»<tr class="row odd">.</tr>
<h1>, <table>, <thead> und <tbody>. B <tr class="row even'>.</tr>
» Attributknoten (in Abbildung 5.2 gestrichelt umrandet und mit weifSem Hintergrund) ste- : : E; E{ZE: :E: :ign ’{;:r
hen fiir Attribute von HTML-Elementen, im Beispiel die Attributknoten fur die Attribute </tbody
lang, id und summary. _ m’;t;t_ﬂe '
» Der Text innerhalb von HTML-Elementen wird durch einen eigenen Knotentyp reprasen- Abbildung 5.3 Darstellung des DOM in den Chrome Developer Tools

tiert, die sogenannten Textknoten (in Abbildung 5.2 gestrichelt umrandet und grau einge-
farbt). Im Beispiel sind das beispielsweise die Knoten fiir die Texte Kontaktlistenbeispiel,

342 343

5 Webseiten dynamisch verandern

5.1.3 Der Dokumentknoten

Der Dokumentknoten stellt, wie bereits erwahnt, den Einstiegspunkt fiir das DOM dar und
wird Uiber das globale Objekt document reprasentiert, welches tber verschiedene Eigenschaf-
ten und Methoden verfligt.

Ausgewaihlte Eigenschaften sind in Tabelle 5.1 aufgelistet, auf die verschiedenen Methoden
werden wir dagegen im Laufe des Kapitels im Detail eingehen.

Eigenschaft Beschreibung

document.title Enthalt den Titel des aktuellen Dokuments.

document.lastModified Enthalt das Datum, an dem das Dokument zuletzt geandert
wurde.

document.URL Enthalt einen URL des aktuellen Dokuments.

document.domain Enthalt die Domane des aktuellen Dokuments.

document.cookie Enthalt eine Liste aller Cookies fuir das Dokument.

document.forms Enthalt eine Liste aller Formulare des Dokuments.

document.images Enthalt eine Liste aller Bilder des Dokuments.

document.links Enthalt eine Liste aller Links des Dokuments.

Tabelle 5.1 Ausgewahlte Eigenschaften des »document«-Objekts

DOM unter Node.js

Das Document Object Model in Form der globalen document-Variablen steht nur in browser-
basierten Laufzeitumgebungen zur Verfiigung. In Node.js beispielsweise (Kapitel 17, »Server-
seitige Anwendungen mit Node.js erstellen«) gibt es eine solche globale Variable nicht, da
Node.js in der Regel nicht dazu verwendet wird, Webseiten zu rendern. Erst Uber spezielle
Module wie z.B. domino (https://github.com/fgnass/domino), mit denen man Webseiten
parsen kann, lasst sich unter Node.js ein Document Object Model einer Webseite erstellen.

Der Aufbau des Document Object Models, sprich, welche Eigenschaften und Methoden zur
Verfiigung stehen, welche Knotentypen es gibt etc., ist in der sogenannten DOM API, einer
Spezifikation des W3C (World Wide Web Consortium) festgehalten. Diese API (Application Pro-
gramming Interface) ist programmiersprachenunabhéngig gehalten, d. h., es gibt nicht nur
Implementierungen fur JavaScript, sondern auch fiir andere Programmiersprachen wie Java
oder C++.

344

5.2 Elemente selektieren

Interface, Implementierung und API

In der objektorientierten Programmierung dienen Interfaces (auch Schnittstellen genannt)
dazu, die Methoden zu definieren, die in Implementierungen (also konkreten Umsetzungen
des jeweiligen Interface) vorhanden sein missen. Ein Application Programming Interface
(kurz: API) definiert eine Menge von Interfaces, die von einem Software-System zur Verfi-
gung gestellt werden.

Die DOM API ist demnach eine Menge von Interfaces, die Browser fiir die Arbeit mit Websei-
ten zur Verfligung stellen.

Die API vs. das API

Die grammatisch korrekte Bezeichnung lautet das API (weil man ja auch das Application Pro-
gramming Interface sagen wiirde). Es ist aber auch durchaus Ublich, den Artikel nach der
deutschen Ubersetzung Programmierschnittstelle zu wahlen, wonach es dann die AP/ heift.

5.2 Elemente selektieren

Egal, ob Sie bestehende Informationen einer Webseite dndern wollen oder neue Infor-
mationen hinzufligen mochten: In beiden Fallen miissen Sie zunachst ein Element auf der
Webseite selektieren, sprich auswahlen, welches Sie dandern bzw. an welches Sie die neuen In-
formationen anfiigen mochten. Dazu bietet die DOM API verschiedene Eigenschaften und
Methoden an, von denen Tabelle 5.2 Thnen eine Ubersicht zeigt.

Wie Sie sehen, gibt es einige Methoden, die mehrere Elemente zuriickgeben, und einige
Methoden, die einzelne Elemente zuriickgeben. Die Details schauen wir uns in den folgen-
den Abschnitten an.

Eigenschaft/ Beschreibung Riickgabe- | Abschnitt

Methode wert

getElementById() | Wahltein Element einzelnes Abschnitt 5.2.1, »Elemente
anhand einer ID aus. Element per ID selektieren«

getElementsBy- Wahlt Elemente anhand Liste von Abschnitt 5.2.2, »Elemente

ClassName() eines Klassennamens aus. | Elementen | per Klasse selektieren«

getElementsBy- Wahlt alle Elemente mit Liste von Abschnitt 5.2.3, »Elemente

TagName() dem angegebenen Ele- Elementen | nach Elementnamen selek-
mentnamen aus. tieren«

Tabelle 5.2 Die verschiedenen Methoden und Eigenschaften fur das Auswahlen von
Elementen

345

5 Webseiten dynamisch verandern

5.2 Elemente selektieren

Eigenschaft/ Beschreibung Riickgabe- | Abschnitt

Methode wert

getElementsBy- Wahlt Elemente anhand Liste von Abschnitt 5.2.4, »Elemente

Name () ihres Namens aus. Elementen | nach Namen selektieren«

querySelector() Gibt das erste Element einzelnes Abschnitt 5.2.5, »Elemente
zuriick, das auf einen Element per Selektor selektieren«
gegebenen CSS-Selektor
passt.

querySelector- Gibt alle Elemente zurtick, | Liste von Abschnitt 5.2.5, »Elemente

ALL() die auf einen gegebenen Elementen | per Selektor selektieren«
CSS-Selektor passen.

parentElement Gibt fiir einen Knoten das | einzelnes Abschnitt 5.2.6, »Das
Elternelement zurtick. Element Elternelement eines Ele-

ments selektieren«

parentNode Gibt fiir einen Knoten den | einzelner Abschnitt 5.2.6, »Das

Elternknoten zurlck. Knoten Elternelement eines Ele-
ments selektieren«

previousktlement- | Gibt fureinen Knoten das | einzelnes Abschnitt 5.2.8, »Die

Sibling vorhergehende Geschwis- | Element Geschwisterelemente eines
terelement zurtick. Elements selektieren«

previousSibling Gibt flr einen Knoten einzelner Abschnitt 5.2.8, »Die
den vorhergehenden Knoten Geschwisterelemente eines
Geschwisterknoten Elements selektieren«
zuriick.

nextElement- Gibt flir einen Knoten das | einzelnes Abschnitt 5.2.8, »Die

Sibling nachfolgende Geschwis- Element Geschwisterelemente eines
terelement zuriick. Elements selektieren«

nextSibling Gibt fiir einen Knoten den | einzelner Abschnitt 5.2.8, »Die
nachfolgenden Geschwis- | Knoten Geschwisterelemente eines
terknoten zurlck. Elements selektieren«

firstElement- Gibt fiir einen Knoten das | einzelnes Abschnitt 5.2.7, »Die Kind-

Child erste Kindelement zurtlick. | Element elemente eines Elements

selektieren«

Tabelle 5.2 Die verschiedenen Methoden und Eigenschaften fiir das Auswahlen von

Elementen (Forts.)

346

Eigenschaft/ Beschreibung Riickgabe- | Abschnitt
Methode wert
firstChild Gibt fiir einen Knoten den | einzelner Abschnitt 5.2.7, »Die Kind-
ersten Kindknoten zurtick. | Knoten elemente eines Elements
selektieren«
lastElementChild | Gibt fiir einen Knoten einzelnes Abschnitt 5.2.7, »Die Kind-
das letzte Kindelement Element elemente eines Elements
zurlick. selektieren«
lastChild Gibt fiir einen Knoten einzelner Abschnitt 5.2.7, »Die Kind-
den letzten Kindknoten Knoten elemente eines Elements
zurtick. selektieren«
childNodes Gibt fiir einen Knoten alle | Liste von Abschnitt 5.2.7, »Die Kind-
Kindknoten zuriick. Knoten elemente eines Elements
selektieren«
children Gibt fiir einen Knoten alle | Liste von Abschnitt 5.2.7, »Die Kind-
Kindelemente zurlick. Elementen | elemente eines Elements
selektieren«

Tabelle 5.2 Die verschiedenen Methoden und Eigenschaften fiir das Auswahlen von
Elementen (Forts.)

Selektionsmethoden
Selektionsmethoden und die Eigenschaften stehen nicht nur fiir den Dokumentknoten zur

Verfligung, sondern auch fiir andere Knoten (siehe Abschnitt 5.2.9, »Selektionsmethoden auf
Elementen aufrufen«).

5.2.1 Elemente per ID selektieren

Elementen auf einer Webseite kann tber das id-Attribut eine (auf der jeweiligen Webseite
eindeutige) ID zugewiesen werden. Diese ID kann zum einen in CSS-Regeln verwendet wer-
den, zum anderen kdnnen Sie per JavaScript iber die Methode getElementById() des Objekts
document das entsprechende Element auswahlen. Sie iibergeben der Methode lediglich die ID
des Elements, welches selektiert werden soll, in Form einer Zeichenkette.

In Listing 5.2 wird das Element mit der ID main ausgewéhlt (siehe auch Abbildung 5.4) und in
der Variablen maintlement gespeichert. Anschlief3end wird das class-Attribut des Elements
uber die Eigenschaft className auf den Wert border gedndert, was im Beispiel zur Folge hat,

347

5 Webseiten dynamisch verandern 5.2 Elemente selektieren

dass das Element einen roten Rahmen mit abgerundeten Ecken erhalt (siehe Abbildung 5.5, ' N
das vollstandige Beispiel inklusive HTML- und CSS-Code finden Sie wie immer im Download- :

bereich zum Buch). Kontaktliste

let mainkElement = document.getElementById('main'); Vorname Nachname E-Mail-Adresse
mainElement.className = 'border’; Max Mustermann max.mustermann@ javascripthandbuch.de

. Moritz ~ Mustermann moritz.mustermann@ javascripthandbuch.de
Listing 5.2 Zugriff auf ein Element lber die ID

Peter Mustermann peter.mustermann @ javascripthandbuch.de
Paul Mustermann paul.mustermann@ javascripthandbuch.de
Dokumentknoten \. J
Abbildung 5.5 Dem zurlickgegebenen Element wird eine neue CSS-Klasse zugewiesen,
wodurch das Element einen hervorgehobenen Rahmen bekommt.
Y
html Tipp

In der Praxis ist es nicht schlecht, etwas defensiver zu programmieren und zu testen, ob eine
Variable, auf welche zugegriffen werden soll, nicht null oder undefined ist. Das gilt auch fiir
das Arbeiten mit dem Document Object Model. Die Methode getElementById() gibt ndmlich

________________________ den Wert null zuriick, falls kein Element mit der libergebenen ID gefunden wurde. Wenn Sie
head body 1 id="main" dann versuchen, auf eine Eigenschaft oder Methode auf dem vermeintlichen Element zuzu-
I greifen, kommt es zu einem Laufzeitfehler. Um dem vorzubeugen, sollten Sie wie in Listing
5.3 gezeigt vorgehen.

let mainElement = document.getElementById('main'); // Wahle Element mit ID aus.

y if(mainElement !== null) { // Falls Element nicht
title // leer ist,
mainElement.className = 'border'; // weise neue CSS-Klasse zu.
}

Listing 5.3 Sicher ist sicher: Fiir den Fall, dass es kein Element mit der ID »main« gibt (im Bei-
spiel-HTML oben nicht der Fall), wird nicht auf die Variable zugegriffen.

Performance von Selektionsmethoden

Die Auswahl eines Elements per ID ist hinsichtlich der Performance im Vergleich zu anderen
Selektionsmethoden recht schnell, da es auf einer Webseite nicht erlaubt ist, mehrere Ele-
mente mit einer ID zu haben, und somit die Suche sehr schnell das entsprechende Element
fir eine ID finden kann. Andere Selektionsmethoden wie beispielsweise die im nachsten Ab-
schnitt vorgestellte Methode getElementsByClassName() sind im Vergleich deutlich langsa-
mer, weil hierbei jedes Element auf der Webseite lberpriift werden muss. Auch wenn Sie
Abbildung 5.4 Mit »getElementByld()« wird maximal ein Element selektiert. den Geschwindigkeitsunterschied in der Regel nicht merken werden, sollten Sie diesen Un-
terschied doch im Hinterkopf haben.

348 349

5 Webseiten dynamisch verandern

Tipp

Bei der Verwendung von DOM-Methoden sollten Sie nicht zu verschwenderisch umgehen.
Wenn Sie innerhalb eines Programms das Ergebnis einer DOM-Methode an mehreren Stellen
verwenden mussen, speichern Sie das Ergebnis in einer Variablen, anstatt immer wieder die
DOM-Methode aufzurufen. Bedenken Sie: Jeder Aufruf einer DOM-Methode, bei der nach
Elementen im DOM-Baum gesucht wird, kostet Rechenzeit. Uber Variablen, in denen Sie
Ergebnisse zwischenspeichern, lasst sich diese Rechenzeit minimieren.

5.2.2 Elemente per Klasse selektieren

Ahnlich wie fiir IDs kénnen auf einer Webseite einzelnen Elementen CSS-Klassen zugeordnet
werden. Verwaltet werden diese Klassen tber das class-Attribut. Ein Element kann dabei
mehrere Klassen haben, und im Unterschied zu IDs konnen auch mehrere Elemente die glei-
che Klasse haben.

Dies wiederum hat zur Folge, dass die entsprechende DOM-Methode getElementsByClass-
Name() — mit der eine Selektion nach CSS-Klassen moglich ist — nicht nur ein einzelnes Ele-
ment zurlickgibt, sondern gegebenenfalls auch mehrere Elemente.

Als Argument Ubergibt man der Methode den Klassennamen als Zeichenkette, wie in Listing
5.4 zu sehen. In diesem Beispiel werden alle Elemente selektiert, die die CSS-Klasse even ent-
halten, sprich die beiden »geraden« Tabellenzeilen (siehe Abbildung 5.6).

let tableRowsEven = document
.getElementsByClassName('even'); // Selektiere alle geraden Tabellenzeilen.

Listing 5.4 Zugriff auf ein Element Giber Klassennamen

Der Riickgabewert von getElementsByClassName() ist eine Knotenliste (genauer gesagt, ein
Objekt vom Typ NodeList), welche dhnlich wie ein Array zu verwenden ist (bei der es sich aber
um kein Array handelt, dazu gleich mehr). Diese Knotenliste enthélt die Elemente in genau
der Reihenfolge, wie sie auf der Webseite auftreten.

Auch wenn Knotenlisten auf den ersten Blick wie Arrays aussehen, sind es keine Arrays. Eine
Tatsache, die man sich als JavaScript-Einsteiger immer wieder bewusst machen muss und
deren Nichtbeachtung nicht selten zu Fehlern im Programm fiihrt.

Mit Arrays gemeinsam haben Knotenlisten, dass man an die einzelnen Elemente in einer
Knotenliste tiber einen Index zugreifen kann, d. h., Giber tableRowsEven[0] greift man bei-
spielsweise auf das erste Element zu, Uber tableRowsEven[1] auf das zweite Element und so
weiter. Ebenfalls gemeinsam ist die Eigenschaft length, tiber die sich die Anzahl an Elemen-
ten in der Knotenliste herausfinden lasst.

350

5.2 Elemente selektieren

[Dokumentknoten]

[th [th |[th |

..............

[td } [td } [tdm} ___________

> class="odd" |
i
[] [] | td}_
L
(] () []

Abbildung 5.6 Die Methode »getElementsByClassName()« kann mehrere Elemente zuriickgeben.

Um also beispielsweise tiber alle Elemente einer Knotenliste zu iterieren, geht man wie in
Listing 5.5 vor. Hier wird mithilfe einer for-Schleife tiber alle Elemente der Liste iteriert. Wie
bei der Iteration tiber echte Arrays konnen Sie dabei die Eigenschaft length und den Zugriff
per Index verwenden. Im Beispiel wird auf diese Weise jedem Element in der Liste eine neue
Hintergrundfarbe zugewiesen (siehe Abbildung 5.7).

let tableRowsEven = document
.getElementsByClassName('even'); // Selektiere alle geraden
// Tabellenzeilen.

351

5 Webseiten dynamisch verandern

if(tableRowsEven.length > 0) { // Wenn mindestens ein Element
// gefunden wurde.
for(let i=0; i<tableRowsEven.length; i++) { // Gehe alle Elemente durch.
let tableRow = tableRowsEven[i]; // Weise Element einer Variablen zu.
tableRow.style.backgroundColor = '#CCCCCC'; // Setze neue Hintergrundfarbe.
¥
}

Listing 5.5 Iteration liber eine Knotenliste unter Verwendung der Array-Syntax

4 N
-

Kontaktliste
Vorname Nachname E-Mail-Adresse
Max Mustermann max.mustermann@ javascripthandbuch.de
Moritz Mustermann moritz.mustermann@javascripthandbuch.de
Peter Mustermann peter.mustermann@javascripthandbuch.de
Paul Mustermann paul.mustermann@ javascripthandbuch.de

\ S

Abbildung 5.7 Den geraden Tabellenzellen wird per JavaScript eine andere
Hintergrundfarbe zugewiesen.

Das CSS eines Elements verandern

Uber die Eigenschaft style eines Elements kdnnen Sie an die CSS-Eigenschaften eines Ele-
ments gelangen bzw. diese auch verandern. Das dieser Eigenschaft hinterlegte Objekt ent-
halt alle CSS-Eigenschaften als Objekteigenschaften (also beispielsweise style.color,
style.border usw.). Fir CSS-Eigenschaften wie beispielsweise background-color, die einen
Bindestrich enthalten, sind die entsprechenden Objekteigenschaften in CamelCase-Schreib-
weise definiert (beispielsweise style.backgroundColor oder style.fontFamily).

Alternativ zu der »Array-Syntax« mit eckigen Klammern lasst sich auch uiber die Methode
item() auf einzelne Knoten einer Knotenliste zugreifen. Auch hier Gibergeben Sie als Argu-
ment den Index des Elements, welches zuriickgegeben werden soll. Die Schleife von eben
lief3e sich also auch wie folgt umformulieren:

let tableRowsEven = document

.getElementsByClassName('even'); // Selektiere alle geraden
// Tabellenzeilen.
if(tableRowsEven.length > 0) { // Wenn mindestens ein Element

// gefunden wurde.

352

5.2 Elemente selektieren

for(let i=0; i<tableRowsEven.length; i++) { // Gehe alle Elemente durch.
let tableRow = tableRowsEven.item(i); // Weise Element einer Variablen zu.
tableRow.style.backgroundColor = "#CCCCCC'; // Setze neue Hintergrundfarbe.
¥
}

Listing 5.6 Iteration liber eine Knotenliste unter Verwendung der Methode »item()«

Method Borrowing

Da es sich bei Knotenlisten um keine echten Arrays (sondern um Objekte vom Typ Nodelist),
wohl aber um array-ahnliche Objekte handelt (wie das arguments-Objekt, Sie erinnern sich?),
verwendet man in der Praxis haufig auch die Technik des Method Borrowings (siehe Kapitel
4, »Mit Objekten und Referenztypen arbeiten«), um dennoch Methoden von Array verwen-
den zu kénnen (siehe Listing 5.7).

