

Contributors	xiii
Preface	xv
1 What Do We Measure, and Why? <i>Roger E. A. Arndt</i>	
1 Introduction	1
2 The Need for Flow Measurements	1
3 What Do We Need to Know?	3
4 Examples of Fluid Mechanics Measurements	4
4.1 Measurement of Sediment Load in a Stream	4
4.2 Wind-Tunnel Studies	5
4.3 Propeller Vibration	7
4.4 Aeroacoustics	8
4.5 Turbulent Mixing Layer	11
4.6 Summary	11
5 Outline of the Theory of Fluid Mechanics	11
5.1 Inviscid Flow	11
5.2 Viscous Flow and Turbulence	16
5.3 Turbulence	17
6 Spatial and Temporal Resolution in Measurements	22
7 Correlation of Data and Signal Analysis	26
7.1 Classification of Deterministic Data	26
7.2 Random Data and Signal Analysis	27
Nomenclature	39
References	41

2 Physical Laws of Fluid Mechanics and Their Application to Measurement Techniques *E. R. G. Eckert*

1	Introduction	43
2	Similarity Analysis	47
3	Inviscid, Incompressible Fluids	51
4	Inviscid, Compressible Fluids	53
5	Viscous Fluids	56
	Nomenclature	60
	References	60

3 Differential Pressure Measurement *William K. Blake*

1	Introduction	61
2	Uses of Differential Pressure Measurements	61
3	Principles Involved in Measuring Velocities with Differential Pressure	63
3.1	Pitot-Static and Impact Pressure Tubes	64
3.2	Multidimensional Mean-Velocity Measurement	67
3.3	Physical Errors in the Measurement of Steady Pressures	72
4	Types of Transducers for Measuring Unsteady Pressures	73
4.1	Condenser Microphones	76
4.2	Piezoelectric Transducers	78
4.3	Strain-Gage Transducers	81
5	Mechanical Transduction of Time-Varying Pressure Signals	81
6	Physical Errors in the Measurement of Unsteady Pressures	85
6.1	Spatial-Resolution Errors	85
6.2	Aerodynamic Interference	90
6.3	Acoustic Reflection	92
7	Special Techniques with Microphone Arrays	92
	Nomenclature	94
	References	95

4 Thermal Anemometers *Leroy M. Fingerson and Peter Freymuth*

1	Introduction	99
2	Strengths, Limitations, and Comparisons with Laser Velocimeters	101
3	Hot-Wire Sensors	104
4	Probe Supports and Mounting	106
5	Control Circuit	107
6	Calibration of a Hot-Wire Anemometer	108
7	Heat Transfer from Fine Wires	108
7.1	High-Speed Flow	113
7.2	Conduction to Walls	114
8	Conduction to the Supports	114
9	Angle Sensitivity and Support Interference	117
10	Measuring Mean Velocity, Velocity Components, and Temperature	119
10.1	One Component Using a Single Hot Wire	119
10.2	Two Components Using an X Probe	119

10.3	Three Components	120
10.4	Multiposition Measurements	122
10.5	Nonisothermal Flows	122
11	Dynamics of the Constant-Temperature Hot-Wire Anemometer	124
11.1	Frequency Response of a Constant-Temperature Hot-Wire Anemometer	125
11.2	Optimization and Electronic Testing of the Dynamics of the Hot-Wire Anemometer	125
11.3	Large Velocity Fluctuations	128
11.4	Dynamic Effects of Conduction Losses to the Supports	128
11.5	Attenuation of Heat Waves across the Thermal Boundary Layer of the Sensor	130
11.6	Finite Resolution Due to Finite Sensor Size	131
12	Noise in Constant-Temperature Thermal Anemometry	131
13	Film Sensors	133
13.1	Cylindrical Film Sensors	133
13.2	Noncylindrical Film Sensors	140
14	Constant-Current Operation	145
15	Other Measurement Techniques and Applications Using the Constant-Temperature Anemometer	145
15.1	Aspirating Probe	145
15.2	Pressure Measurements	146
15.3	Total Flow	146
15.4	Split-Film Sensors	147
16	Conclusion	147
	Nomenclature	148
	References	151