Array.prototype.forEach.call(tableRowsEven, (tableRow) => {
tableRow.style.backgroundColor = '#CCCCCC';

};

Listing 5.7 Iteration Uber eine Knotenliste liber Method Borrowing

Aktive Knotenlisten vs. statische Knotenlisten

Man unterscheidet bei Knotenlisten zwischen sogenannten aktiven und statischen Knoten-
listen. Erstere bezeichnen Knotenlisten, bei denen Anderungen, die an einzelnen Knoten in
der Liste vorgenommen werden, direkte Auswirkungen auf die Webseite haben, d. h., dass
die Anderungen direkt in der Webseite widergespiegelt werden.

Bei Letzteren dagegen haben Anderungen an Knoten innerhalb der Knotenliste keine direk-
ten Auswirkungen auf die Webseite, werden also nicht direkt in der Webseite widergespie-
gelt. Die Methoden getElementsByClassName(), getElementsByTagName() und getElements-
ByName () geben aktive Knotenlisten zurlick, die Methode querySelectorAll() dagegen eine
statische Knotenliste.

5.2.3 Elemente nach Elementnamen selektieren

Uber die Methode getElementsByTagName() lassen sich Elemente anhand ihres Elementna-
mens selektieren. Die Methode erwartet dabei den Namen des Elements. Um beispielsweise
alle Tabellenzellen zu selektieren (siehe Abbildung 5.8), gehen Sie wie in Listing 5.8 vor.

353

5 Webseiten dynamisch verandern 5.2 Elemente selektieren

tableCell.style.fontFamily = 'Verdana'; // Setze neue Schriftart.
@] tableCell.style.fontSize = '9pt’; // Setze neue SchriftgroRe.

¥
}

Listing 5.8 Zugriff auf ein Element tiber Elementnamen

4 B
Kontaktliste

Vorname Nachname E-Mail-Adresse
Max Mustermann max.mustermann@javascripthandbuch.de
Moritz Mustermann moritz.mustermann@javascripthandbuch.de
Peter Mustermann peter.mustermann@javascripthandbuch.de
Paul Mustermann paul.mustermann@javascripthandbuch.de
\. J

} Abbildung 5.9 Die Tabellenzellen erhalten eine neue Schriftart und SchriftgroRe.

Hinweis

Beachten Sie, dass Sie der Methode getElementsByTagName() wirklich nur den Namen des
} Elements ibergeben und nicht etwa zusatzliche spitze Klammern. Beispielsweise wiirde der
Aufruf getElementsByTagName('<td>") nicht funktionieren.

5.2.4 Elemente nach Namen selektieren

Einigen Elementen kann in HTML ein name-Attribut zugewiesen werden, beispielsweise

} <input>-Elementen vom Typ radio, um deren Zusammengehorigkeit zu einer Auswahl-

gruppe zu kennzeichnen. In Listing 5.9 beispielsweise werden dartiber die drei Radiobuttons
Abbildung 5.8 Die Methode »getElementsByTagName()« selektiert Elemente der Gruppe genre zugewiesen.
nach ihrem Elementnamen.

<form action="">
<label for="artist">Künstler</label>

Hier werden zunéchst iber die Methode getElementsByTagName() alle Tabellenzellen ausge- . e \ . .t
<input id="artist" type="text" name="artist">

wahlt und anschliefend jedem Element eine neue Schriftart sowie eine neue Schriftgroie

zugewiesen. Das Ergebnis sehen Sie in Abbildung 5.9. i?;;el for="albun">Albun</labels
let tableCells = document.getElementsByTagName('td'); <input id="album" type="text" name="album">
if(tableCells.length > 0) { // Wenn mindestens ein Element gefunden

// wurde. <p>Genre:</p>
for(let i=0; i<tableCells.length; i++) { // Gehe alle Elemente durch. <fieldset>
let tableCell = tableCells[i]; // Weise Element einer Variablen zu. <input type="radio" id="st" name="genre" value="Stonerrock">

354 355

5 Webseiten dynamisch verandern 5.2 Elemente selektieren

<label for="st">Stonerrock</label> console.log(inputElement.value); // Ausgabe: Stonerrock,

 // Spacerock, Hardrock
<input type="radio" id="sp" name="genre" value="Spacerock"> }

<label for="sp">Spacerock</label> }

Listing 5.10 Zugriff auf El te Uber El t
<input type="radio" id="ha" name="genre" value="Hardrock"> Isting ugnit aut tlemente ubertlementnamen

<label for="ha">Hardrock</label>

</fieldset> Browsersupport von »getElementsByName()«

</form> Die Methode getElementsByName() funktioniert nicht in allen Browsern konsistent. In einigen

Listing 5.9 Ein einfaches HTML-Formular Versionen des Internet Explorers und des Opera-Browsers beispielsweise liefert die Methode
nicht nur solche Elemente zurlick, deren name-Attribut mit dem tGbergebenen Wert lberein-

Mithilfe der Methode getElementsByName() konnen Elemente ausgehend von diesem name- stimmt, sondern auch solche Elemente, deren id-Attribut mit dem (ibergebenen Wert liber-

Attribut selektiert werden. In Listing 5.10 werden auf diese Weise alle Elemente selektiert, einstimmt. Meine Meinung ist, dass Sie mit den anderen (bisher vorgestellten und gleich noch

deren name-Attribut den Wert genre hat (die anderen beiden Formularelemente mit den Wer- vorzustellenden) Selektionsmethoden ausreichende Méoglichkeiten zur Selektion von Elemen-

ten artist und album dagegen werden nicht selektiert, siehe Abbildung 5.10). ten haben und somit eigentlich auf diese Methode in der Praxis verzichten kdnnen.

5.2.5 Elemente per Selektor selektieren

- bod Mit den bisher vorgestellten DOM-Methoden zur Selektion von Elementen lasst sich schon
Y einiges erreichen, allerdings ist man in der Ausdrucksform doch etwas begrenzt. Nicht
v immer ist es so, dass das Element, welches man selektieren mochte, tiberhaupt eine ID oder
form Klasse hat, sodass die Methoden getElementById() oder getElementsByClassName() in solchen
| Fallen nicht weiterhelfen. Die Methode getElementsByTagName() dagegen ist sehr unspezi-
A

T fisch, weil tendenziell eher viele Elemente selektiert werden. Und getElementsByName() ist

aus genannten Grinden ohnehin mit Vorsicht zu genief3en.

| name="artist" | | name="album’ | | name="genre" | | name="genre" | | name="genre" ! Deutlich vielseitiger und ausdrucksstérker sind da schon die Methoden querySelector() und
""""""""""""""""""""""""""""""""""" querySelectorAll(), um Elemente fir einen gegebenen CSS-Selektor zurlickzugeben. Erstere
Abbildung 5.10 Die Methode »getElementsByName()« selektiert Elemente nach ihrem »name«- Methode liefert dabei als Riickgabewert das erste Element, welches auf den entsprechenden
Attribut. CSS-Selektor zutrifft. Letztere Methode liefert alle Elemente, die auf den iibergebenen CSS-

Selektor zutreffen.

In der anschlieRenden Schleife werden die Werte dieser Elemente (inputElement.value) aus- L . . L
. L Listing 5.11 zeigt ein Beispiel fiir die Verwendung von querySelector(). Ubergeben wird hier
gegeben: Stonerrock, Spacerock und Hardrock (hach, was fiir ein tolles Beispiel).

der CSS-Selektor #main table td, welcher in CSS zunachst die zweiten Tabellenzellen jeder

let inputElementsForGenre = document Zeile (td:nth-child(2)) innerhalb einer Tabelle (table) innerhalb eines Elements mit ID main
.getElementsByName('genre'); // Selektiere alle Elemente (#main) beschreibt. Da die Methode querySelector() aber nur das erste auf einen Selektor
// mit Namen. zutreffende Element selektiert, wird nur das erste <td>-Element zurtickgegeben.
if(inputElementsForCenre.length > 0) { // Wenn mindestens ein

let tableCell = document.querySelector('#main table td:nth-child(2)');

// Element gefunden wurde.
tableCell.style.border = 'thick solid red';

for(let i=0; i<inputElementsForGenre.length; i++) { // Gehe alle Elemente durch.

let inputElement = inputElementsForCenre[i]; // Weise Element einer Listing 5.11 Zugriff auf ein Element (iber CSS-Selektor
// Variablen zu.

356 357

5 Webseiten dynamisch verandern

Dokumentknoten

) v]

Abbildung 5.11 Die Methode »querySelector()« liefert maximal ein Element zuriick.

e N
Kontaktliste

Vorname Nachname E-Mail-Adresse

Max max.mustermann@javascripthandbuch.de

Moritz Mustermann meoritz.mustermann@javascripthandbuch.de
Peter Mustermann peter.mustermanni@javascripthandbuch.de
Paul Mustermann paul.mustermann@javascripthandbuch.de

\ S

Abbildung 5.12 Die Methode »querySelector()« liefert das erste Element zuriick,
das auf den CSS-Selektor zutrifft.

358

5.2 Elemente selektieren

Listing 5.12 zeigt dagegen die Anwendung der Methode querySelectorAll(). Auch hier wird
der gleiche CSS-Selektor wie eben verwendet. Diesmal erhalt man jedoch alle Elemente, die
auf diesen Selektor zutreffen, sprich alle zweiten <td>-Elemente (siehe Abbildung 5.13).

Dokumentknoten

) (w9]

Abbildung 5.13 Die Methode »querySelectorAll()« kann mehrere Elemente zurlickgeben.

Innerhalb der Schleife werden diese Elemente dann auf die gleiche Weise wie eben mit
einem roten Rahmen versehen (siehe Abbildung 5.14).

let tableCells = document.querySelectorAll('#main table td:nth-child(2)"');
if(tableCells.length > 0) {

for(let i=0; i<tableCells.length; i++) {
let tableCell = tableCells[i];
tableCell.style.border = 'thick solid red';
}
¥

Listing 5.12 Zugriff auf mehrere Elemente tber CSS-Selektor

359

5 Webseiten dynamisch verandern

Kontaktliste

Vorname Nachname E-Mail-Adresse

Max max.mustermann@javascripthandbuch.de
Moritz moritz.mustermann@javascripthandbuch.de
Peter peter.mustermann@javascripthandbuch.de
Paul paul.mustermann@javascripthandbuch.de

\. J

Abbildung 5.14 Die Methode »querySelectorAll()« liefert alle Elemente
zurtick, die auf den tibergebenen CSS-Selektor zutreffen.

Auf die Moglichkeiten, die querySelector() und querySelectorAll() bieten, haben Weben-
twickler lange gewartet. Vor Einfiihrung der sogenannten Selector API (aktuelle Version siehe
www.w3.0org/TR/selectors4), welche u. a. diese beiden wichtigen Methoden definiert, musste
man mit den anderen, vorhin vorgestellten DOM-Methoden zur Selektion von Elementen
vorliebnehmen.

Die Bibliothek jQuery hat diese Einschrankung schon frithzeitig erkannt und entsprechende
Helferfunktionen bereits recht frith zur Verfligung gestellt. In Kapitel 10, »Aufgaben verein-
fachen mit jQuery«, werden wir u. a. auch auf diesen Aspekt dieser bekannten JavaScript-
Bibliothek eingehen.

Insgesamt erleichtern die Methoden zur Selektion tiber CSS-Selektoren die Arbeit eines Java-
Script-Entwicklers erheblich. Eine Ubersicht tiber die verschiedenen CSS-Selektoren zeigt
Tabelle 5.3.

Selektor Beschreibung Seit CSS-Version
& Selektiert jedes Element. 2
E Selektiert Elemente vom Typ E. 1
[a] Selektiert Elemente mit Attribut a. 2
[a="b"] Selektiert Elemente mit Attribut a, welches den | 2
Wert b hat.
[a~="b"] Selektiert Elemente mit Attribut a, welches 2
als Wert eine Liste von Werten hat, von denen
einer gleich b ist.

Tabelle 5.3 Die verschiedenen Selektoren in CSS3

360

5.2 Elemente selektieren

Selektor Beschreibung Seit CSS-Version

[a"="b"] Selektiert Elemente mit Attribut a, dessen Wert | 3
mit b beginnt.

[a$="b"] Selektiert Elemente mit Attribut a, dessen Wert | 3
mit b endet.

[a*="b"] Selektiert Elemente mit Attribut a, dessen Wert | 3
b als Substring enthalt.

[a]="b"] Selektiert Elemente, deren Werte des Attributs 2
a eine Reihe von mit Minuszeichen getrennten
Werten ist, wobei der erste Wert b ist.

:root Selektiert das Wurzelelement eines Dokuments. | 3

:nth-child(n) Selektiert das n-te Kindelement eines Elements. | 3

:nth-last-child(n) Selektiert das n-te Kindelement eines Elements | 3
von hinten.

:nth-of-type(n) Selektiert das n-te Geschwisterelement 3
bestimmten Typs eines Elements.

:nth-last-of-type(n) | Selektiert das n-te Geschwisterelement 3
bestimmten Typs eines Elements von hinten.

:first-child Selektiert das erste Kindelement eines 2
Elements.

:last-child Selektiert das letzte Kindelement eines 3
Elements.

:first-of-type Selektiert das erste Geschwisterelement eines 3
Elements.

:last-of-type Selektiert das letzte Geschwisterelement eines | 3
Elements.

:only-child Selektiert Elemente, die das einzige Kind- 3
element ihres Elternelements sind.

:only-of-type Selektiert Elemente, die das einzige Element 3

ihres Typs unter ihren Geschwisterelementen
sind.

Tabelle 5.3 Die verschiedenen Selektoren in CSS3 (Forts.)

361

5 Webseiten dynamisch verandern

Selektor Beschreibung Seit CSS-Version

:empty Selektiert Elemente, die keine Kindelemente 3
haben.

:link Selektiert Links, die noch nicht angeklickt 2
wurden.

:visited Selektiert Links, die bereits angeklickt wurden. 2

:active Selektiert Links, die gerade in dem Moment 2
angeklickt werden.

‘hover Selektiert Links, tiber denen sich gerade die 2
Maus befindet.

:focus Selektiert Links, die gerade den Fokus haben. 2

target Selektiert Sprungmarken, die Uber Links inner- 3
halb einer Webseite erreicht werden kénnen.

:lang(de) Selektiert Elemente, deren lang-Attribut den 2
Wert de hat.

:enabled Selektiert Formularelemente, in die Werte ein- 3
gegeben bzw. die bedient werden konnen (und
nicht deaktiviert sind).

:disabled Selektiert Formularelemente, die nicht bedient 3
werden konnen bzw. fiir die liber das disabled-
Attribut die Eingabe gesperrt wurde.

:checked Selektiert Checkboxen und Radiobuttons, die 3
aktiviert sind.

.className Selektiert Elemente, deren class-Attribut den 1
Wert className hat.

#main Selektiert Elemente, deren id-Attribut den Wert | 1
main hat.

:not(s) Selektiert Elemente, die nicht auf den in Klam- 3
mern angegebenen Selektor s zutreffen.

EF Selektiert Elemente vom Typ F, die irgend- 1

wo innerhalb eines Elements vom Typ E
vorkommen.

Tabelle 5.3 Die verschiedenen Selektoren in CSS3 (Forts.)

362

5.2 Elemente selektieren

Selektor Beschreibung Seit CSS-Version

E>F Selektiert Elemente vom Typ F, die Kind- 2
elemente eines Elements vom Typ E sind.

E+F Selektiert Elemente vom Typ F, die direkte nach- | 2
folgende Geschwisterelemente eines Elements
vom Typ E sind.

E~F Selektiert Elemente vom Typ F, die Geschwister- | 3
elemente eines Elements vom Typ E sind.

Tabelle 5.3 Die verschiedenen Selektoren in CSS3 (Forts.)

5.2.6 Das Elternelement eines Elements selektieren

Elementknoten verfiigen Uber verschiedene Eigenschaften, mit denen Sie auf verwandte Ele-
mente zugreifen konnen. Verwandte Elemente sind Elternknoten bzw. -elemente, Kindkno-
ten bzw. -elemente und Geschwisterknoten bzw. -elemente.

Fir die Selektion von Elternknoten/-elementen stehen die Eigenschaften parentNode und
parentElement zur Verfligung, fiir die Selektion von Kindknoten/-elementen die Eigenschaf-
ten firstChild, firstElementChild, lastChild, lastElementChild, childNodes und children,
und fiir die Selektion von Geschwisterknoten/-elementen gibt es die Eigenschaften previous-
Sibling, previousElementSibling, nextSibling und nextElementSibling.

Lassen Sie mich auf diese Eigenschaften im Folgenden etwas genauer eingehen. Beginnen
wir dabei mit der Selektion von Elternknoten bzw. -elementen.

Um den Elternknoten eines Elements (bzw. Knotens) zu selektieren, steht die Eigenschaft
parentNode zur Verfigung, um dagegen das Elternelement zu selektieren, die Eigenschaft
parentElement. In den meisten Fillen ist der Elternknoten auch immer ein Element, sprich,
die beiden Eigenschaften parentNode und parentElement enthalten den gleichen Wert (siehe
Listing 5.13 und Abbildung 5.15).

let table = document.querySelector('table");
console.log(table.parentNode); // <main>
console.log(table.parentElement); // <main>

Listing 5.13 Zugriff auf Elternknoten bzw. Elternelement

Knoten und Elemente

Nicht alle Knoten im DOM-Baum sind Elemente, aber alle Elemente sind immer Knoten.

363

5 Webseiten dynamisch verandern

Dokumentknoten
Y

html
head body
Y Y
title R
parentNode/

parentElement

Abbildung 5.15 Selektion des Elternelements

Wichtig zu verstehen ist, dass einige der oben genannten Eigenschaften Knoten zurtickge-
ben, andere Eigenschaften dagegen Elemente zurtickgeben. Die Eigenschaften parentNode,
childNodes, firstChild, lastChild, previousSibling und nextSibling geben Knoten zuriick,
wahrend die Eigenschaften parentElement, children, firstElementChild, lastElementChild,
previoustlementSibling und nextElementSibling Elemente zuriickgeben.

Was das konkret bedeutet, verdeutlicht folgendes Beispiel. Schauen Sie sich dazu den HTML-
Code in Listing 5.14 und dessen DOM in Abbildung 5.16 an. Gezeigt ist hier eine relativ einfach
aufgebaute Webseite, bei der innerhalb des <body>-Elements lediglich zwei -Elemente
sowie jeweils davor und dahinter Text enthalten sind.

Das entsprechende DOM enthilt unterhalb des <body>-Elements demnach (in dieser Reihen-
folge) einen Textknoten, einen Elementknoten, einen Textknoten, einen Elementknoten
und wieder einen Textknoten. Fur alle diese Knoten stellt das <body>-Element zugleich den
Elternknoten als auch das Elternelement dar. Somit liefern fiir alle diese Knoten die Eigen-
schaften parentNode und parentElement den gleichen Wert: eben das <body>-Element.

Auch koénnen Sie anhand des DOM in Abbildung 5.16 sehen, dass die Eigenschaften parent-
Node und parentElement generell flir alle Knoten immer das gleiche Element referenzieren.
Einzige Ausnahme: das <html>-Element. Dieses Element hat ndmlich kein Elternelement,

364

5.2 Elemente selektieren

sondern »nur« einen Elternknoten, sprich den Dokumentknoten. Die Eigenschaft parent-
Element liefert in diesem Fall also den Wert null.

Auf die anderen Beziehungen zwischen Elementen und Knoten im DOM werde ich nun in
den folgenden Abschnitten eingehen.

<IDOCTYPE html>

<html>

<body>
Text

Text

Text

</body>

</html>

Listing 5.14 Ein einfaches HTML-Beispiel

Dokumentknoten

parentNode

null < parentElement

parentNode/parentElement

firstChild ‘ b ld ‘ lastChild
0
parentNode/parentElement %Y < parentNode/parentElement

r—firstEIementChiId—J L lastElementChild
parentNode/ parentNode/

parentElement parentNode/ parentElement
parentElement
. - Y . - 1 . -
""" b reviousSiblin reviousSibling=~~ """ reviousSiblin i ibline="_" """
D Text (< s o < span 7 &< Text :<—p . previousSibling Text
______ — nextSibling nextSibling=>. _ _ _ _ _— nextSibling nextSibling—>. _ . _ _

previousElementSibling

N nextElementSibling

Abbildung 5.16 Ubersicht (iber die verschiedenen Zugriffsformen

5.2.7 Die Kindelemente eines Elements selektieren

Die Kindelemente eines Elements lassen sich tiber die Eigenschaft children ermitteln, die
Kindknoten tber die Eigenschaft childNodes. Ob ein Element Kindknoten hat, 1asst sich tiber
die Methode hasChildNodes() bestimmen, welche einen booleschen Wert zurtickgibt. Ob ein

365

5 Webseiten dynamisch verandern

Element Kindelemente hat, konnen Sie tber die Eigenschaft childElementCount bestimmen:
Diese enthalt die Anzahl an Kindelementen.

Listing 5.15 zeigt hierzu einige Beispiele (bezogen wieder auf das HTML aus Listing 5.1). Sie
sehen: Das Element <tbody> hat vier Kindelemente (ndmlich die vier <tr>-Elemente, siche
Abbildung 5.17) und insgesamt neun Kindknoten (siehe Abbildung 5.18).

Dokumentknoten

Abbildung 5.17 Selektion aller Kindelemente

366

Dokumentknoten

[td} [| [
| '[:';Ht'dutld
| '{Iut'du}d

oo o

Abbildung 5.18 Selektion aller Kindknoten

5.2 Elemente selektieren

Der Grund dafiir ist, dass — obwohl zwischen und vor und hinter den vier <tr>-Elementen
kein Text im HTML vorkommt - sogenannte WeifSraumknoten erzeugt werden (siehe Kas-
ten). Diese Weifsraumknoten entstehen immer dann, wenn zwischen zwei Elementen bei-
spielsweise Zeilenumbriiche im HTML verwendet werden.

367

5 Webseiten dynamisch verandern 5.2 Elemente selektieren

let tbody = document.querySelector('tbody');
console.log(tbody.children.length); /] 4 @]
console.log(tbody.childElementCount); // 4
console.log(tbody.childNodes.length); // 9
console.log(tbody.hasChildNodes()); // true

Listing 5.15 Zugriff auf Kindknoten bzw. Kindelemente

WeilRraumknoten

Leerraum innerhalb des HTML-Codes, der beispielsweise durch Leerzeichen, Tabulatoren

oder auch Zeilenumbriiche erzeugt wird, fiihrt dazu, dass im DOM dafiir jedes Mal Textkno-

ten ohne Text erzeugt werden. In solchen Fallen spricht man von Weiraumknoten.
Daruiber hinaus stehen verschiedene weitere Eigenschaften zur Verfligung, mit denen sich
gezielt einzelne Kindelemente bzw. Kindknoten selektieren lassen: Ebz’@
» Die Eigenschaft firstChild enthalt den ersten Kindknoten. e :
» Die Eigenschaft lastChild enthélt den letzten Kindknoten. R

M ot
» Die Eigenschaft firstElementChild enthailt das erste Kindelement.
» Die Eigenschaft lastElementChild enthalt das letzte Kindelement. [td } [td } [td }
Listing 5.16 zeigt einige Beispiele dazu, Abbildung 5.19 das Ergebnis der Selektion des ersten SRR
und letzten Kindelements, Abbildung 5.20 das Ergebnis der Selektion des ersten und letzten | | T
Kindknotens. ;»
let tbody = document.querySelector('tbody'); { td } { td } [td }
console.log(tbody.firstChild); // Textknoten
console.log(tbody.lastChild); // Textknoten \ b]
console.log(tbody.firstElementChild); /] <tr> DR
console.log(tbody.lastElementChild); // <tr> _,
Listing 5.16 Zugriff auf spezielle Kindknoten und Kindelemente
KRS

Hinweis —

In den meisten Fallen werden Sie wahrscheinlich mit Elementknoten arbeiten. In diesen Fal-

len verwenden Sie am besten Eigenschaften, die auch Elementknoten zuriickgeben (wie bei-

spielsweise firstElementChild und lastElementChild). Es gab dagegen eine Zeit, da

standen Webentwicklern nur Eigenschaften zur Verfligung, die alle Arten von Knoten [td } [td } [td }

zurlickgeben (beispielsweise firstChild und lastChild), und man anhand des Knotentyps |

—

selbst die Elementknoten herausfiltern musste. Dies ist zum Gliick nicht mehr so.

Abbildung 5.19 Selektion des ersten und des letzten Kindelements

368 369

5 Webseiten dynamisch verandern

Dokumentknoten

1
html
]

table

Abbildung 5.20 Selektion des ersten und des letzten Kindknotens

5.2.8 Die Geschwisterelemente eines Elements selektieren

Sie wissen jetzt also, wie Sie im DOM-Baum ausgehend von einem Knoten/Element tiber des-
sen Eigenschaften Knoten/Elemente oberhalb selektieren (Elternknoten/Elternelemente)
und wie Sie Knoten/Elemente unterhalb selektieren kénnen (Kindknoten/Kindelemente).
Zusatzlich gibt es aber auch die Moglichkeit, innerhalb einer Ebene des DOM die Geschwister-

knoten bzw. Geschwisterelemente zu selektieren:

370

[td } [td } [tld
[td } [td] [tld
4
(¥) [] [v
[| [|| tld

>
>
>
>

Listing 5.17 zeigt dazu ein Codebeispiel. Ausgehend von der zweiten Tabellenzeile werden u
zundchst der vorhergehende Geschwisterknoten (Uber previousSibling) und der nachfol-

5.2 Elemente selektieren

Die Eigenschaft previousSibling enthilt den vorigen Geschwisterknoten.
Die Eigenschaft nextSibling enthilt den nachfolgenden Geschwisterknoten.
Die Eigenschaft previoustlementSibling enthalt das vorige Geschwisterelement.

Die Eigenschaft nextElementSibling enthilt das nachfolgende Geschwisterelement.

gende Geschwisterknoten (iber nextSibling) selektiert, wobei es sich in beiden Féllen um
Textknoten (genauer gesagt, WeifSraumknoten) handelt (siche Abbildung 5.21).

[- —

td

A
previousSibling
tr

Abbildung 5.21 Selektion des vorigen und nachfolgenden Geschwisterknotens

Anschlieflend wird tber previousElementSibling das vorhergehende Geschwisterelement
und iber nextElementSibling das nachfolgende Geschwisterelement selektiert (siehe Abbil-
dung 5.22).

3N

5 Webseiten dynamisch verandern

let tableCell = document.querySelector('tbody tr:nth-child(2)');
console.log(tableCell.previousSibling); // Textknoten
console.log(tableCell.nextSibling); // Textknoten
console.log(tableCell.previousElementSibling); // <tr>
console.log(tableCell.nextElementSibling); /] <tr>

Listing 5.17 Zugriff auf spezielle Geschwisterknoten und Geschwisterelemente

td |

AR

W

d | [w |

t
t

o T L) T

Abbildung 5.22 Selektion des vorigen und nachfolgenden Geschwisterelements

5.2.9 Selektionsmethoden auf Elementen aufrufen

Die meisten der vorgestellten DOM-Methoden zur Selektion von Elementen (getElementsBy-
ClassName(), getElementsByTagName(), querySelector() und querySelectorAll()) lassen sich

372

5.2 Elemente selektieren

nicht nur auf dem Dokumentknoten (also auf document), sondern auch auf allen anderen Ele-
mentknoten einer Webseite aufrufen (nur getElementById() und getElementsByName() lassen
sich nur auf dem Dokumentknoten aufrufen). In diesem Fall bezieht die Suche nach den Ele-
menten nur den Teilbaum unterhalb des Elements mit ein, auf dem die jeweilige Methode
aufgerufen wurde.

Betrachten Sie dazu folgenden HTML-Code in Listing 5.18, der geschachtelte Listen enthalt.
Im JavaScript-Code in Listing 5.19 wird die Methode getElementsByTagName() mit Argument
1i zundchst auf dem Dokumentknoten document aufgerufen (wodurch alle Listeneintrige der
gesamten Webseite selektiert werden, siehe Abbildung 5.23) und anschliefend auf der
geschachtelten Liste mit ID 1ist-2 (wodurch wiederum nur die Listeneintrage selektiert wer-
den, die in diesem Teilbaum des DOM, also unterhalb der geschachtelten Liste, vorkommen,
siehe Abbildung 5.24).

<IDOCTYPE html>
<html>
<head lang="de">
<title>Beispiel zur Selektion von Elementen</title>
</head>
<body>
<main id="main-content">
<ul id="list-1">
listeneintrag 1</1i>

Listeneintrag 2
<ul id="list-2">
listeneintrag 2.1<1i>
Listeneintrag 2.2<1i>
Listeneintrag 2.3<1i>
Listeneintrag 2.4<1i>

</1i>
listeneintrag 3</1i>
Listeneintrag 4</1i>

</main>
</body>
</html>

Listing 5.18 Beispiel HTML-Seite
let alllistItemElements = document.getElementsByTagName('1i');

console.log(alllListItemElements.length); // Ausgabe: 8
let sublList = document.getElementById('list-2");

373

5 Webseiten dynamisch verandern

let sublistlistItems = sublList.getElementsByTagName('1i');
console.log(sublistListItems.length); // Ausgabe: 4

Listing 5.19 Selektion von Elementen ausgehend von einem Elternelement

Abbildung 5.24 Aufruf der Methode »getElementsByTagName()« auf dem
-Element mit ID »list-2«

374

5.2.10 Elemente nach Typ selektieren

5.3 Mit Textknoten arbeiten

Neben den vorgestellten Selektionsmethoden bietet das document-Objekt verschiedene

Eigenschaften, um auf bestimmte Elemente einer Webseite direkt zugreifen zu konnen. Uber

die Eigenschaft anchors kdnnen beispielsweise alle Anker (sprich Sprungelemente) auf einer

Webseite selektiert werden, tiber forms alle Formulare, tiber images alle Bilder und tiber 1inks
alle Links. Zudem kann tiber die Eigenschaft head direkt auf das <head>-Element und uber die

Eigenschaft body direkt auf das <body>-Element zugegriffen werden.

Eigenschaft

Beschreibung

document.anchors

Enthalt eine Liste aller Anker der Webseite.

document.forms

Enthalt eine Liste aller Formulare der Webseite.

document.images

Enthalt eine Liste aller Bilder der Webseite.

document.links

Enthalt eine Liste aller Links der Webseite.

document.head

Zugriff auf das <head>-Element der Webseite

document.body

Zugriff auf das <body>-Element der Webseite

Tabelle 5.4 Verschiedene Eigenschaften zur Selektion von Elementen nach Typ

5.3 Mit Textknoten arbeiten

Wenn Sie ein oder mehrere Elemente selektiert haben, konnen Sie diese verandern: Sie kon-

nen Text hinzufiigen oder entfernen, Attribute hinzufiigen oder entfernen oder Elemente
hinzufiigen oder entfernen. Folgende Tabelle zeigt einen Uberblick tiber den wichtigsten Teil
der entsprechenden Eigenschaften und Methoden, die dafiir zur Verfligung stehen und die

wir in den folgenden Abschnitten im Detail besprechen werden.

Eigenschaft/Methode | Beschreibung Abschnitt

textContent Uber diese Eigenschaft konnen Abschnitt 5.3.1, »Auf den Text-
Sie auf den Textinhalt eines inhalt eines Elements zugreifen«
Knotens zugreifen.

nodeValue Uber diese Eigenschaft kénnen Abschnitt 5.3.1, »Auf den Text-

Sie aufden Inhalt eines Knotens
zugreifen.

inhalt eines Elements zugreifen«

Tabelle 5.5 Die verschiedenen Methoden und Eigenschaften fir das Verandern von

Elementen

375

5 Webseiten dynamisch verandern

Eigenschaft/Methode

Beschreibung

Abschnitt

innerHTML Uber diese Eigenschaft kdnnen Abschnitt 5.3.3, »Das HTML
Sie auf den HTML-Inhalt eines unterhalb eines Elements ver-
Knotens zugreifen. andern«

createTextNode() Mit dieser Methode konnen Sie | Abschnitt 5.3.4, »Textknoten
Textknoten erstellen. erstellen und hinzufuigen«

createElement() Mit dieser Methode kénnen Sie | Abschnitt 5.4.1, »Elemente
Elemente erstellen. erstellen und hinzufuigen«

createAttribute() Mit dieser Methode konnen Sie | Abschnitt 5.5.3, »Attributknoten
Attributknoten erstellen. erstellen und hinzufiigen«

appendChild() Mit dieser Methode kdnnen Sie | Abschnitt 5.4.1, »Elemente
dem DOM-Baum Knoten hinzu- | erstellen und hinzufiigen«
flgen.

removeChild() Mit dieser Methode kénnen Sie | Abschnitt 5.4.2, »Elemente und

Knoten aus dem DOM-Baum
entfernen.

Knoten entfernen«

Tabelle 5.5 Die verschiedenen Methoden und Eigenschaften fiir das Verandern von

Elementen (Forts.)

Jeglicher Text auf einer Webseite wird innerhalb des DOM-Baumes als Textknoten reprasen-
tiert. Das sagte ich ja bereits. Schauen wir uns nun an, wie Sie auf die Textinhalte zugreifen

und diese auch verandern konnen.

5.3.1 Auf den Textinhalt eines Elements zugreifen

Um auf den reinen Textinhalt eines Elements zugreifen zu konnen, verwenden Sie am bes-
ten die Eigenschaft textContent. Das Praktische an dieser Eigenschaft ist, dass eventuelle
HTML-Auszeichnungen (Markup) innerhalb des jeweiligen Elements ignoriert werden und
im Wert, den man zuruckerhalt, nicht enthalten sind. Die folgenden beiden Listings machen
dies deutlich: In Listing 5.20 sehen Sie eine einfache HTML-Liste mit einem Eintrag, wobei
der dort enthaltene Text durch - und -Elemente ausgezeichnet ist.
<ul id="news">

<1i>

Platten-News: Neues Album von Ben Harper erschienen.

</1i>

Listing 5.20 HTML mit geschachtelten Elementen

376

5.3 Mit Textknoten arbeiten

Greifen Sie jetzt wie in Listing 5.21 auf die Eigenschaft textContent zu, sehen Sie, dass diese
nur den reinen Text des <1i>-Elements enthalt, nicht aber die darin enthaltenen Auszeich-
nungen und .

let textContent = document.querySelector('#news li:nth-child(1)").textContent;
console.log(textContent);
// Ausgabe: Platten-News: Neues Album von Ben Harper erschienen.

Listing 5.21 Die Eigenschaft »textContent« ignoriert Markup innerhalb des entsprechenden
Elements.

Merke

Die Eigenschaft textContent ist sehr praktisch, da man in der Praxis bei Zugriff auf den Tex-
tinhalt eines Elements haufig eben nicht daran interessiert ist, ob und welche zusatzlichen
Auszeichnungen verwendet wurden.

5.3.2 Den Textinhalt eines Elements verandern

Mochten Sie den Textinhalt eines Elements neu setzen, verwenden Sie ebenfalls die Eigen-
schaft textContent. Als Wert tibergeben Sie einfach den neuen Text, wie in Listing 5.22 zu
sehen. Hier wird dem Listenelement von eben ein neuer Text zugewiesen.

let element = document.querySelector('#news 1i:nth-child(1)");
element.textContent = 'Platten-News: Neues Album von Tool immer ;
noch nicht erschienen.';

Listing 5.22 Uber die Eigenschaft »textContent« lasst sich der Textinhalt eines
Elements neu setzen.

Zu beachten ist dabei aber, dass es tiber textContent nicht moglich ist, Markup, sprich HTML-
Auszeichnungen, hinzuzufiigen: Obwohl die Gibergebene Zeichenkette in folgendem Listing
Auszeichnungen enthilt, werden diese nicht interpretiert, sondern als Text dargestellt
(siehe Abbildung 5.25).

let element = document.querySelector('#news 1i:nth-child(1)");
element.textContent = 'Platten-News: Neues Album von ;
Tool immer noch nicht erschienen.';

Listing 5.23 Das Markup innerhalb der angegebenen Zeichenkette wird nicht ausgewertet.

« Platten-News: Neues Album von Tool immer noch nicht erschienen.

Abbildung 5.25 Uber »textContent« angegebenes Markup wird nicht ausgewertet.

377

5 Webseiten dynamisch verandern

ntextContent« vs. »innerText«

In einigen Browsern steht Ihnen noch die Eigenschaft innerText zur Verfligung, die so ahn-
lich arbeitet wie textContent, sich im Detail allerdings etwas unterscheidet und zudem nicht
in der DOM API enthalten ist und daher beispielsweise auch nicht von Firefox unterstiitzt
wird. Ich rate Ihnen daher, auf innerText zu verzichten und stattdessen wie gezeigt textCon-
tent zu verwenden.

5.3.3 Das HTML unterhalb eines Elements verdandern

Mochten Sie nicht nur Text, sondern HTML in ein Element einfiigen, konnen Sie die Eigen-
schaft innerHTML verwenden. Wir werden zwar spater mit der sogenannten DOM-Bearbeitung
noch eine weitere Moglichkeit kennenlernen, die in der Praxis haufiger zum Einsatz kommt,
um HTML in das DOM einzubauen, aber fiir den Anfang bzw. fiir einfache HTML-Bausteine,
die hinzugefiigt werden sollen, reicht zunachst innerHTML. Listing 5.24 zeigt dazu ein Beispiel:
Hier wird der gleiche HTML-Baustein wie schon in Listing 5.23 hinzugefugt, diesmal aller-
dings auch als HTML interpretiert (siehe Abbildung 5.26).

let element = document.querySelector('#news li:nth-child(1)');
element.innerHTML = 'Platten-News: Neues Album von Tool;
 immer noch nicht erschienen.';

Listing 5.24 Bei der Eigenschaft »innerHTML« wird in der Gbergebenen Zeichenkette enthaltenes
Markup ausgewertet.

« Platten-News: Neues Album von Teol immer noch nicht erschienen.

Abbildung 5.26 Wie erwartet: Das per »innerHTML« eingefligte HTML wird ausgewertet.

Umgekehrt konnen Sie Giber innerHTML auch den HTML-Inhalt eines Elements auslesen. Als
Ergebnis erhalten Sie wie schon bei textContent eine Zeichenkette, in der nun allerdings
nicht nur der Textinhalt, sondern auch die HTML-Auszeichnungen enthalten sind (siehe Lis-
ting 5.25).

let innerHTML = document.querySelector('#news li:nth-child(1)').innerHTML;
console.log(innerHTML);

// Ausgabe: Platten-News: Neues Album von

// Ben Harper erschienen.

Listing 5.25 Die Eigenschaft »innerHTML« enthalt auch die HTML-Auszeichnungen.

378

5.4 Mit Elementen arbeiten

5.3.4 Textknoten erstellen und hinzufiigen

Alternativ zu den gezeigten Moglichkeiten, tber die Eigenschaften textContent und
innerHTML auf den Text innerhalb einer Webseite zuzugreifen oder diesen zu verandern, gibt
es noch die Moglichkeit, Textknoten zu erstellen und diese manuell dem DOM-Baum hinzu-
zufligen. Dazu bietet die DOM API die Methode createTextNode() an. In Listing 5.26 wird tiber
diese Methode ein Textknoten (mit dem Text Beispiel) erstellt und anschliefiend iiber die
Methode appendChild() (dazu spater noch mehr) einem bestehenden Element als Kindkno-
ten hinzugefligt (dieser zweite Schritt ist notwendig, da tiber die Methode createTextNode()
der Textknoten noch nicht dem DOM-Baum hinzugefiigt wird).

let element = document.getElementById('container');
let textNode = document.createTextNode('Beispiel');
element.appendChild(textNode);

Listing 5.26 Erstellen und Hinzufiigen eines Textknotens

Weitere Methoden fiir das Erstellen von Knoten

Neben der Methode createTextNode() gibt es weitere Methoden fur das Erstellen von Kno-
ten, u.a. die Methoden createElement() fir das Erstellen von Elementknoten (siehe
Abschnitt 5.4.1) und createAttribute() fiir das Erstellen von Attributknoten (siehe dazu den
Abschnitt 5.5.3).