5 Laser Velocimetry *Ronald J. Adrian*

1	Introduction	155
2	Basic Principles	157
2.1	Doppler Shift of Light Scattered by Small Particles	157
2.2	Optical Heterodyne Detection	159
2.3	Basic Optical Systems	159
3	The Dual-Beam LDV	163
3.1	Practical Dual-Beam Optics	163
3.2	Characteristics of the Dual-Beam Signal	165
4	The Reference-Beam LDV	177
5	Multi-Velocity-Component Systems	178
6	Photodetectors	181
6.1	Detector Characteristics	182
6.2	Photoemission Statistics	183
6.3	Shot Noise	183
7	Signal-to-Noise-Ratio Effects	186
8	Scattering Particles	188
9	Properties of the Random Light Flux	192
9.1	Signal Representation	192
9.2	Random Doppler Light Flux	192

9.3	Statistical Properties of $g(\mathbf{x}, t, D)$	193
9.4	Correlation and Power Spectrum	198
9.5	Burst Density	205
9.6	High-Burst-Density Signals ($N_e \gg 1$)	208
10	Signal Processors	213
10.1	Amplitude Correlators	214
10.2	Photon Correlators	216
10.3	Spectrum Analysis	218
10.4	Frequency Trackers	219
10.5	Frequency Counters	222
10.6	Selection of Signal Processors	225
11	Data Processing	226
11.1	Processing Data from Time-Averaging Processors	226
11.2	Processing Data from Time-Resolving Signal Processors	227
11.3	Fringe Biassing	235
	Nomenclature	236
	References	240

6 Volume Flow Measurements *G. E. Mattingly*

1	Introduction	245
2	Classification of Metering Devices	246
3	Selected Meter Performance Characteristics	248
3.1	Orifice Meters	248
3.2	Venturi Tubes and Flow Nozzles	252
3.3	Elbow Meters	253
3.4	Pitot Tubes	254
3.5	Laminar Flowmeters	254
3.6	Turbine Meters	256
3.7	Rotameters	257
3.8	Target Meters	258
3.9	Thermal Flowmeters	259
3.10	Weirs and Flumes	260
3.11	Magnetic Flowmeters	261
3.12	Acoustic Flowmeters	261
3.13	Vortex-Shedding Meters	262
3.14	Laser Flowmeters	263
3.15	Coriolis-Acceleration Flowmeters	263
3.16	Flow-Conditioning Devices	264
4	Proving—Primary and Secondary Standards	265
4.1	Liquid Flow: Static Weighing Procedure	266
4.2	Liquid Flow: Dynamic Weighing Procedure	268
4.3	Gas Flow: Static Procedure	269
4.4	Gas Flow: Dynamic Procedure	271
4.5	Ballistic Calibrators	272
4.6	NBS Facilities and Secondary Standards	274
5	Traceability to National Flow Standards—Measurement Assurance Programs for Flow	276
5.1	Static Traceability	278
5.2	Dynamic Traceability	279

5.3	Measurement Assurance Programs	279
5.4	The Role of Flow Conditioning in the Artifact Package	286
5.5	Test Program	287
5.6	Data Analysis	288
Appendix A	Ideal Performance Characteristics for Differential-Pressure Type Meters: Incompressible Fluids	292
Appendix B	Ideal Performance Characteristics for Differential-Pressure Type Meters: Compressible Fluids	293
Appendix C	Real, Compressible Orifice-Flow Calculation	294
Appendix D	Diverter Evaluation and Correction	294
Appendix E	Empirical Formulas for Orifice Discharge Coefficients	298
Appendix F	Pressure Measurements	298
	F.1 Sensing Static Pressure	299
	F.2 Sensing Total Pressure	299
Appendix G	Temperature Measurement and Recovery Factor	301
Appendix H	Analysis of Variance with Two Flowmeters in Series	302
Nomenclature		304
References		305

7 Flow Visualization by Direct Injection *Thomas J. Mueller*

1	Introduction	307
2	Aerodynamic Flow Visualization	308
2.1	Smoke-Tube Method	309
2.2	Smoke-Wire Method	331
2.3	Helium-Bubble Method	341
2.4	Concluding Remarks—Aerodynamic Flow Visualization	351
3	Hydrodynamic Flow Visualization	352
3.1	Dye Method	352
3.2	Hydrogen-Bubble Method	358
3.3	Concluding Remarks—Hydrodynamic Flow Visualization	372
4	Conclusions	372
	References	372