Methoden von Dokumentknoten

Die Methode createTextNode() und auch die im Folgenden noch beschriebenen Methoden
createElement() und createAttribute() stehen nur auf dem Dokumentknoten (sprich dem
Objekt document) zur Verfiigung. Diese Methoden kdnnen nicht auf anderen Knoten (und
damit auch nicht auf Elementen) aufgerufen werden.

5.4 Mit Elementen arbeiten

Auch im Falle von Elementen ist es moglich, diese manuell iiber Methoden zu erzeugen und
sie dann dem DOM-Baum hinzuzufiigen (im Unterschied zur Verwendung der Eigenschaft
innerHTML, wo Sie die HTML-Elemente ja indirekt in Form des Textes Uibergeben, den Sie der
Eigenschaft zuweisen).

Wie Sie Elemente tiber diese Methoden erstellen und hinzufiigen und generell mit Elemen-
ten arbeiten konnen, zeige ich Thnen nun im Folgenden.

379

5 Webseiten dynamisch verandern

5.4.1 Elemente erstellen und hinzufligen

Um Elemente zu erstellen, verwenden Sie die Methode createElement(). Diese erwartet als
Parameter den Namen des zu erstellenden Elements und gibt das neue Element zurtick.
Durch den Aufruf der Methode wird das neue Element allerdings (wie schon zuvor Textkno-
ten bei Verwendung der Methode createTextNode()) noch nicht dem DOM hinzugefiigt.

Fir das Hinzufligen von erzeugten Elementen zum DOM stehen dagegen verschiedene
andere Methoden zur Verfligung:

» Uber insertBefore() ldsst sich das Element als Kindelement vor ein anderes Element/
einen anderen Knoten hinzufiigen, sprich als voriges Geschwisterelement definieren.

» Uber appendChild() ldsst sich das Element als letztes Kindelement eines Elternelements
hinzufiigen.

» Uber replaceChild() lasst sich ein bestehendes Kindelement (bzw. ein bestehender Kind-
knoten) durch ein neues Kindelement ersetzen. Die Methode wird dabei auf dem Elter-
nelement aufgerufen und erwartet als ersten Parameter den neuen Kindknoten sowie als
zweiten Parameter den zu ersetzenden Kindknoten.

Textknoten hinzufiigen

Die oben genannten Methoden stehen ubrigens auch fiir das Hinzufligen von Textknoten
(siehe Abschnitt 5.3.4) zur Verfiigung.

Ein etwas komplexeres — dafiir aber praxisrelevantes — Beispiel zeigt Listing 5.27. Hier wird
auf Basis einer Kontaktliste (die in Form eines Arrays repriasentiert wird) eine HTML-Tabelle
erzeugt. Die einzelnen Eintrage in der Kontaktliste enthalten dabei Angaben zu Vorname,
Nachname und E-Mail-Adresse des jeweiligen Kontakts.

Alles rund um das Erstellen der entsprechenden Elemente geschieht innerhalb der Funktion
createTable(). Hier wird zunidchst tiber die Methode querySelector() das <tbody>-Element
der im HTML bereits existierenden Tabelle (siehe Listing 5.28) ausgewdhlt und anschlief3end
uber das Array mit den Kontaktinformationen iteriert. Fiir jeden Eintrag wird dabei mithilfe
der Methode createElement() eine Tabellenzeile erzeugt (<tr>) und fiir jede der zuvor
genannten Eigenschaften (firstName, lastName und email) eine Tabellenzelle (<td>). Uber die
Methode createTextNode() werden fiir die Werte der Eigenschaften entsprechende Textkno-
ten erzeugt und Uber appendChild() dem jeweiligen <td>-Element hinzugefiigt (alternativ
konnte man hier auch die Eigenschaft textContent verwenden).

Die erzeugten Tabellenzellen werden dann —am Ende jeder Iteration — der entsprechenden
Tabellenzeile als Kindelemente hinzugefiigt und — in der letzten Zeile der Iteration — die
Tabellenzeile als Kindelement des Tabellenkorpers, sprich des <tbody>-Elements. Die einzel-
nen Schritte sind durch Kommentare im Listing gekennzeichnet und anhand Abbildung 5.27
nachzuvollziehen.

380

let contacts = [
{
firstName: 'Max',
lastName: 'Mustermann’,
email: 'max.mustermann@javascripthandbuch.de’
b
{

firstName: 'Moritz',

lastName: 'Mustermann’,

email: 'moritz.mustermann@javascripthandbuch.de’
b
{

firstName: 'Peter',
lastName: 'Mustermann’,
email: 'peter.mustermann@javascripthandbuch.de’
¥
1;

function createTable() {
let tableBody = document.querySelector('#contact-table tbody');
for(let i=0; i<contacts.length; i++) {
// Fir den aktuellen Kontakt ...
let contact = contacts[i];
// ... wird eine neue Zeile erzeugt.
/1 (1)

let tableRow = document.createElement('tr');

// Innerhalb der Zeile werden verschiedene Zellen erstellt ...

/1 (2)

let tableCellFirstName = document.createElement('td');

// ... und jeweils mit Werten befiillt.

/1 (3)

let firstName = document.createTextNode(contact.firstName);
/1 (4)

tableCellFirstName.appendChild(firstName);

/1 (5)

let tableCelllastName = document.createElement('td');

/1 (6)

let lastName = document.createTextNode(contact.lastName);
/1 (7)

tableCelllastName.appendChild(lastName);

/1 (8)

let tableCellEmail = document.createElement('td");

5.4

Mit Elementen arbeiten

381

5 Webseiten dynamisch verandern 5.4 Mit Elementen arbeiten

// (9) </head>
let email = document.createTextNode(contact.email); <body onload="createTable()">
// (10) <main id="main-content">
tableCellEmail.appendChild(email); <hl>Kontaktliste</h1>
// (11) <table id="contact-table" summary="Kontaktliste">
tableRow.appendChild(tableCellFirstName); <thead»
/1 (12) <tr>
tableRow.appendChild(tableCelllastName); <th>Vorname</th>
// (13) <th>Nachname</th>
tableRow.appendChild(tableCellEmail); <th>E-Mail-Adresse</th>
/1 (14) </tr>
tableBody.appendChild(tableRow); </thead>
} <tbody>
h: </tbody>
Listing 5.27 Erzeugen einer Tabelle auf Basis der Kontaktliste </Fab1e>
</main>

<script src="scripts/main.js"></script>
</body>
</html>

Listing 5.28 Die HTML-Vorlage

5.4.2 Elemente und Knoten entfernen

Um Elemente (bzw. allgemeiner: Knoten) von einem Elternelement (bzw. allgemeiner:
einem Elternknoten) zu entfernen, steht lhnen die Methode removeChild() zur Verfiigung.
Diese Methode erwartet das zu entfernende Element (bzw. den zu entfernenden Knoten)
und gibt dieses auch als Riickgabewert zurtick. In Listing 5.29 sehen Sie (auf Basis der Listings
aus vorigem Abschnitt) eine Methode zur Filterung von Tabellendaten (sortByFirstName()),
bei der sich die Methode removeChild() zunutze gemacht wird, um alle Kindknoten und Kin-
delemente aus dem Tabellenkorper (also alle Tabellenzeilen) zu entfernen.

function sortByFirstName() {
let tableBody = document.querySelector('#contact-table tbody');
while (tableBody.firstChild !== null) {
tableBody.removeChild(tableBody.firstChild);

}
Abbildung 5.27 Reihenfolge der Schritte contacts.sort(function(contactl, contact2) {
return contactl.firstName.localeCompare(contact2.firstName);
<IDOCTYPE html> b
<html> createTable();
<head lang="de"> ¥

<title>Kontaktlistenbeispiel</title> Listing 5.29 Beispiel fiir die Verwendung der Methode »removeChild()«

382 383

5 Webseiten dynamisch verandern

5.4.3 Die verschiedenen Typen von HTML-Elementen

Jedes HTML-Element wird innerhalb eines DOM-Baumes durch einen bestimmten Objekt-
typ reprasentiert. Welche dies sind, ist in einer Erweiterung der DOM AP], der sogenannten
DOM-HTML-Spezifikation, festgehalten. Beispielsweise werden Verlinkungen (<a>-Elemen-
te) durch den Typ HTMLAnchorElement reprasentiert, Tabellen (<table>-Elemente) durch den
Typ HTMLTableElement usw. Eine Ubersicht tiber die verschiedenen HTML-Elemente und ihre
entsprechenden Objekttypen gibt Tabelle 5.6. Detaillierte Informationen zu Eigenschaften
und Methoden finden Sie dagegen in Abschnitt B.2, "HTML-Interfaces«. Veraltete Typen sind
innerhalb der Tabelle kursiv gesetzt.

Der Obertyp »HTMLElement«

Alle Objekttypen haben dabei den gleichen »Obertyp«, den Typ HTMLElement, Elemente, die
keinen speziellen Typ haben, sind »direkt« vom Typ HTMLElement.

Veraltete Elemente

Die Elemente und Objekttypen, die mittlerweile veraltet sind, sind in der Tabelle der Voll-
standigkeit halber noch in kursiver Schrift mit aufgefiihrt.

HTML-Element Typ

<a> HTMLAnchorElement
<abbr> HTMLElement
<acronym> HTMLElement
<address> HTMLElement
<applet> HTMLAppletElement
<area> HTMLAreaElement
<audio> HTMLAudioElement
 HTMLElement
<base> HTMLBaseElement
<basefont> HTMLBaseFontElement
<bdo> HTMLElement

<big> HTMLElement

Tabelle 5.6 Die verschiedenen HTML-Elemente und ihre jeweiligen Typen in JavaScript

384

5.4 Mit Elementen arbeiten

HTML-Element Typ

<blockquote> HTMLQuoteElement
<body> HTMLBodyElement

 HTMLBRElement
<button> HTMLButtonElement
<caption> HTMLTableCaptionElement
<canvas> HTMLCanvasElement
<center> HTMLElement

<cite> HTMLElement

<code> HTMLElement

<col>, <colgroup> HTMLTableColElement
<data> HTMLDataElement
<datalist> HTMLDatalListElement
<dd> HTMLElement

 HTMLModElement
<dfn> HTMLElement

<dir> HTMLDirectoryElement
<div> HTMLDivElement

<dl> HTMLDListElement
<dt> HTMLElement

 HTMLElement

<embed> HTMLEmbedElement
<fieldset> HTMLFieldSetElement
 HTMLFontElement
<form> HTMLFormElement
<frame> HTMLFrameElement

Tabelle 5.6 Die verschiedenen HTML-Elemente und ihre jeweiligen Typen in JavaScript (Forts.)

385

5 Webseiten dynamisch verandern

HTML-Element Typ

<frameset> HTMLFrameSetElement
<h1>, <h2>, <h3>, <h4>, <h5>, <h6> HTMLHeadingElement
<head> HTMLHeadElement
<hr> HTMLHRElement
<html> HTMLHtm1Element
<i> HTMLElement
<iframe> HTMLIFrameElement
 HTMLImageElement
<dnput> HTMLInputElement
<ins> HTMLModElement
<isindex> HTMLIsIndexElement
<kbd> HTMLEIement
<keygen> HTMLKeygenElement
<label> HTMLLabelElement
<legend> HTMLLegendElement
 HTMLLIElement
<link> HTMLLinkElement
<map> HTMLMapElement
<media> HTMLMediaElement
<menu> HTMLMenuE Lement
<meta> HTMLMetaElement
<meter> HTMLMeterElement
<noframes> HTMLElement
<noscript> HTMLElement

Tabelle 5.6 Die verschiedenen HTML-Elemente und ihre jeweiligen Typen in JavaScript (Forts.)

386

5.4 Mit Elementen arbeiten

HTML-Element Typ

<object> HTMLObjectElement
 HTMLOListElement
<optgroup> HTMLOptGroupElement
<option> HTMLOptionElement
<output> HTMLOutputElement
<p> HTMLParagraphElement
<param> HTMLParamElement
<pre> HTMLPreElement
<{progress> HTMLProgressElement
Q> HTMLQuoteElement
<S> HTMLElement

<samp> HTMLElement
<script> HTMLScriptElement
<select> HTMLSelectElement
<small> HTMLElement
<source> HTMLSourceElement
 HTMLSpanElement
<strike> HTMLELement
 HTMLELement

<style> HTMLStyleElement
<sub> HTMLEIement

<sup> HTMLElement

<table> HTMLTableElement
<tbody> HTMLTableSectionElement

Tabelle 5.6 Die verschiedenen HTML-Elemente und ihre jeweiligen Typen in JavaScript (Forts.)

387

5 Webseiten dynamisch verandern

HTML-Element Typ

<td> HTMLTableCellElement

<textarea> HTMLTextAreaElement

<tfoot> HTMLTableSectionElement

<th> HTMLTableHeaderCellElement

<thead> HTMLTableSectionElement

<time> HTMLTimeElement

<title> HTMLTitleElement

<tr> HTMLTableRowElement

<tt> HTMLElement

<u> HTMLElement

<track> HTMLTrackElement

 HTMLUListElement

<var> HTMLElement
HTMLUnknownElement

<video> HTMLVideoElement

Tabelle 5.6 Die verschiedenen HTML-Elemente und ihre jeweiligen Typen in JavaScript (Forts.)

Listing 5.30 zeigt das Prinzip dieser Objekttypen am Beispiel von Tabellen, die durch den Typ
HTMLTableElement reprasentiert werden. Dieser Typ verfligt — wie alle anderen der in Tabelle
5.6 gezeigten Typen — Uber individuelle, dem Typ entsprechende Eigenschaften: u.a. die
Eigenschaft caption, die den Untertitel einer Tabelle enthélt (und im Beispiel null ist, weil die
Tabelle in Listing 5.1 kein caption-Attribut hat), die Eigenschaft tHead, die den Kopfbereich,
sprich das <thead>-Element, einer Tabelle enthalt, die Eigenschaft tBodies, welche die ver-
schiedenen Tabellenkorper, sprich <tbody>-Elemente, einer Tabelle enthalt, die Eigenschaft
rows, welche die Tabellenzeilen (inklusive derer im Kopfbereich) enthilt, sowie die Eigen-
schaft tFoot, welche den Fuflbereich, sprich das <tfoot>-Element, enthalt.

let table = document.querySelector('table');
console.log(Object.getPrototype0f(table)); // HTMLTableElement

console.log(table.caption); // null
console.log(table.tHead); // thead
console.log(table.tBodies); // [tbody]

388

5.5 Mit Attributen arbeiten

console.log(table.rows); // [tr, tr, tr, tr, tr]
console.log(table.tFoot); // null

Listing 5.30 Jedes HTML-Element wird durch einen eigenen Objekttyp reprasentiert,
wie hier beispielsweise Tabellen durch den Typ »HTMLTableElement«.

Neben individuellen Eigenschaften haben die verschiedenen Objekttypen je nachdem auch
verschiedene Methoden: Beispielsweise hat der Typ HTMLTableElement, wie in Listing 5.31 zu
sehen, u. a. die Methode insertRow(), Uiber die sich (ohne liber document.createElement()
manuell entsprechende HTML-Elemente zu erzeugen) direkt eine neue Tabellenzeile erstel-
len lasst. Diese gibt wiederum ein Objekt vom Typ HTMLTableRowElement zurtick, welcher wie-
derum u. a. Uiber die Methode insertCell() verfiigt, iiber die sich — Sie werden es ahnen — der
entsprechenden Zeile direkt eine neue Tabellenzelle hinzufuigen lasst. Im Beispiel wird auf
diese Weise eine neue Tabellenzeile mit drei Zellen erstellt. Deutlich tibersichtlicher als in
Listing 5.27, finden Sie nicht?

let newRow = table.insertRow(1);

let newCellFirstName = newRow.insertCell(0);
newCellFirstName.textContent = 'Bob';

let newCelllastName = newRow.insertCell(1);
newCelllLastName.textContent = 'Mustermann’;

let newCellEmail = newRow.insertCell(2);

newCellEmail.textContent = 'bob.mustermann@javascripthandbuch.de';

Listing 5.31 Die verschiedenen Objekttypen haben u. a. auch individuelle Methoden.

Eigenschaftsnamen vs. Elementnamen

Beachten Sie, dass die Objekteigenschaften wie tHead, tBodies und tFoot in CamelCase-
Schreibweise geschrieben sind, die entsprechenden HTML-Elemente dagegen in Kleinbuch-
staben (<thead>, <tbody>, <tfoot>).

5.5 Mit Attributen arbeiten

Um mit Attributen zu arbeiten, stehen Ihnen in der DOM API verschiedene Methoden zur

Verfligung.

» Uber die Methode getAttribute() kénnen Sie auf Attribute eines Elements zugreifen
(siehe Abschnitt 5.5.1, »Den Wert eines Attributs auslesen«).

» Uber die Methode setAttribute() kénnen Sie den Wert eines Attributs dndern oder einem

Element Attribute hinzufiigen (siehe Abschnitt 5.5.2, »Den Wert eines Attributs dndern
oder ein neues Attribut hinzufiigen«).

389

5 Webseiten dynamisch verandern

» Uber die Methode createAttribute() konnen Sie Attributknoten erstellen und diese {iber
setAttributeNode() hinzufiigen (siehe Abschnitt 5.5.3, »Attributknoten erstellen und hin-
zufligen«).

» Uber die Methode removeAttribute() kénnen Sie Attribute entfernen (siehe Abschnitt
5.5.4, »Attribute entfernenc).

5.5.1 Den Wert eines Attributs auslesen

Um auf den Wert eines Attributs zuzugreifen, verwenden Sie auf dem jeweiligen Element die
Methode getAttribute(). Als Parameter erwartet die Methode den Namen des jeweiligen
HTML-Attributs. Als Riickgabewert erhalt man den Wert des entsprechenden Attributs. Neh-
men Sie als Ausgangspunkt den HTML-Code aus Listing 5.32: Dort ist ein Link gezeigt (ein
<a>-Element) mit den Attributen id, class und href.

Home

Listing 5.32 Ein HTML-Link

Um auf diese Attribute zuzugreifen, verwenden Sie die Methode getAttribute(), wie in Lis-
ting 5.33 gezeigt.

let element = document.getElementById('home');
console.log(element.getAttribute('id")); // home
console.log(element.getAttribute('class')); // link
console.log(element.getAttribute('href')); // index.html

Listing 5.33 Uber die Methode »getAttribute()« konnen Sie auf Attribute eines
HTML-Elements zugreifen.

Die Attribute eines Elements stehen in der Regel auch als gleichnamige Eigenschaften zur
Verfiigung. Wobei das Attribut class eine Ausnahme darstellt: Auf dieses Attribut kann tiber
die Eigenschaft className zugegriffen werden. Listing 5.34 zeigt dazu ein entsprechendes Bei-
spiel: Die Attribute id und href kénnen tber die gleichnamigen Eigenschaften ausgelesen
werden, das Attribut class tiber die Eigenschaft className.

console.log(element.id); // home
console.log(element.className); // link
console.log(element.href); // index.html

Listing 5.34 Die Attribute eines Elements stehen auch als Eigenschaften zur Verfugung.
Beachten Sie aber: Bei zwei Attributen liefert der Zugriff Giber die Methode getAttribute()

einen anderen Riickgabewert als der direkte Zugriff Gber die Eigenschaft. Fiir das Attribut
style liefert die Methode getAttribute() lediglich den Text, den das Attribut als Wert ent-

390

5.5 Mit Attributen arbeiten

halt. Der Zugriff tiber die Eigenschaft style dagegen liefert ein Objekt vom Typ CSSStyle-
Declaration, Uber das sich detailliert auf die entsprechenden CSS-Informationen zugreifen
lasst. Dariiber hinaus liefern alle Attribute, tiber die sich Event-Handler definieren lassen
(siehe auch Kapitel 6, »Ereignisse verarbeiten und auslosenc), iiber die entsprechende Eigen-
schaft (beispielsweise onclick) den auszufiihrenden JavaScript-Code als Funktionsobjekt
zurlick. Greift man auf das jeweilige Attribut dagegen tiber die Methode getAttribute() zu,
erhdlt man als Riickgabewert den Namen der Funktion, die ausgefiihrt werden soll, als Text
zurick.

Schauen Sie sich dazu Listing 5.35 und Listing 5.36 an. Ersteres zeigt einen HTML-Button mit
verschiedenen Attributen, u. a. einem style-Attribut und einem onclick-Attribut. In Letzte-
rem sehen Sie dann den Zugriff auf beides jeweils tiber die gleichnamige Eigenschaft und
uber die Methode getAttribute().

<button id="create" class="link" style="background-color: green" onclick=
"createContact()">Kontakt anlegen</button>

Listing 5.35 Ein HTML-Button

let button = document.getElementById('create');
console.log(button.onclick); // Ausgabe der Funktion
console.log(typeof button.onclick); // Ausgabe: function
console.log(button.getAttribute('onclick')); // createContact()
console.log(typeof button.getAttribute('onclick')); // Ausgabe: string
console.log(button.style); // Ausgabe der

// CSSStyleDeclaration
console.log(typeof button.style); // Ausgabe: object
console.log(button.getAttribute('style')); // background-color: green

console.log(typeof button.getAttribute('style')); // Ausgabe: string

Listing 5.36 Der Zugriff auf Event-Handler und das »style«-Attribut liefert je nach Zugriffsart
unterschiedliche Ruckgabewerte.

Der Grund, warum der direkte Zugriff auf Event-Handler-Attribute wie onclick keine Zei-
chenkette, sondern eine Funktion zurtickgibt, ist, dass man tber diese Eigenschaft Event-
Handler fir das jeweilige Element definieren kann. Sprich, man kann dieser Eigenschaft
Funktionsobjekte zuweisen.

Der Grund, warum der direkte Zugriff auf das style-Attribut keine Zeichenkette zurtickgibt,
ist der, dass Uber dieses Attribut programmatisch auf die CSS-Informationen des jeweiligen
Elements zugegriffen werden kann, auch schreibend (wie Sie in diesem Kapitel schon sehen
konnten).

391

5 Webseiten dynamisch verandern

5.5.2 Den Wert eines Attributs dndern oder ein neues Attribut hinzufiigen

Um den Wert eines Attributs zu dndern oder ein neues Attribut hinzuzuftigen, verwenden
Sie die Methode setAttribute() auf dem Element, fiir das das Attribut gedndert werden soll.
Diese erwartet zwei Parameter: den Namen des Attributs und den neuen Wert. Falls das ent-
sprechende Element bereits tiber ein gleichnamiges Attribut verfuigt, wird der Wert dieses
Attributs mit dem neuen Wert tiberschrieben. Gibt es das Attribut noch nicht, wird dem Ele-
ment ein entsprechendes Attribut neu hinzugefiigt. Listing 5.37 zeigt dazu ein Beispiel: Hier
werden die Eigenschaften class, href und target flir das zuvor selektierte Linkelement ge-
andert.

let element = document.getElementById('home');
element.setAttribute('class', 'link active');
element.setAttribute('href', 'newlink.html');
element.setAttribute('target', ' blank');
console.log(element.getAttribute('class')); // link active
console.log(element.getAttribute("href')); // newlink.html
console.log(element.getAttribute('target')); // blank

Listing 5.37 Uber die Methode »setAttribute()« kénnen Sie bestehende Attribute eines
HTML-Elements andern bzw. neue Attribute hinzufiigen.

Alternativ dazu kdnnen Sie Uber die (in der Regel) gleichnamigen Objekteigenschaften eben-
falls die Werte von Attributen dndern bzw. neue Attribute hinzufiigen (siehe Listing 5.38).

element.className = 'link active highlighted';

element.href = "anotherlLink.html';

element.target = ' self’';

console.log(element.getAttribute('class')); // link active highlighted
console.log(element.getAttribute("href")); // anotherLink.html
console.log(element.getAttribute('target')); // self

Listing 5.38 Attribute konnen ebenfalls direkt Gber entsprechende Eigenschaften geandert werden.

Hinweis

Im Hintergrund wird bei Verwendung der Methode setAttribute() ein Attributknoten
erzeugt und dem DOM-Baum an dem entsprechenden Elementknoten als Kindknoten hinzu-
geflgt.

5.5.3 Attributknoten erstellen und hinzufiigen

Wie auch schon bei normalen Texten und bei der Arbeit mit Elementen haben Sie auch im
Falle von Attributen die Moglichkeit, diese als Attributknoten tber eine spezielle Methode

392

5.5 Mit Attributen arbeiten

zu erstellen, ndmlich tber die Methode createAttribute(). Als Argument erwartet diese
Methode — wenig verwunderlich — den Namen des zu erstellenden Attributs, als Riickgabe-
wert liefert sie den neuen Attributknoten. Auch dieser ist — wie zuvor Textknoten und Ele-
mentknoten — zunidchst noch nicht direkt im DOM-Baum eingebaut. Dies miissen Sie
manuell Gber die Methode setAttributeNode() am entsprechenden Element nachholen
(siehe Listing 5.39).

let element = document.getElementById(" home');

let attribute = document.createAttribute('target');
attribute.value = ' blank';
element.setAttributeNode(attribute);
console.log(element.getAttribute('target')); // blank

Listing 5.39 Erstellen und Hinzufligen eines Attributknotens

5.5.4 Attribute entfernen

Uber die Methode removeAttribute() konnen Sie Attribute wieder von einem Element ent-
fernen. In Listing 5.40 werden auf diese Weise die beiden Attribute class und href aus dem
Linkelement entfernt. Anschliefend liefern die beiden Attribute den Wert null.

let element = document.getElementById('home');
element.removeAttribute('class');
element.removeAttribute('href');
console.log(element.getAttribute('class')); // null
console.log(element.getAttribute('href')); // null

Listing 5.40 Uber die Methode »removeAttribute()« kdnnen Sie Attribute eines
HTML-Elements entfernen.

5.5.5 Auf CSS-Klassen zugreifen

Auch wenn Sie es im Laufe des Kapitels schon an einigen Beispielen (zumindest teilweise)
gesehen haben, gehe ich an dieser Stelle noch einmal kurz darauf ein, wie Sie die CSS-Klassen
eines Elements auslesen konnen.

Zunachst einmal gibt es die Thnen schon bekannte Eigenschaft className, iiber die jedes Ele-
ment auf einer Webseite (sprich jeder Elementknoten) verfiigt. Diese Eigenschaft enthélt
einfach den Wert des class-Attributs des entsprechenden Elements als Zeichenkette. Hat das
Element mehrere CSS-Klassen, sind diese Klassennamen innerhalb der Zeichenkette durch
Leerzeichen getrennt.

In der Vergangenheit hat dies teils zu etwas umstandlichem Code gefiihrt, wenn man bei-
spielsweise einem Element neue CSS-Klassen hinzufiigen oder — schlimmer noch - beste-

393

5 Webseiten dynamisch verandern

hende CSS-Klassen entfernen wollte. Warum umstandlich? Weil man in jedem Fall den Wert

des Attributs parsen musste.

Diesem Umstand wurde mit der Version 4 der DOM API Rechnung getragen. Seitdem verfu-
gen Elemente (in der DOM API, nicht in HTML) ndmlich zuséatzlich iber die Eigenschaft
classlList, welche die CSS-Klassen als Liste enthalt. Das Hinzuftigen und Entfernen einzelner

CSS-Klassen zu bzw. von einem Element gestaltet sich seitdem um einiges einfacher:

>

>

>

Uber die Methode add() konnen der Liste neue CSS-Klassen hinzugefigt werden.
Uber die Methode remove() kdnnen CSS-Klassen aus der Liste entfernt werden.

Uber die Methode toggle() lassen sich CSS-Klassen »umschalten, d. h., gibt es die CSS-
Klasse in der Liste, wird sie geloscht, gibt es sie dagegen nicht, wird sie hinzugeflgt. Dies
lasst sich sogar an boolesche Bedingungen kntupfen.

Uber die Methode contains() lasst sich zudem tiberpriifen, ob eine CSS-Klasse in der Liste
enthalten ist.

Listing 5.41 zeigt zu diesen Methoden einige Beispiele.

let element = document.getElementById('home');
console.log(element.classList); // ["link"]

element.classList.add('active');
console.log(element.classlist);

// Klasse hinzufiigen
// ["link", "active"]

element.classlist.remove('active'); // Klasse entfernen
console.log(element.classlist); // ["link"]

element.classlist.toggle('active');
console.log(element.classlist);
element.classlList.toggle('active');

// Klasse umschalten
// ["link", "active"]
// Klasse umschalten

console.log(element.classlist); // ["1link"]
console.log(element.classList.contains('link")); // true
console.log(element.classList.contains('active')); // false

let 1 = 5;
let condition = 1 > O;
element.classlist.toggle('active', condition); // Klasse umschalten

console.log(element.classlist);

// ["link", "active"]

Listing 5.41 Mithilfe der Eigenschaft »classList« von Elementen lasst sich sehr einfach
mit CSS-Klassen arbeiten.

5.6 Zusammenfassung

In diesem Kapitel haben Sie gelernt, wie Sie auf Inhalte von Webseiten per JavaScript zugrei-
fen und diese dynamisch verandern konnen. Fassen wir die wichtigsten Punkte zusammen:

394

5.6 Zusammenfassung

Das Document Object Model (kurz DOM) stellt das Modell fiir eine Webseite dar, eine hier-
archisch aufgebaute Baumstruktur.

Die einzelnen Komponenten in dieser Baumstruktur werden Knoten genannt, wobei es
verschiedene Arten von Knoten gibt. Die wichtigsten sind Dokumentknoten, Elementkno-
ten, Textknoten und Attributknoten. Die Elementknoten werden zudem uber verschie-
dene Typen reprasentiert, ausgehend von dem Typ HTMLElement.

Die DOM API definiert Eigenschaften und Methoden, tiber die Sie an die Daten auf einer
Webseite gelangen oder diese verdndern konnen.

Sie kdnnen mithilfe der DOM API beispielsweise Elemente hinzufligen, Elemente 16schen,
Texte verandern, Attribute hinzufiigen und 16schen.

Elemente auf einer Webseite konnen auf verschiedene Weisen selektiert werden: nach ID,
nach CSS-Klasse, nach Elementnamen, nach name-Attribut sowie nach CSS-Selektor.

Ausgehend von einem Element bzw. Knoten kdnnen iiber verschiedene Eigenschaften
das Elternelement/der Elternknoten, die Kindelemente/Kindknoten sowie Geschwiste-
relemente/Geschwisterknoten selektiert werden.

Uber die Eigenschaft textContent kann auf den Textinhalt eines Knotens zugegriffen bzw.
der Textinhalt gesetzt werden, Uiber die Eigenschaft innerHTML dagegen auf den HTML-
Inhalt eines Elements.

Uber createTextNode() kdonnen Sie Textknoten erstellen, iber createElement() Element-
knoten und tiber createAttribute() Attributknoten.

Nachdem Sie einen Knoten erstellt haben, miissen Sie ihn erst dem DOM-Baum hinzufi-
gen, wobei verschiedene Methoden zur Verfiigung stehen: insertBefore(), appendChild()
und replaceChild().

395

Kapitel 19
Desktopanwendungen mit JavaScript

Auch Desktopanwendungen lassen sich mittlerweile mit JavaScript imple-
mentieren. Im Wesentlichen haben sich in den letzten Jahren dafiir zwei
Frameworks herausgebildet, die im Folgenden kurz vorgestellt werden sollen.

Webanwendungen sind dank moderner Webtechnologien in den letzten Jahren immer
populdrer geworden und haben in vielen Fallen klassische Desktopanwendungen verdrangt
bzw. warten mit gleichwertigen Losungen auf (Stichwort Rich Internet Applications). Den-
noch sind Desktopanwendungen je nach Anwendungsfall bzw. Anforderungen nach wie vor
in vielen Fallen sinnvoller.

Zu den Vorteilen von Desktopanwendungen gegeniiber Webanwendungen zahlen u. a.:

» Zugriff auf native Features: Im Gegensatz zu Webanwendungen, die gar nicht bzw. nur
sehr eingeschrankt (beispielsweise iiber entsprechende Web-APIs oder Browser-Plugins)
auf native Features und Hardware-Ressourcen des Rechners zugreifen konnen, gilt diese
Einschrankung fiir Desktopanwendungen nicht. Klassisches Beispiel hierzu ist der Zugriff
auf das Dateisystem: Wéhrend man innerhalb einer Webanwendung (iiber die File AP],
siehe Abschnitt 12.5, »Auf das Dateisystem zugreifen«) nur auf Dateien zugreifen kann, die
durch den Nutzer explizit ausgewahlt wurden, hat man innerhalb einer Desktopanwen-

dung (entsprechende Rechte vorausgesetzt) prinzipiell Zugriff auf das gesamte Datei-
system.

» Kein Aufwand beziiglich Browserversionen: Bei der Entwicklung von Webanwendungen
muss in der Regel ein beachtlicher Teil der Entwicklungszeit dem Thema Browserkompa-
tibilitdt gewidmet werden. Dazu zdhlen Fragestellungen wie: Welches Feature wird von
welchem Browser unterstiitzt? Und ab welcher Browserversion? Welche Besonderheiten
oder Bugs gibt es in welchem Browser? Wie konnen Letztere behoben werden? Nattirlich
konnen in diesem Zusammenhang Polyfills helfen, sprich Bibliotheken, die fiir den Fall,
dass ein Browser ein bestimmtes Feature nicht unterstiitzt, dieses Feature emulieren.
Auch Cross-Browser-Testing-Tools, die eine Webanwendung automatisch in verschie-
denen Konstellationen aus Browser, Version und Betriebssystem testen, stellen eine
enorme Hilfe bei der Entwicklung dar. Bei Desktopanwendungen allerdings fallt dieses
Thema komplett weg, da man es erst gar nicht mit verschiedenen Browsern bzw. Browser-
engines zu tun hat.

965

19 Desktopanwendungen mit JavaScript

» Kein Internetzugang erforderlich: Webanwendungen setzen eine Verbindung zum
Internet voraus. Auch wenn sich dies tiber Offline-First-Technologien wie Service Worker,
IndexedDB und Web Storage weitestgehend minimieren lasst, lassen sich Desktopanwen-
dungen in der Regel deutlich einfacher so gestalten, dass sie auch ohne Internetzugang
rundlaufen.

» Keine Downloadzeit: Die Komplexitdt von Webanwendungen und die Anzahl an einge-
bundenen Fremdbibliotheken und Frameworks wirken sich entsprechend auf die Zeit
aus, die es braucht, um die Anwendung initial zu starten. Dauert dies lange, wird hier-
durch die Nutzerfreundlichkeit einer Anwendung negativ beeinflusst. Caching-Mechanis-
men der verschiedenen Browser wirken dem zwar entgegen, fiir Desktopanwendungen
stellt sich dieses Problem aber erst gar nicht.

» Performance bei hohem Nutzeraufkommen: Bei Webanwendungen konnen sich hohe
Zugriffszahlen negativ auf die Performance auswirken. Bei Desktopanwendungen spielt
die Anzahl an gleichzeitig aktiven Nutzern (zumindest fiir den UI-Code) keine Rolle. Ledig-
lich fiir den Fall, dass die Desktopanwendung externe (Web-)Services einbindet, konnen
diese zum Bottleneck der Anwendung werden.

Naturlich gibt es andersherum auch eine Menge Vorteile von Webanwendungen gegentiber
Desktopanwendungen, darunter ein ganz wesentlicher: Cross-Plattform-Fahigkeit, sprich
die Fahigkeit einer Anwendung, auf allen Betriebssystemen inklusive mobiler Betriebssys-
teme (Windows, Linux, macOS, Android, i0S) zu laufen, eine entsprechende Laufzeitumge-
bung, die in Form eines Browsers daherkommt, vorausgesetzt. Der Aufwand, entsprechende
cross-plattform-fahige Desktopanwendungen nativ zu erstellen, und die notwendigen Pro-
grammierkenntnisse sind im Vergleich entsprechend hoch.

Das ist genau der Punkt, an dem die im folgenden vorgestellten Frameworks NW.js (https://
nwjs.io/) und Electron (https://electron.atom.io/) ansetzen: Sie kombinieren moderne Web-
technologien mit der Moglichkeit, diese fiir die Erstellung von Desktopanwendungen zu ver-
wenden. Beide Frameworks verwenden dazu einen ahnlichen Ansatz, weisen bei genauerer
Betrachtung aber Unterschiede auf.

19.1 NW.js

Bei NW.js (https://nwjs.io/) handelt es sich um ein Open-Source-Framework zur Erstellung
von Desktopanwendungen in HTML, CSS und JavaScript, welches 2011 von Intel entwickelt
wurde. Die Idee von NW.js ist es, die JavaScript-Laufzeitumgebung Node.js mit der Browser-
engine WebKit zu kombinieren (der urspriingliche Name lautete daher auch Node WebKit)
und plattformunabhingig zur Verfiigung zu stellen.

Durch die Kombination von WebKit und Node.js ermoglicht NW.js es zum einen, innerhalb
eines entsprechenden Anwendungsfensters Anwendungen darzustellen, die in HTML, CSS

966

19.1

und JavaScript implementiert wurden (durch WebKit), zum anderen, mit dem zugrunde lie-
genden Betriebssystem zu interagieren, sprich native Funktionalitdten zu nutzen (durch
Node.js).

Vereinfacht gesagt, konnen mithilfe von NW.js Webentwickler, die »nur« HTML, CSS und
JavaScript beherrschen, jetzt auch Desktopanwendungen erstellen. Und das Ganze platt-
formuibergreifend, versteht sich, denn NW.js kiimmert sich darum, auf Basis einer einzigen
Codebasis in den genannten Sprachen entsprechende Anwendungsdateien fiir die verschie-
denen Betriebssysteme Windows, Linux und macOS zu generieren (dazu spater mehr).

19.1.1 Installation und Beispielanwendung

Die Installation von NW.js geschieht wie fir Node.js-Anwendungen gewohnt tber den
Node.js Package Manager (NPM) mithilfe des Befehls npm install -g nw. Die globale Installa-
tion ist hierbei notwendig, um die zum Framework gehérenden Kommandozeilentools zu
installieren.

Eine minimale NW.js-Anwendung besteht aus zwei Dateien: Uber die Manifest-Datei
package.json werden wie auch bei Node.js-Packages allgemeine Metadaten zur Anwendung
verwaltet, beispielsweise Name, Versionsnummer, die Angabe der Datei, die den Einstiegs-
punkt fir die Anwendung darstellt, sowie externe Abhédngigkeiten.

Name, Version und Einstiegspunkt sind zugleich die Minimalanforderungen an eine
package.json-Datei fiir NW.js-Anwendungen. Die Kombination der Eigenschaften name und
version dient dabei als Identifier fiir die Anwendung, die Eigenschaft main gibt an, welche
HTML-Datei beim Start geladen wird. Eine minimale Konfigurationsdatei fiir eine Anwen-
dung mit Namen helloworld in der Version 1.0.0, bei der die Datei index.html den Einstiegs-
punkt markiert, konnte daher wie folgt aussehen:

{
"name": "helloworld",
"version": "1.0.0",
"main": "index.html"
}

Listing 19.1 Exemplarischer Aufbau der Datei »package.json«

Der Inhalt der HTML-Datei konnte wie folgt aussehen:

<IDOCTYPE html>
<html>
<head>
<title>Hello World!</title>
</head>
<body>

967

NW.js

19 Desktopanwendungen mit JavaScript

<h1>Hello World!</h1>
<div>
Ihr Betriebssystem lautet:
</div>
<script type="text/javascript" src="./scripts/main.js"></script>
</body>
</html>

Listing 19.2 Einstiegspunkt bildet eine HTML-Datei.