8 Optical Systems for Flow Measurement: Shadowgraph, Schlieren, and Interferometric Techniques *R. J. Goldstein*

1	Introduction	377
2	Schlieren System	381
2.1	Analysis by Geometric or Ray Optics	381
2.2	Applications and Special Systems	388
3	Shadowgraph System	394
4	Interferometers	397
4.1	Basic Principles	397
4.2	Fringe Pattern with Mach-Zehnder Interferometer	400
4.3	Examples of Interferograms	405
4.4	Design and Adjustment	407
4.5	Errors in a Two-Dimensional Field	413
4.6	Other Interferometers	413
4.7	Holography	415
5	Conclusion	416

Nomenclature	417
References	419

9 Fluid Mechanics Measurements in Nonnewtonian Fluids

Christopher W. Macosko

1 Introduction	423
2 Material Functions	424
2.1 Steady Shear Flows	424
2.2 Transient Shear	426
2.3 Material Functions in Extension	431
3 Constitutive Relations	435
3.1 General Viscous Fluid	436
3.2 Plastic Behavior	439
3.3 Linear Viscoelasticity	441
3.4 Nonlinear Viscoelasticity	445
3.5 Discussion	450
4 Rheometry	451
4.1 Shear Rheometers	452
4.2 Extensional Rheometry	459
5 Measurements in Complex Flows	464
5.1 Pressure Measurements	466
5.2 Velocity Measurements	467
5.3 Flow Birefringence	469
Nomenclature	473
References	475

10 Two-Phase Flow Measurement Techniques in Gas-Liquid Systems

Owen C. Jones, Jr.

1 Introduction	479
2 Two-Phase Gas-Liquid Flow Patterns	483
3 In-Stream Sensors with Electrical Output	485
3.1 Conductivity Devices	485
3.2 Impedance Void Meters	498
3.3 Hot-Film Anemometer	501
3.4 Radio-Frequency Probe	510
3.5 Microthermocouple Probes	514
3.6 Optical Probes	517
4 In-Stream Sensors with Mechanical Output	527
4.1 Wall Scoop	528
4.2 Porous Sampling Sections	529
4.3 Isokinetic Sampling Probe	534
4.4 Wall Shear and Momentum Flux Measurement Devices	536
5 Out-of-Stream Measuring Devices	538
5.1 X-Ray and Gamma-Ray Methods	540
5.2 Beta-Ray Methods	545
5.3 Neutron Methods	547

Nomenclature	548
References	549
11 Measurement of Wall Shear Stress <i>Thomas J. Hanratty and Jay A. Campbell</i>	
1 Introduction	559
2 Direct Measurements	563
3 Preston Tube	565
4 Stanton Gauge	569
5 Sublayer Fence	571
6 Analysis of Heat- or Mass-Transfer Probes	572
6.1 Design Equation for a Two-Dimensional Mass-Transfer Probe	572
6.2 Limitations of the Design Equation	574
6.3 Nonhomogeneous Two-Dimensional Laminar Flows	577
6.4 Frequency Response	577
6.5 Turbulence Measurements	581
7 Effect of Configuration of Mass-Transfer Probe	583
7.1 Circular Probes	583
7.2 Slanted Transfer Surface	584
7.3 Other Methods for Measuring Direction	586
7.4 Sandwich Elements	587
8 Heat-Transfer Probes	587
8.1 Analysis	587
8.2 Use in Turbulent Flows	589
8.3 Compressible Flows	590
9 Experimental Procedures for Mass-Transfer Probes	590
9.1 The Electrochemical Cell	590
9.2 The Electrolyte	593
9.3 The Counterelectrode	594
9.4 The Test Electrode	594
9.5 The Flow Loop	595
9.6 Measurement of Fluid Properties	595
9.7 Instrumentation	597
10 Experimental Procedures for Heated-Element Probes	598
10.1 Principles of Operation	598
10.2 Instrumentation	598
10.3 Calibration	599
10.4 Insertion of the Probe in the Wall	601
10.5 Basic Probe Design	602
10.6 Difficulties Unique to Heated-Element Probes	602
10.7 New Developments	602
11 Application of Mass-Transfer Probes	603
11.1 Turbulent Flow in a Pipe	603
11.2 Flow around a Cylinder	606
Nomenclature	607
References	611
Index	617