NW.js stellt seine API tiber ein globales Objekt nw zur Verfiigung, iiber welches sich beispiels-
weise Ul-Komponenten wie Kontextmeniis oder Ahnliches erstellen lassen. Auf die DOM
API und die verschiedenen Node.js-APIs lasst sich dagegen direkt zugreifen. Folgendes Bei-
spiel zeigt eine Kombination der beiden Letztgenannten: Am document-Objekt wird hier ein
Event-Listener fiir das DOMContentLoaded-Event registriert (DOM API), innerhalb dessen dann
uber das Node.js-Modul os die Informationen zu der verwendeten Plattform ausgelesen wer-
den (Node.js-API) und diese Informationen dann (wieder mithilfe der DOM API) in das Ele-
ment mit der ID platform geschrieben werden.

'use strict'
const os = require('os');
document.addEventListener('DOMContentlLoaded', () => {
let platform = os.platform();
document.getElementById('platform').textContent = platform;

1);
Listing 19.3 Zugriff auf die Node.js-API

Innerhalb einer NW.js-Anwendung lassen sich die vollstindige DOM API und die vollstan-
dige Node.js-API nutzen (plus zusétzlicher Bibliotheken und Module, versteht sich). Dartiber
hinaus erweitert NW.js die DOM API und die Node.js-API um einige Features wie beispiels-
weise zusatzliche Eigenschaften flir Texteingabefelder oder flr das process-Objekt.

19.1.2 Packaging

Fur das Packaging von NW.js-Anwendungen, also die »Paketierung« von Quelltext-Dateien
zu einer ausfiihrbaren Datei, steht u.a. das Modul nw-builder (https://github.com/nwjs/
nw-builder) zur Verfiigung. Das Modul kann tGber den Befehl npm install -g nw-builder instal-
liert werden, anschlief3end kann tiber die Kommandozeile global der Befehl nwbuild verwen-
det werden. Uber den Parameter -platforms bzw. —p ist es dabei moglich, eine kommasepa-
rierte Liste von Betriebssystemen zu tibergeben, fiir die die Anwendung erzeugt werden soll.
Mogliche Werte hierbei sind win32, winé4, osx32, osx64, 1inux32 und linux64. Um also bei-

968

19.2 Electron

spielsweise die Anwendung fiir Windows in 64 Bit und macOS in 64 Bit zu erstellen, reicht
folgender Befehl:

nwbuild --platforms win64,o0sx64

Uber weitere Parameter lassen sich u. a. die zu verwendende Version von NW.js (--version
bzw. -v) und der Build-Ordner (--buildDir bzw. -0) angeben.

Alternativ zu der Verwendung auf Kommandozeile kann nwbuild auch programmatisch
genutzt werden, beispielsweise um es in Build-Tools wie Gulp (https://qulpjs.com/) oder
Grunt (https://gruntjs.com/) zu integrieren.

'use strict’;
const NwBuilder = require('nw-builder');
cont nw = new NwBuilder({
files: './path/to/nwfiles/**/**",
platforms: ['winé4','osx64'],
version: '0.14.6'
1;
nw.on('log', console.log);
nw.build().then(() => {
console.log('all done!');
}).catch(error => {
console.error(error);

1);
Listing 19.4 Programmatisches Packaging einer NW.js-Anwendung

969

Auf einen Blick

Auf einen Blick

1 Grundlagen und EINfUNIUNG ... 29
2 Erste SCRIEEE oot 55
3 SPrACRKEIN ...t 89
4 Mit Objekten und Referenztypen arbeiten ... 229
5 Webseiten dynamisch verandern ... 339
6 Ereignisse verarbeiten und auslosen ... 397
7 Mit Formularen arbeiten ... sasessaesenns 449
8 Browser steuern und Browserinformationen auslesen ... 477
9 Inhalte einer Webseite dynamisch nachladen ... 505
10 Aufgaben vereinfachen mit JQUErY ... 549
11 Bilder und Grafiken dynamisch erstellen ... 597
12 Moderne Web-APIS VErWENENccmiminerenecerecrnesieseieeriseesisessiecsssessasecsons 629
13 Objektorientierte Programmierungenceinerneceseseeseesesens 733
14 Funktionale Programmierungc.ceeceeeneeceseiesesesesesesseces 767
15 Den Quelltext richtig strukturieren ... 781
16 Die seit ES2015 eingefiihrten Features richtig nutzen ..., 801
17 Serverseitige Anwendungen mit Node.js erstellen ..., 867
18 Mobile Anwendungen mit JavaScript erstellen ..., 907
19 Desktopanwendungen mit JavaScript ... 965
20 Mikrocontroller mit JavaScript steuern ..., 979

21 Einen professionellen Entwicklungsprozess aufsetzen ..., 1001

Inhalt

VOTWOTT oottt as s ss s saas 25
1 Grundlagen und Einfithrung 29
1.1 Grundlagen der Programmierung 29
111 Mitdem Computer KOMMUNIZIErENcccemevmecireceneenecrreerieeresecreseenees 30
112 Programmiersprachenocmeseenecseoens 31
1.1.3 Hilfsmittel fir den Programmentwurf 39
1.2 Einfiihrung JavaScript 44
121 Historie 45
122 ANWENAUNGSEEDIELE ...t sssses s sesa e sesanns 46
1.3 Zusammenfassung 53
2 Erste Schritte 55
2.1 Einfithrung JavaScript und Webentwicklung 55
211 Der Zusammenhang zwischen HTML, CSS und JavaScriptccmnecenneenen. 55
212 Dasrichtige Werkzeug fiir die Entwicklung 59
2.2 JavaScript in eine Webseite einbinden 64
221 Eine geeignete Ordnerstruktur vorbereiten 64
222 EineJavaScript-Datei erstellen ... sesecsseseanne 65
2.2.3 EinelavaScript-Datei in eine HTML-Datei einbinden ... 66
2.2.4 JavaScript direkt innerhalb des HTML definieren 69
2.2.5 Platzierung und Ausfiihrung der <script>-Elemente 70
226 Den QUEIEXT @NZEIGEN ..ot ceses s snssses s sessessesesess 74
2.3 Eine Ausgabe erzeugen 77
23.1 Standarddialogfenster anzeigen 77
2.3.2 AufdieKonsole schreiben 78
2.3.3 Bestehende Ul-Komponenten verwenden 85
2.4 Zusammenfassung 86

Inhalt

Inhalt

3 Sprachkern 89
3.1 Wertein Variablen speichern ... seeeessseessseeees 89
311 Variablen defiNi@ren ... crneceeeeceeseeecesssecesssesessssesssssseseessseesesees 89
3.1.2 Gultige Variablennamen VErwendencrnccenneceessecsiesneseesssecseeens 92
3.1.3 Konstanten definieren ... sssessasesssssesees 99
3.2 Dieverschiedenen Datentypen verwendencronccermonnenseessnnens 100
321 ZANIEN e 101
322 ZICheNKETEEN ..ot ssaceess e 103
3.2.3 Boolesche WahrheitSWEILe ... nees 106
324 ATTAYS o 106
32,5 ODJEKEE oottt e 112
3.2.6 Besondere Datentypen ... 113
3.3 Die verschiedenen Operatoren einsetzen ... 115
3.3.1 Operatoren fiir das Arbeiten mit Zahlen 117
3.3.2 Operatoren fiir das einfachere Zuweisen 118
3.3.3 Operatoren fir das Arbeiten mit Zeichenketten ... 119
3.3.4 Operatoren fir das Arbeiten mit booleschen Werten ..., 120
3.3.5 Operatoren fiir das Arbeiten Mit Bitscmecnecnenecnecesennecreecrisennes 126
3.3.6 Operatoren fir das Vergleichen von Wertencmcnecrnernecnen. 127
3.3.7 Operatoren fur spezielle OPerationenenecesesesecsesenens 129
3.4 Den Ablauf eines Programms StEUEINcoocccccimmmccccreeeemmesnnnssccecesssmssssssssseceee 130
341 Bedingte Anweisungen definieren ... 131
342 Verzweigungen defiNIEren ... recneeeesiesseseesisessessassesssessesecsssnesses 133
3.4.3 Den Auswahloperator VErWENdENeececrnecreeiesecsisesseseesessesesseenens 139
344 Mehrfachverzweigungen definieren 140
3.45 Zahlschleifen definierenccce..e. . 147
3.4.6 Kopfgesteuerte Schleifen definieren 155
3.4.7 Fullgesteuerte Schleifen definieren 158
3.4.8 Schleifen und Schleifeniterationen vorzeitig abbrechenccccocvncrncceee. 159
3.5 Wiederverwendbare Codebausteine erstellen ... 168
351 Funktionen defini@ren ... sessses s sssssssesseesonnes 168
352 FUNKEONEN QUITUTEN cooooccececceeceseeceesiee s ssesescese e seneas 171
3.5.3 Funktionsparameter lbergeben und auswertenroncrennns 171
3.5.4 Rickgabewerte definierensissssssssssssssesinns 180
3.5.5 Standardwerte flir Parameter definieren ... 182
3.5.6 Elemente aus einem Array als Parameter verwenden 184
3.5.7 Funktionen tiber Kurzschreibweise definieren 186
3.5.8 FUunktionen im DEtail ... esse s sessessesesees 188
3.59 Funktionen aufrufen durch Nutzerinteraktionccoocvcrnncnnnnn. 196

3.6 AufFehler reagieren und sie richtig behandeln ... 198
3.6. 1 SYNTAXTERNIEL ..ot 198
3.6.2 LAUTZEITFRNIET oo enes 199
3.6.3 LOGISCNE FENIET oottt ssese s ssaesres 200
3.6.4 Das Prinzip der FehlerbehandlUungcmmecceecneciecssessesecsissennes 201
3.6.5 Fehler fangen und behandeln . w202
3.6.6 FENIEI QUSIOSEN ..ot seas 205
3.6.7 Fehler und der Funktionsaufruf-Stack ... 208
3.6.8 Bestimmte Anweisungen unabhangig von aufgetretenen Fehlern
AUTTUTRIN oot ebss s 210
3.7 Den Quelltext kommentieren ... 217
3.8 Den Code deDUGEENcoooiiiieoiieicccccceeeeiiieisssseceeeeeseesessss s sssssssssssssssssessssssssesssssssseses 217
3.8 1 EINTUNTUNG ettt 218
3.8.2 Ein einfaches COAEDEISPIEI ... siesessaseesasessesessens 218
3.8.3 Haltepunkte defiNi@ren .. ssssessisesssssennes 219
3.8.4 Variablenbelegungen iNSENENiccenneresecniiseeeeseeessesseeseeseseenns 221
3.8.5 Ein Programm schrittweise ausfiihren creevrnerenees 222
3.8.6 Mehrere Haltepunkte definieren ... ccesecsseesesssenens 224
3.8.7 Bedingte Haltepunkte definieren ... 224
3.8.8 Den Funktionsaufruf-Stack @iNSENen ... 225
3.9 ZUSAMMENTASSUNEoooomreeeereeceeeiee s sesse s ssess st sss s ssss s s 226
4 Mit Objekten und Referenztypen arbeiten 229
4.1 Unterschied zwischen primitiven Datentypen und Referenztypen 229
411 Das Prinzip von primitiven Datentypen ... 229
4.1.2 DasPrinzip von REfErenztypenscssssisssssssessssaeens 230
4.13 Primitive Datentypen und Referenztypen als Funktionsargumente 232
414 DenTyp einerVariablen ermitteln ... 233
L5 AUSDICK oo sesa s 236
4.2 Zustand und Verhalten in Objekten kapseln ... 236
421 Einflhrung objektorientierte Programmierungcecneceonnes 237
422 Objekte erstellen liber die Literal-SChreibweisecnnecneceinnecnneceones 238
423 Objekte erstellen tiber Konstruktorfunktionennecnecennenne. 239
424 Objekte erstellen unter Verwendung von KIassencnecennecinnnes 242
425 Objekte erstellen tiber die Funktion »Object.create()« 246
4.2.6 AufEigenschaften zugreifen und Methoden aufrufen 250
7

Inhalt

Inhalt

4.3

4.4

4.5

4.6

42.7 Objekteigenschaften und Objektmethoden hinzufligen

00Er UDEISCRIEIDEN ..ottt eeseee s senssesesssessneeesees 256
42.8 Objekteigenschaften und Objektmethoden I6schennccicnnecens 260
429 Objekteigenschaften und Objektmethoden ausgeben ..., 263
4210 Anderungen an Objekten VErNINAEINo.oovvivvivvvvvvvevieieeeeseseeseesssssesssssssssssssssssssnns 266
Mit Arrays arbeiteniiiriinceceiinecesesieneeessieaesssssssssessesssaseessssssasesssssssssessenns 270
431 Arrays erzeugen und initialiSieren ..., 270
432 AufElemente eines Arrays ZUGIeIfeNrnnrcnereneceeesiseseeeesiesianees 273
433 Elemente einem Array NiNZUTUZENccccrecnerireciscsneeseieenssessesessisessiaees 274
43.4 Elemente aus einem Array entfernen ... 279
43.5 Einen Teil der Elemente aus einem Array kopieren 282
4.3.6 Arrays SOMLIEIEN ... as 285
437 Arrays als Stack VErWENAEN ... sresessissessaseesasessiaees 288
43.8 Arrays als QUEUE VEIWENAENriemcemmeeneeeieeceessesessssessesssesssesesesseesseseneeees 289
43.9 Elemente in Arrays fINAEN ... sesssesesssseesssseseesieess 291
43.10 Elemente innerhalb eines Arrays kopieren ..., 293
4.3.11 Arraysin Zeichenketten umwandeln ... 294
Mit Zeichenketten arbeiten ... 295
441 Der Aufbau einer Zeichenkette ... eccreecesseceneeeseeeseceesnecees 295
442 Dielange einer Zeichenkette ermitteln ... 296
4.4.3 Innerhalb einer Zeichenkette suchen ... 297
444 Teile einer Zeichenkette extrahieren ..., ... 300
Sonstige globale Objekte ... sesssesessssssessessenns 303
451 Mit Datum und Zeit arbeitenciieriircceiineecreeceiiseeeeessecseeseseessseesesaeeees 303
452 Komplexe Berechnungen durchflhren ... 306
453 Wrapperobjekte fur primitive Datentypen ..., w307
Mit reguldren Ausdriicken arbeitenrcnnceeeionecsesissseesessesecssesnenns 307
4.6.1 Regulare AusAricke defiNi@ren ... ccrernesinecsiseeseseesiseesssssesesecseneses 308
46.2 Zeichen gegen einen regularen Ausdruck testencccnnccees 309
4.6.3 Zeichenklassen VErWENAEN ... siaecsseesssesesssessasesssesssanses 311
4.6.4 Anfangund Ende begrenzen . 315
4.6.5 Quantifizierer VErwendencecsemseeseessecssssseseessesseseeeees 318
4.6.6 Nach VOrkommen SUCHEN ... ceeisecesseseseessecsssseesesseessesanesens 322
4.6.7 Alle Vorkommen innerhalb einer Zeichenkette suchen 324
4.6.8 Aufeinzelne Teile eines Vorkommens zUGreifenecncrnecronees 325
4.6.9 Nach bestimmten Zeichenketten suchen ..., 326
4.6.10 Vorkommen innerhalb einer Zeichenkette ersetzen ..., 327
4.6.11 Nach Vorkommen SUCKEN ... siaecisesessse s ssesesae s 327
4.6.12 Zeichenketten zert@ilen ..., 328

4.7 Funktionen als Referenztypen ... neceemiieeneseeessssssesssssssssssssssssssns 329
471 Funktionen als Argumente VErWeNdeNc...creoneeeurecesieeeeemsssecsianesees 329
4.7.2 Funktionen als Riickgabewert verwenden ..., 332
4.7.3 Standardmethoden jeder FUNKLIONcooiicinecenernecrecnecenecsecseeceieseanes 333
4.8 ZUSAMMENTFASSUNEcoovvvveeermnneeeeeesseessesesssesssssssessss s sssssssss s sssssssssssanesssssssssssssssnnnas 337
5 Webseiten dynamisch verandern 339
5.1 Aufbau einer WebSseite ...t ssssesessssesesessssnnns 339
511 Document ODJECt MOGEl ...t ssasessessesseeesens 339
5.1.2 Dieverschiedenen Knotentypen ... w340
51.3 Der DOKUMENTKNOTEN ..ot ssase e sssssesens 344
5.2 Elemente selektieren ... sssses s sssesssesesesennns 345
521 Elemente per D Selektieren ... enecseiesieseesssessssessssennes 347
5.2.2 Elemente per Klasse SElEKLIEreNrncemecrnecrnerecreerisesiesecsisessesecsssennes 350
5.2.3 Elemente nach Elementnamen selektieranncnncenecrnecnnes 353
524 Elemente nach Namen Selektieren ... nceneciseesisessisecsisennes 355
5.2.5 Elemente per Selektor selektieren ..., 357
5.2.6 Das Elternelement eines Elements selektiereneconncenecnnn. 363
5.2.7 DieKindelemente eines Elements selektierenccnccnecenennes 365
5.2.8 Die Geschwisterelemente eines Elements selektierenecnecenneenes 370
5.2.9 Selektionsmethoden auf Elementen aufrufen ... 372
5.2.10 Elemente nach Typ selektieren 375
5.3 Mit Textknoten arbeiten ... essseesssssenssssesennns 375
5.3.1 Aufden Textinhalt eines Elements zugreifen 376
5.3.2 Den Textinhalt eines Elements vErandern ... 377
5.3.3 Das HTML unterhalb eines Elements veranderncccrncnnes 378
5.3.4 Textknoten erstellen und hiNZUFUGEN ...ccovvveiemcnecenenccrecciecreceieereeenene 379
5.4 Mit Elementen arbeiten ... ssssiesssesine 379
541 Elemente erstellen und hinZUTUGEN ... 380
542 Elemente und Knoten entfernen ... cesceeeseesenenns 383
5.4.3 Dieverschiedenen Typen von HTML-Elementencennecrnseeineenen. 384
5.5 Mit Attributen arbeiten ... 389
5.5.1 Den Wert eines Attributs aUSIESENccovveceecenrecnecicsecisecieeiecsiseenes 390
5.5.2 Den Wert eines Attributs andern oder ein neues Attribut hinzufiigen 392
5.5.3 Attributknoten erstellen und hinZUfUgenccncenecnecneceineenene 392

Inhalt

Inhalt

554 Attribute @ntfernen ... 393
5.5.5 AUf CSS-KIaSSEN ZUGIEITEN ...ucvumiveceiceieceireceirecieceiree e sieeesissessessessesssessesessassenses 393
5.6 ZUSAMMENTASSUNGccoovoriiriiiccrririnceeseiieeesssssesesssssesesssssisssesssssessessssssesmesssssesnesssssenns 394
6 Ereignisse verarbeiten und auslosen 397
6.1 Das Konzept der ereignisgesteuerten Programmierungcecomrcecnnnnncenns 397
6.2 AUfEreignisse r@AGIEIENoooiiiieeeieieeeeeii e eesss e essss s ssssss s sssss s sssssssssenns 398
6.2.1 Einen Event-Handler per HTML definieren 401
6.2.2 Einen Event-Handler per JavaScript definieren ..., .. 403
6.2.3 Event-Listener defini@ren ... 405
6.2.4 Mehrere Event-Listener definieren ... 407
6.2.5 Argumente an Event-Listener Ubergeben ... 409
6.2.6 Event-Listener entfernen ... seseeeissesees e sesseeseses 411
6.2.7 Event-Handler und Event-Listener per Helferfunktion definieren 412
6.2.8 Aufinformationen eines Ereignisses zugreifen 413
6.3 Die verschiedenen Typen vOn EF€igNiSSeNireonecreeemennenseessaseeseemseanessenns 415
6.3.1 Ereignisse bei Interaktion mit der Maus ... 416
6.3.2 Ereignisse bei Interaktion mit Tastatur und Textfeldern ... 421
6.3.3 Ereignisse beim Arbeiten mit Formularen ... 424
6.3.4 Ereignisse bei Fokussieren von Elementencecneceneccnne. 424
6.3.5 Allgemeine Ereignisse der Nutzerschnittstelle ... 425
6.3.6 Ereignisse bei mobilen ENAeraten ... rcceineceesseeseseseceesens 428
6.4 Den Ereignisfluss verstehen und beeinflussen ..., 429
6.4.1 Die EVENT-PRASEN ..ot csss s senss 429
6.4.2 Den Ereignisfluss UNTErbreChen ... 437
6.4.3 Standardaktionen von Events verhindern ... 442
6.5 Ereignisse programmatisch auslosen ... 445
6.5.1 Einfache Ereignisse aUSIOSEN ... rcreeieerieceisesieesisessssesseesssssesssnessanee 445
6.5.2 Ereignisse mit ibergebenen Argumenten auslOSencneceonneceneceonne 446
6.5.3 Standardereignisse aUSIOSENicrminnereereeeiineseesseesesaeecesaeesesseeseseanas 446
6.6 ZUSAMMENTASSUNEoooccrrrreeeeeeerseececcereeeessesssseeseeesssssssesssssses s sesssssessss s sssssssssssessssssssssens 447

10

7 Mit Formularen arbeiten 449
7.1 Auf Formulare und Formularfelder zugreifen ... 450
7.11 AufFormulare zugreifen 450
7.1.2 AufFormularelemente ZUGreifen ... cricceseeceesseesiaseseesseess 453
7.1.3 Den Wert von Textfeldern und Passwortfeldern auslesencnennn. 455
7.1.4 Den Wert von Checkboxen ausleseneconecneceonecensernnee 456
7.1.5 Den Wert von Radiobuttons aUSIESENc.cnerenneceneceneeneciecineeeisesionee 457
7.1.6 Den Wert von Auswahllisten auSIESEN ... 459
7.1.7 Die Werte von Mehrfachauswahllisten auslesennecneconcnecnecenes 460
7.1.8 Auswahllisten per JavaScript mit Werten befiillen 462
7.2 Formulare programmatisch abschicken und zuriicksetzen ... 463
7.3 Formulareingaben validieren ... eessssnnesssssiesen 465
7.4 ZUSAMMENTASSUNGoooiierirceriier i ssiese s sssas st ssesessssesisess s ssies 475

Browser steuern und Browserinformationen auslesen 477

8.1
8.2

8.3

8.4

Das Browser ObJect MOdel ... ceesssssessessssssesssssessssssenes 477
Auf Fensterinformationen zugreifen ... 479
8.2.1 Die GroRe und Position eines Browserfensters ermitteln ... 479
8.2.2 Die GroRe und Position eines Browserfensters anderncocroncces 481
8.2.3 AufAnzeigeinformationen der Browserleisten zugreifen ... 482
8.24 Allgemeine Eigenschaften ermitteln ... 484
8.25 Neue Browserfenster 6ffNen ... 484
826 Browserfenster SChHEBEN ... cnccesneceessecemesesesseeecessseesesasesensneees 486
8.2.7 DiAlOgE OFFNEN ..ottt eess st 487
8.2.8 Funktionen zeitgesteuert ausTUNIen ... 488
Auf Navigationsinformationen der aktuellen Webseite zugreifen 490
83.1 Aufdieeinzelnen Bestandteile der URL Zugreifencneconecenecnen. 490
8.3.2 AufQuerystring-Parameter zugreifen w491
8.3.3 Eineneue Webseite laden ... casessesecsssessasesnans 491
Den Browserverlauf einsehen und verdndern ... w493
8.41 Im Browserverlauf NAVIGIEIrEN ... cceeceeeinseeinsesseeesissessesessessesseseesens 493
8.4.2 Browserverlauf bei Single Page Applications ... 494
8.4.3 Eintrage in den Browserverlauf hinZuflgen ..., 495
8.4.4 AufAnderungen im Browserverlauf reagierenveeeeeeevveeveveereeenenenen 498
8.4.5 Den aktuellen Eintrag im Browserverlauf ersetzennececnneenen. 498

n

Inhalt

Inhalt

8.5 Browser erkennen und Browserfeatures bestimmen ... 500
8.6 Auf Informationen des Bildschirms zugreifen ... 502
8.7 ZUSAMMENTASSUNEcooommerrrrrnieeereeeseeeesssseeesseesssssssssssesssssesssssssssssesssssesssssssssssssmmssssssssssens 504
9 Inhalte einer Webseite dynamisch nachladen 505
9.1 DAS PrINZIP VON AJAX ...cooomiieiiriicerieceieeesioeeeetsseesssessesssssses st essseesssssessesssessssssesssssesssssnsees 505
9.11 Synchrone KommuniKationccreeernessisesssessesesessesssnessanne 505
9.1.2 Asynchrone KOMMUNIKATION ...cc.ovcccicciiernecrieceieesineesissesssessesesesssecsseseonne 506
9.1.3 Typische Anwendungsfalle fiir die Verwendung von AjaXx ... 508
9.1.4 Verwendete Datenformate ... 510
9.2 Das XML-FOrMAL ... csssmi s sssss s ssssss s ssssss s ssssssss s 511
9.21 Der AUTDAU VON XML ..c.ccoueiiieccieeeecceemccnieseceesscsesessesessssesessssscesssssesssesesasesesssesessanes 511
9.2.2 XML UNG i€ DOM AP .ooviceieeieciieeeinsessseessse s ssssessssse s ssssesssssessssessssessssssssanees 513
9.23 Zeichenketten in XML-Objekte umwandeln ..., 514
9.2.4 XML-Objekte in Zeichenketten umwandeln ... 515
9.3 DasJSON-FOIMAL ...t seesseeessseseasseesesseesesssesenaseseesssescessesees 516
9.3.1 Der AUTDau VON JSONciiimereeecemmsereessesessseseseseesesssesssssssessssecssasssessesessesenas 517
9.3.2 Unterschied zwischen JSON und JavaScript-Objekten 519
9.3.3 Objekte in das JSON-Format umwandeln 519
9.3.4 Objekte aus dem JSON-Format umwandelncnecnecncrnecnnees 521
9.4 Anfragen per AJax SEellen ... ssssesseessesseeseesenns 522
9.41 Das »XMLHttpRequest«-Objekt 522
9.42 HTML-Daten per Ajax [adencnecneseeseenesienes 529
9.4.3 XML-Daten per AjaX 20N ... cceieerneceieeeseesesessiseesssessesessssessssessanes 533
9.4.4 JSON-Daten per AJax laden ... cccreeinecrieeeisesissesisssessseessesssssscssessonse 537
9.45 Daten per Ajax an den Server SChICKENcoceceneerneceneeeieeciseeeiseseesecesseceonae 540
9.4.6 Formulare per Ajax absChiCken ... 541
9.4.7 Daten von anderen DOmains [adennccnseeeseseseseesnns 542
9.4.8 Die neuere Alternative zu »XMLHttpRequest«: die Fetch API 545
9.5 ZUSAMMENTASSUNG ..ot sssieseeeesssieeesssssessessssssssessssssessessssssessessssssssessons 546

12

10 Aufgaben vereinfachen mit jQuery 549
0.1 EINFURIUNG .ooooorcecensiteeceeeeesesssesss s sssssess s sssssessss st ssssssssssnsssssees 549
10.1.1 JQUENY €INDINAGN ... eessesessseesesssesesesesessssesesssseseessessesens 550

10.1.2 jQuery liber ein CDN @iNDINAENcccocuurriencriinereercceiisreseeesecseiseeseseseessesseeseeseseenns 551

10.1.3 JQUETNY VEIWENAEN ... ssssssssssssssssssssssessssssssssssesssssssssseas 552

10.1.4 Aufgaben mit jQuery vereinfacheneneccsesecsisennes 553

10.2 Mit dem DOM arbeitenciiiiccccrceceeiseesecceeceesessesssssseeseseesssssassseseeeeee 555
10.2.1 Elemente SEleKLIEreN ...t sessseessieeseessseesesaas 555

10.2.2 Auflinhalte zugreifen und diese verandern ... 560

10.2.3 Ausgewahlte Elemente filtern ... ccecseresiecsisessesecsissennes 564

10.2.4 Auf AtEriDULE ZUGIEITEN oottt esse e nes 566

10.2.5 Auf CSS-Eigenschaften zugreifen ... 568

10.2.6 Zwischen Elementen Navigieren ... 569

10.2.7 Effekte und Animationen verwenden ... 571

10.3 Auf Ereignisse rEAZIEIENomcccremmieieeseseceesmeesssssessssssssssesssssssessesssssssssssnsesssssee 573
10.3.1 Event-LiStener registrieren ... cneccceesesisesssscsseessassenes 573

10.3.2 Aufallgemeine Ereignisse reagieren ... 574

10.3.3 Auf MauSereignisse rEAGIEIEN ... crcrcrieerieeriseeraeesiessiseesinessesesssssessssessanns 575

10.3.4 Auf Tastaturereignisse reagieren ... ccreeeessesseeseessssssesens 577

10.3.5 Auf Formularereignisse reagiereneeseeecsesnesesssecsesenns 578

10.3.6 AufInformationen von Ereignissen zugreifen ..., 579

10.4 Ajax-Anfragen erstellen ... 581
10.4.1 AJax-Anfragen erstellen ... ssaseesissessasessassesses 581

10.4.2 AUT Er€IgNISSE EAGIEIEN ..ccuumceerceereceieceireeeimeceieeesesssee s s ssssessesessissessesesssssesses 584

10.4.3 HTML-Daten per AjaX lad@nrrenceeeesseseesecessssesseseesesassssssseesesanns 585

10.4.4 XML-Daten per Ajax laden 587

10.4.5 JSON-Daten per AjaX laden ... eecnernsesiesseseesisessssessessessseesens 588

10.5 ZUuSAMMENTASSUNG ..ot sessiseesssseessesssssessssssssasesssssesessssssesnessssssesnes 589
11 Bilder und Grafiken dynamisch erstellen 597
111 Bilder ZeIChNEeNoiiiiieeeerseeesssssssssssssssssssssssssssss s 597
1111 Die Zeichenflache ... sssnnsa 597

11.1.2 Der Rendering-KONTEXLccovwreuecunceeeieciirseeseciseessssessseesissesssessesessissessenessssesses 598

11.1.3 Rechtecke ZEIChNEN ... seiaas 600

11.1.4 Pfad@ VEIWENAEN ...t sasse s ssasesssssnnes 603

1115 Texte ZEICANEN .. ssannss 609

13

Inhalt

Inhalt

11.1.6 Farbverlaufe ZeIChNeN ... seaees 610
11.1.7 Speichern und Wiederherstellen des Canvas-Zustandscoccnceonecnes 612
11.1.8 Transformationen aNWENAEN ... ssseessssesssesses 614
11.1.9 ANIMationen erstelIEN ...t 617
11.2 Vektorgrafiken @iNbinden ... sssesse e 619
11.2.1 Das SVG-FOrMAT ...t cesen 619
11.2.2 SVG N HTMLEINDINAEN wouiiiieicicieciieiecrissesiectisessies e sssseessesssssssssesssesses 621
11.2.3 Das Aussehen von SVG-Elementen mit CSS beeinflussencnecnecnnn. 624
11.2.4 Das Verhalten von SVG-Elementen mit JavaScript beeinflussenc.ccccc.... 625
11.3 ZUSAMMENTASSUNEoocoocerrrcrrriniosecseeesessseessssssssssssssssssssss s ssssssesssssssssesssssssssssnnsssse 627
12 Moderne Web-APIs verwenden 629
12.1 Uber JavaScript KOMMUNIZIEIEN ... 631
12.1.1 Unidirektionale Kommunikation mit dem Server ... 631
12.1.2 Bidirektionale Kommunikation mit einem Server 633
12.1.3 Vom Server ausgehende Kommunikation ... 635
12.2 Nutzer WIiedererkENNENrcerineeeesinessessesesssssssssesssssesessssssssssssssesnens 640
12.2.1 COOKIES VEIWENUEIN ..ottt ss s sene 640
1222 COOKIES ANIBEEN .o ssises i esases et esesec s ssanesras 642
12.2.3 COOKIES QUSIESEN .oouneirceircericrieceieeriecrise it esese s esse s sises s s sres 643
12.2.4 Ein Beispiel: Einkaufswagen auf Basis von Cookiescccourmmereemncceeecnneceens 645
12.2.5 Nachteile VON COOKIES ...ttt sssesisesssssssesene 648
12.3 Den Browserspeicher NUEZEN ...t ssssesssss s sssssees 648
12.3.1 Werte im Browserspeicher SPEIChErncecnecmeceneesecsnecesssessenecnes 649
12.3.2 Werte aus dem Browserspeicher [€SENerneeenneeinecriseeienecrisenens 650
12.3.3 Werte im Browserspeicher aktualiSieren ... 651
12.3.4 Werte aus dem Browserspeicher 16SChencncronecrnncrnecrneennns 651
12.3.5 AufAnderungen im Browserspeicher reagierenreeeessssssssnsnnnnees 652
12.3.6 Die verschiedenen Typen von Browserspeicherncrencceenns 653
12.3.7 Ein Beispiel: Einkaufswagen auf Basis des Browserspeichers ... 654
12.4 Die Browserdatenbank NUEZEN ... 655
1241 OffNen €iNer DAtENDANK ...ccccvvecrrrrerresessssssiseessseeesseeseesssees 656
12.4.2 Erstellen @iner DAatenbank ... sssessesessssnesses 658
12.4.3 Erstellen eines ObjektSPeiChers 659
12.4.4 Hinzufligen von Objekten zu einem Objektspeichernccnncnnn. 659
12.45 Lesen von Objekten aus einem Objektspeicher ... 663
12.4.6 Loschen von Objekten aus einem Objektspeichercncnecrnecennecnen. 664
14

125

12.6

12.4.7 Aktualisieren von Objekten in einem Objektspeicherccnecrnncnnes 665
12.4.8 Verwendung €iNES CUMSOIScreerecemeeeeeessecsssesssesssnessissesssnessssessissessenesssssesses 666
Auf das Dateisystem zugreifen ... 668
12.5.1 Auswahlen von Dateien per Dateidialogcccormcruonceernnereenncceiienereeeseesenens 668
12.5.2 Auswahlen von Dateien per Drag & Dropriinesisnesisiessissssinnns 670
1253 LeSen VON DAt@IEN ... sasasones 671
12.5.4 Den Lesefortschritt Gberwachen ... 674
Komponenten einer Webseite verschieben ..., 676
12.6.1 Ereignisse einer Drag-and-Drop-Operation ... 676

12.6.2 Verschiebbare Elemente definieren 677
12.6.3 Verschieben von EI@MENTENceceereceeeseecesiseesessecessseseessescesens 680
12.7 Aufgaben paralleliSieren ... sssieseene 681
12.7.1 Das Prinzip VON Web WOTKEINccvcienecineeieeiseisecrecieeisesese e sssessssssssesssessaessene 683
12.7.2 Web Worker VerWENAEN ... sesssesssssessssasesssssseesonsnns 684
12.8 Den Standort von Nutzern ermitteln ..., 685
12.8.1 Auf Standortinformationen zZugreifen ... 686
12.8.2 Kontinuierlich auf Standortinformationen zugreifenccoceonrnncennnn. 688
12.8.3 Position auf Karte anzeigen ... cecesesissesisssesssessasecssssenees 689
12.8.4 Anfahrtsbeschreibung anzeigenccneneceersesresecsiseennes 690
12.9 Den Batteriestand eines Endgerdts auslesen ..., 692
12.9.1 Auf Batterieinformationen zugreifen ... 692
12.9.2 AU Er@IgNISSE MEAGIEIEN ...coumreerreercrienereereeimesieeesse s ssssessssesssssessassssasennes 693
12.10 Sprache ausgeben und Sprache erkennen ... 695
12.10.1 SPrach@ QUSEEDEN ... ssssessasessassessesessasesses 696
12.10.2 SPrache @rKENNEN ...t eiieesesessiseessses s asssecsises et ssssessesessassessssesses 698
12.11 ANiMAationen erstell@n ... 700
12.11.1 Verwendung der APl ... sssssssssssse s ssssssssones 700
12.11.2 Steuern einer ANIMation ... sseaeenes 703
12.12 Mit der Kommandozeile arbeitenrcceeiinceeeenneeeseeisessessieseee 704
12.12.1 Auswahl und Inspektion von DOM-EIEMENTENovvveereoeererireciirecrieeiireciisennes 705
12.12.2 ANalysSe VON EVENTS ...ttt sssse s sssse s sssennes 707
12.12.3 Debugging, Monitoring und ProfiliNgmrccrnerinecriesieeesineennes 710
12.13 Mehrsprachige Anwendungen entwickeln ..., 714
12.13.1 BegriffSerklarUNGEN ettt sise s s snes 715
12.13.2 Die Internationalization APl ... sessseessseseseessseesseens 716
12.13.3 Vergleich von Zeichenketten ... 718
12.13.4 Formatierung von Datums- und Zeitangabencnncronecrnncrinecnen. 721
12.13.5 Formatierung von ZahleNWErtenccenececrneesesseesissesseeessssesnes 724

15

Inhalt

Inhalt

12.14 Ubersicht iiber verschiedene Web-APIsoeermmeeemssssessssssessssssen 727
12.15 ZuSAMMENTFASSUNGccommercrrrmiiiceseeeressseesssssesssscessssssssssssssssssssssesssssssssssssssssssssnnsesses 732
13 Objektorientierte Programmierung 733
13.1 Die Prinzipien der objektorientierten Programmierung ... 733
13.1.1 Klassen, Objektinstanzen und Prototypenecncncrnnerinecrnennes 734
13.1.2 Prinzip 1: Abstraktes Verhalten definieren ... 736
13.1.3 Prinzip 2: Zustand und Verhalten kapseln ... 737
13.1.4 Prinzip 3: Zustand und Verhalten vererben 738
13.1.5 Prinzip 4: Verschiedene Typen annehmencceneenecenecessessenecnes 739
13.1.6 JavaScript und die Objektorientierungcccennecnecesseessecseeenes 740
13.2 Prototypische Objektorientierung ... 740
13.2.1 Das Konzept von ProtOtYPEN ... s 740
13.2.2 Von Objekten ableiten ... 741
13.2.3 Methoden und Eigenschaften vererben ... 742
13.2.4 Methoden und Eigenschaften im erbenden Objekt definieren 742
13.2.5 Methoden Gberschreiben ... sessecsseennes 743
13.2.6 Die Prototypenkette ... sssessesecsesnesses 744
13.2.7 Methoden des Prototyps aufrufencenecnecsessesseeesissennes 746
13.2.8 Prototypische Objektorientierung und die Prinzipien
der ObjJeKLOrIENTIEIUNG ... esee e 747
13.3 Pseudoklassische Objektorientierung ... 747
13.3.1 Konstruktorfunktionen definieren ... 748
13.3.2 Objektinstanzen erzeugen 748
13.3.3 Methoden defiNieren ... eeiseeseiesseceseeesessseessessessesssecsesseesenes 748
13.3.4 Von Objekten ableiten ...t sassesees 749
13.3.5 Konstruktor der »Oberklasse« aufrufen ... 753
13.3.6 Methoden GDerschreiben ... ceseseesesens 753
13.3.7 Methoden der »Oberklasse« aufrufen ... w753
13.3.8 Pseudoklassische Objektorientierung und die Prinzipien
der ODJEKLOrIENTIEIUNE ...t sresee s sraseesees i ssesesseeses 754
13.4 Objektorientierung mit KIassensyntax ... 754
1341 KIasSen defiNIEreNcriicceireeeeeseecesisesesssecsssseesessseesesssessssssessesssessssesessenes 755
13.4.2 Objektinstanzen erzeugenrnnecnneceoneecnsenene . 756
13.4.3 Getter und Setter definieren ... seenns 756

16

13.4.4 Von »Klassen« ableiten ... ssesseesonens 757

13.45 Methoden Uberschreiben ... sseseessssennes 760

13.4.6 Methoden der »Oberklasse« aUFIUfEN ... 762

13.4.7 Statische Methoden definieren ... 763

13.4.8 Statische Eigenschaften definieren ... 764

13.4.9 Klassensyntax und die Prinzipien der Objektorientierungcnecnecene. 765

13.5 ZUSAMMENTASSUNGooomireiirccriiencceiiies i ssiessesssssesssssssasesssssesessssssasnessssssesns 766
14 Funktionale Programmierung 767
14.1 Prinzipien der funktionalen Programmierung ..., 767
14.1.1 Prinzip 1: Funktionen sind Objekte erster KIassecncconecrnncennecnnne 767

14.1.2 Prinzip 2: Funktionen arbeiten mit unveranderlichen Datenstrukturen 768

14.1.3 Prinzip 3: Funktionen haben keine Nebeneffektecoicnncinennnn. 768

14.1.4 Prinzip 4: Funktionale Programme sind deklarativ 768

14.2 Imperative Programmierung und funktionale Programmierungccouuueccece. 769
14.2.1 Iterieren mit der Methode »fOrEaCh ()« ..o 769

14.2.2 Werte abbilden mit der Methode »Map()« ...ooveveeerereeeereeenereeiseeeeesreeeeieseeess e 772

14.2.3 Werte filtern mit der Methode »filter()« ..o 774

14.2.4 Mehrere Werte zu einem Wert reduzieren mit der Methode »reduce()« 776

14.2.5 Kombination der verschiedenen Methodenccncenecrnsceinecnen. 778

14.3 ZuSamMMENTASSUNGcoooccccirrreeiiiieeccceceeeiieisissssee e ssesssssssss s ssssssessse s sesssssssssssssessee 779
15 Den Quelltext richtig strukturieren 781
15.1 Namenskonflikte vermeiden ... 781
15.2 Module definieren und VErwenden ... 785
15.2.1 Das Module-ENtWUITSMUSTET ...cc.vvricnriececernecececsisenissecsieesisesseecsssennes 785

15.2.2 Das Revealing-Module-EntwurfSmMUSTercc.rncrinereenneceiisesceeerecsenenns 789

15.2.3 AMD co ettt st eaen 793

1524 COMMONIS ottt 795

1525 NAtiVE MOUIE ..ottt ssese s snes 796

15.3 ZuSAMMENTASSUNGccoomiccccrreeeeeiiiseeccceceeeeiiissssseeeeessssssssssss s ssssssesss s sesssssssassssce e 799
17

Inhalt

Inhalt

16

Die seit ES2015 eingefiihrten Features richtig nutzen so:

l6.1

16.2

16.3

16.4

16.5

16.6

16.7

18

IMAPS VEIWENAENcoooieoeeerceeeceeoeeeeseeeess s essss st st ess s s ssss st sessnesees 804
16.1. 1 MAPS EISTEIIEN oottt ssee s 804
16.1.2 Grundlegende OPerationencrcceinneceeesssssessesseesesseessesseessenns 805
16.1.3 UDEr MAPS IEMEIEN w.cooveeeecevvvveerreereesesssssssssssssssssesssssssssssssssssssssssssssessssssesssssssssssssssessesnes 807
16.1.4 Weak MapS VEIWENAENccveereecrimereeeeisesesseesiessaseessssesseseesssessenessssesssnessasssssnesses 809
SEES VEIWENAENoooe ettt ettt 811
16.2.1 SEtS EISTEIEIN oottt bbbttt 811
16.2.2 Grundlegende Operationen von Setsncncnccnecsesisessseennes 812
16.2.3 UDEI SES ILEIEIEN w.oooeeeeeeeeeee e ssssssssss e 813
16.2.4 Weak SEtS VEIWENAEN ...ttt sss st sttt sssssssens 814
Das Iterieren liber Datenstrukturen kapseln ... 816
16.3.1 Das Prinzip vON HEratoren ... iicsescsssissssesssssssennns 816
16.3.2 Iteratoren verwenden 816
16.3.3 Einen eigenen Iterator erstellen 817
16.3.4 Ein iterierbares Objekt erstellen ..o 819
16.3.5 Uber iterierbare ODJEKE IEMEIEN ...wwcwemmeceerereerresssssssssesesssessesessesesssssssssssesssssenes 820
Funktionen anhalten und fortsetzen ... 820
16.4.1 Eine Generatorfunktion erstellen 821
16.4.2 Einen Generator €rStellEN ...ttt esssesene 821
16.4.3 Uber GENeratoren MEIIEIEN ... ceveeceeeeeeeeeeeeeeeee e eeeeeesseseseeee s eessssseee 822
16.4.4 Unendliche Generatoren erstellen ... 823
16.4.5 Generatoren mit Parametern steUern ... 823
Den Zugriff auf Objekte abfangencerisesesccensseesssssseee 824
16.5.1 DS PriNZiP VON PrOXIES ..cuuevuceucrureciieeineeineeieemmessseresecueesssssesessesssessssesssessssssssssasssnesens 824
16.5.2 ProxXies €rStEIIEN ...ttt ettt een 825
16.5.3 Handler flir Proxies defini@ren ... essseesseessessssessesssesons 825
Asynchrone Programmierung vereinfachen ... 828
16.6.1 Das Prinzip der asynchronen Programmi€rungcmmceceecenecrunsesmonecnes 828
16.6.2 Promises erstellen 833
16.6.3 Verarbeiten eines Promises 834
16.6.4 Promise-Aufrufe VEIrKETEEN ...t 835
16.6.5 Die ZUuStaNde VON PrOMISES ...ceveereeeeeeieereiseeieeeeeesse s sssessssessssssssssssesssessssssssssasssssssens 836
16.6.6 ASYNC FUNCLIONS w..ccooemiiiecieecciceimceiicciic e cesesess s ssse s essse e sees 837
Vorlagen fiir Zeichenketten definieren ... 840
16.7.1 Template-Strings erstellen ... ssesecsssessereenes 841
16.7.2 Platzhalter innerhalb von Zeichenketten definierenncnrecnnenncnnn. 841
16.7.3 Ausdriicke innerhalb von Zeichenketten auswertenncnninnrennenn. 841

16.7.4 Mehrzeilige Zeichenketten definieren ... 842

16.7.5 Zeichenketten lber Funktionen verandern ... 843

16.8 SYyMbOole VEIrWENAEN ...t sssiisssssssiasesssssesessssssenees 844
16.8.1 SYMDOIE €rSEIlEN ...t seeeas 844

16.8.2 Die Symbol-Registry vVerwenden ... 845

16.8.3 Symbole zur Definition eindeutiger Objekteigenschaften verwenden 846

16.8.4 Symbole zur Definition von Konstanten verwendenccoeoncrccinccunnn. 848

16.9 Werte aus Arrays und Objekten extrahieren ... 848
16.9.1 Werte aus Arrays eXtrahierencsessesieesssessasesssascnnes 849

16.9.2 Werte aus Objekten extrahieren ... 852

16.9.3 Werte innerhalb einer Schleife extrahieren ... 856
16.9.4 Argumente einer Funktion extrahieren ... 857

16.9.5 Objekteigenschaften in ein anderes Objekt kopieren 859

16.9.6 Objekteigenschaften aus einem anderen Objekt kopierenccvcenecenncnnes 860

16.10 Neue Methoden der Standardobjekte .. . 861
16.10.1 Neue Methoden in »ODJECLE ... ssesse s ssesesssssesnes 861
16.10.2 Neue Methoden in »SEIINGK ... sseessasesssaennes 861
16.10.3 Neue Methoden iN »AITAY« ... sseesissessasessassessssessasesssssesses 862
16.10.4 Neue Methoden in »REGEXPUcc.vwwucueceennreieceeeeisnecsecsieesissessssessseessssessesesssssesses 863
16.10.5 Neue Methoden in »NUMDEI«c..coiirieicrinecceiseereesecesesseseesseesesaseeseseeesesaens 864
16.10.6 Neue Methoden in »Mathe ... 864

16.11 ZUSAMMENTASSUNoooomrceeereeceeeiee e sesss e ssesss s sss s sss s ssss s s 865
17 Serverseitige Anwendungen mit Node.js erstellen 867
17.1 EinfURIUNG NOE.JS ..ot enieeecesssesesesssisessssseasssssssisessssseesne 867
17.1.1 Die Architektur VON NOGE.JS ...t siaseessssessasessssennes 867

17.1.2 InStallation VON NOGE.JS ...creeiiecireceierieecrisesiseerieesiesseseesesesseessessssssesesessses 869

17.1.3 Eine einfache ANWENAUNE ..o sissessssessassssssessesesssssesses 870

17.2 Node.js PAckages VEIWaIteNmcrinceemieseessessssseessesssesnessssseesseee 871
17.2.1 Den Node.js Package Manager installieren ... 871

17.2.2 Packages installieren 871

17.2.3 Eigene Packages erstellen 875

17.3 Ereignisse verarbeiten und auslosen 879
17.3.1 Ein Event auslésen und abfangen 879

17.3.2 Ein Event mehrfach QuSIOSEN ... sasessasenees 881

17.3.3 Ein Event genau einmal abfangen ... ccnenececesesriecsisennes 882

17.3.4 Ein Event mehrfach abfangen ... ccneecnecsecisecsiseesisesseecssssennes 882

19

Inhalt

Inhalt

17.4 Auf das Dateisystem ZUGreifen ... 883
1741 Dat@ien [@SEN ... ceiiee s sesaeesssssesess s 883
17.4.2 Dateien SCRreIDEN ...t seas 884
17.4.3 Dateiinformationen auslesenrcccesceesseesesceseeesenens 885
17.4.4 Dateien [0SCHEN ...t sssesessse s ssssescene s esaessones 886
17.45 Mit Verzeichnissen arbeiten 887
17.5 Einen Webserver erstellenceeemissssssesesesssssssssssseeeee 888
17.51 Einen Webserver starten 888
17.5.2 Dateien per Webserver zur Verflgung stellen ... cncrnnecrinncnnes 890
17.5.3 Einen Client fiir einen Webserver erstellen ... 890
17.5.4 ROULEN AEFINIEIEN ..ot eese e cess e ees e seenen 891
17.5.5 Das Webframework EXpress Verwendencerneccresnns 892
17.6 Auf Datenbanken zZUGreifen ... 897
17.6.1 Installation VON MONGODBcerneeieeineceineeeisecssessessecssesseessassesssessesessissesses 897
17.6.2 MongoDB-Treiber fiir Node.js installieren ... 898
17.6.3 Verbindung zur Datenbank herstellen ... 898
17.6.4 Eine Collection erstellen 899
17.6.5 ODJEkte SPEICNEIN .ottt sri s sseessen 900
17.6.6 ODJEKLE IESEN oottt 901
17.6.7 Objekte aktualiSIEren ... ssssesines 903
17.6.8 ODJEKLE IOSCREN ..ot ssese s nes 904
17.7 ZuSAMMENTFASSUNGoccomerrcerrmieieeeseeesessseesssssesssssssssssssssssssssssssssesssssssssssssssssssssnnsssse 905
18 Mobile Anwendungen mit JavaScript erstellen 907
18.1 Die unterschiedlichen Arten mobiler Anwendungen ..., 907
18.1.1 Native ANWENAUNEEN ...oueeercricrimeeiercrieriaeesiseesiseessessssessasessasessessssssessanessssesssnesses 907
18.1.2 Mobile WeDaNWENAUNGENc.vvcuircrieeriecrineeeieesiecsisessisecssecssssessssesssnessissesssnesses 908
18.1.3 HybridanWendUNZENerneeeeaseeeeiineseeseesssseeesssseesssssessssssessesssesssssseseses 910
18.1.4 Vergleich der verschiedenen ANSAtze ... 911
18.2 Mobile Anwendungen mit jQuery Mobile erstellen ..., 913
18.2.1 Das Grundgerist einer mobilen Anwendung definieren ... 914
18.2.2 Einzelne Seiten innerhalb einer Anwendung definieren ... 915
18.2.3 Ubergange zwischen den Seiten definieren ... 918
18.2.4 ThemMEeS VEIWENAEGNiveieeeceeicceiinceeiesesisessasaessssssssosssssesssesesssesesssessosssssonas 920
18.2.5 UI-KOMPONENtEN VEIWENAENcoomevecriceriecrineerieeieecsiessesecsanecsssseessesssnessssesssnesses 921
18.2.6 Layout-Raster definierenrccesneceensecsesseseessseeseeens . 930
18.2.7 AUTEr@IgNISSE EAGIEIENcouuveerreemcriereiieceiaeneie s e sese s esse e sessssasseseas 934

20

18.3 Hybride Anwendungen mit Cordova erstellen ..., 936
18.3.1 Das PrinzZip VON COTAOVA ..ccueumeerreieeerecimeeeeseesseeesssessssesssnesssssesssessssssssssesssnesssssesses 936

18.3.2 Eine Anwendung erstellen ... cececsesissesieeesssesssesssaennes 937

18.3.3 Eine ANWENAUNE STAITEN ...t ssese e ssse s sassennes 940

18.3.4 PIUGINS VEMNWENUEN ..ccourericrireereeerieeeieeeisseceesessesessssessssse s sssses i ssssessesessessessesessssesses 942

18.3.5 Auf Gerateinformationen zugreifen . 945

18.3.6 DialOge ANZEIGEN ..ottt 947

18.3.7 Aufdie Kamera ZUGIeIifenccnecnnecnessecssessesesseseesssnessesessassenses 948

18.3.8 AufBewegungsinformationen zZugreifen ... cceeecrsesneneenens 949

18.3.9 Auf Orientierungsinformationen zugreifen ... 950
18.3.10 Auf Geolokalisierungsinformationen zugreifen ... 951
18.3.11 Bild-, Audio- und Videoaufnahmen durchfihreneeeerennnes 952
18.3.12 Auf Verbindungsinformationen zugreifen 955
18.3.13 AUf KONtakte ZUGIEIfeN ...t cnsessessssseessssesesseseesesans 955
18.3.14 Dateien herunterladen und hochladen ... 958
18.3.15 Ul-Komponenten VErwendencceeesecsnecssessonee . 960
18.3.16 AUT Er€igNiSSE EAGIEIEN ...cuumeeerreereeieceireeeseceieeesesssee s ssasessisessssessesessissessesesssssesses 960
18.3.17 Eine ANWENAUNG DAUEBNcocurrieerceeiccreiieeceeeeceesseseesseesesssessseseesessssesssssesessseesssans 962

18.4 ZuSamMMENTASSUNGcooooccccirrceeiieeireeccceceeeeiiessssseeeeeessesesssssss s ssssssessss s sessssassss s 963
19 Desktopanwendungen mit JavaScript 965
LO.1 NWS weieccerieseeessssasesssssssssesesssassses s sesssss e sssssse s ssssss s sse s sssass s srsesn 966
19.1.1 Installation und BeispielanWendungcrcrenneseesscesiieseseessseeseeans 967

1912 PACKAGING oo sieseessse e sssss s st sres 968

19.2 EIECEION ..o ssssssssssss s 969
19.2.1 Installation und BeispielanWendung ... eneesenisenseeeesenens 970

19.2.2 InterprozesskoMmMUNIKATIONcccmrcmececnececeesecsirecseessesesseseessasennes 971

19.2.3 PACKAGING .ouvveeereierereiicceeiieseeaseeseeaeesessse s sesssessesassesssseesessse s 973

19.2.4 Debugging, Monitoring und TESTING ... seeenseeseens 974

19.3 ZUSAMMENTASSUNGoccorrrcerrieeecseeceeesseessssesssssesssssesss s sssssesssss st sessssssssnssssssee 976
20 Mikrocontroller mit JavaScript steuern 979
20,1 ESPIUINOoooeemecccccreeeeiieimeseeeeceseseessssss e sesssssssssss e sessssssss s sessssss s essnssss st 980
20.1.1 Technische INfOrmationen ... sseeseans 980

20.1.2 Anschluss und INStAllation ... 981

21

Inhalt

Inhalt

20.2

20.3

20.4

20.5

20.6

21

20.1.3 Erstes BEISPIEI oot srascssseesesesssssesasseseses s ssssessssesessesssessanes 981
20.1.4 LEDS QNSTRUEIN ettt tsessessessesses et aesse e s essnesenns 982
20.1.5 WEItEre MOAUIE ..ottt sttt 984
20.1.6 SENSOIEN QUSIESEN .ottt sa s ss st 985
TESSEI ...ttt 986
20.2.1 Technische INfOrmMatioNeN ...t eseees 986
20.2.2 Anschluss und INStallation ...t ss s 987
20.2.3 LEDS QNSTRUEIN ettt st 988
20.2.4 Die Drucktaster programmierenccreereremiessesesiseseseessesssesnns 989
20.2.5 Den Tessel durch Module erWEITEIN ... 990
BEAGIEBONE BIACKoooreiriceieiiceii s ssseses s sssasesssssianesssssssss 991
20.3.1 Technische Informationen 991
20.3.2 Anschluss und Installation . 992
20.3.3 LEDS @NSTEUEIN .ttt eseae s sse e ssessesease s sesaseanas 993
ATAUINO ..ottt 994
20.4.1 Das Firmata-Protokoll ...ttt 995
20.4.2 Anschluss und INStallation ... 995
20.4.3 Das Node.js-Modul JONNNY FIVEccrcreeinecrieceisesiesseessassesssessanessssessonee 996
CYIOMLJS ..o seisiseessssesseesseeseses s e 997
20.5.1 Steuern eines BeagleBone Black Mit CYlON.jSconccmnecenecenneceneceneceeneceonee 998
20.5.2 Steuern eines Tessel-Boards mit CylON.Sccorcrinncreenncceeineceeiseeseesscceeeanas 998
20.5.3 Steuern eines Arduinos Mit CylON.jS ... 999
ZUSAMMENTASSUNEcooooermceccrererrieeneeseesesessseessssessssssssssesss s sssssesssssssessssssssssssssnnsssses 999

Einen professionellen Entwicklungsprozess aufsetzen 1001

21.1

21.2

22

Aufgaben automatiSieren ... eesssesseesnes 1001
21.1.1 Aufgaben automatisieren mit Grunt

21.1.2 Aufgaben automatisieren mit Gulp

Quelltext automatisiert testen ...

2121 Das Prinzip von automatisierten Tests ..

21.2.2 Das Prinzip der testgetriebenen Entwicklung ..., ... 1008
21.2.3 Den Quelltext automatisiert testen mit QUNItooeveveveieeeeeeeee e, 1009
21.2.4 Den Quelltext automatisiert testen mit Mocha ... 1016

21.3 Versionsverwaltung des Quelltextes ... 1020
2131 Einfiuhrungin die Versionsverwaltungcnerceseceineseesneees 1020
21.3.2 Das Versionsverwaltungssystem Git installieren und konfigurieren 1024
21.3.3 Ein neues lokales Repository anlegen
21.3.4 Ein bestehendes Repository KIONENcnceneciecrnesiecreseesisseenens
21.3.5 Anderungen in den Staging-Bereich Ubertragen
21.3.6 Anderungen in das lokale Repository tibertragen
21.3.7 Dieverschiedenen Zustande in Gitcrrceiinncciecsssessssssessinnes
21.3.8 Anderungen in das Remote Repository Ubertragen ... nmnnnnneeees 1030
21.3.9 Anderungen aus dem Remote Repository tibertragen 1031
21.3.10 Ineinem neuen Branch arbeiten ... nccnesiseciisenseennens
21.3.11 Anderungen aus einem Branch Gbernenmenvrevereevveeesssesssssssnnnns
21.3.12 Ubersicht Uber die wichtigsten Befehle und Begriffe
21.4 ZUSAMMENTASSUNGoomireeirceirircceriees s aseessesesssesssssssase st ssesssssssssisessssrsesn
Anhang 1005
A JAVASCHIPE-REFEIENZ ...t 1041
B DOM-Referenz und HTML-Erweiterungencmeeeeeennnnseeeessesecessssseee 1097
C BOM UNG AJAX ..ooeeereeeiieeeeeess e eeesss e sssss s sssssss s sss s ssss s s eses e 1189
D HTMLS-Web-APIS-REFEIeNz ... csssssssnee 1223
TNAEX et ceeeecees s ess s bt 1275
23

Inhalt

