

Contents

Chapter A

Introduction	1
1 Environmental Pollution	1
2 Sources, Pathways and Reservoirs	1
3 Aquatic Ecosystems	2

Chapter B

Toxic Metals (G. Wittmann)	3
1 Metals	3
1.1 Classification of the Elements	3
1.2 Classification of Metals	6
1.3 Trace Metal Species in Aquatic Systems	7
2 Trace Metals and Organic Life	8
2.1 Trace Elements Essential to Human Life	9
2.2 Deficiency and Oversupply	11
2.3 Metal Toxicity	12
2.4 Health Hazard Due to Certain Trace Elements	14
2.5 Accumulation of Toxic Substances in the Aquatic Food Chain	17
2.6 Catastrophic Episodes of Metal Poisonings	18
2.6.1 Mercury Poisoning	18
2.6.2 Cadmium Poisoning	21
2.6.3 Lead Poisoning	23
2.6.4 Chromium Poisoning	24
2.6.5 Arsenic Poisoning	25
2.7 Recent Studies on Metal Intoxication	25
3 Water Quality Criteria: Standards	26
3.1 Introduction	26
3.2 Criteria Development	26
3.3 Water Quality Criteria	29
4 The Sources of Metal Pollution	30
4.1 Geologic Weathering	31
4.2 Mining Effluents	33
4.3 Industrial Effluents	38

4.4 Domestic Effluents and Urban Stormwater Runoff	43
4.4.1 Domestic Effluents	43
4.4.2 Urban Storm Water Runoff	44
4.4.3 Spoil Heaps	47
4.5 Metal Inputs from Rural Areas	48
4.6 Atmospheric Sources	49
4.7 Special Sources	55
4.8 Multi-Source Effects	57
5 Metal Analysis	61
5.1 Media of Pollution Assessment	62
5.2 Sampling and Analytic Methods	68
5.2.1 Sampling	68
5.2.2 Analytic Methods	68

Chapter C

Metal Concentrations in River, Lake, and Ocean Waters (U. Förstner) 71

1 Distribution of Major Ions	71
1.1 Natural Salt Concentrations	71
1.2 Man-Made Contamination	73
2 Chemical Conditions for Trace Metals in Natural Waters	73
2.1 Chemical Speciation in Freshwater and Seawater	75
2.1.1 Analysis of Trace Metal Speciation	75
2.1.2 Freshwater/Seawater Model	78
2.2 Redox Conditions in Natural Waters	79
3 Trace Metals in Seawater	82
3.1 Natural Distribution	83
3.2 Man-Made Effects	86
3.2.1 Atmospheric Input of Metals	88
3.2.2 Metal Input from Sewage Effluents	89
4 Trace Metals in Inland Waters	90
4.1 Natural Contents	90
4.2 Metal Pollution in River Water: Regional Examples	93
4.2.1 Heavy Metal Pollution in United States Water Systems	93
4.2.2 Metal Pollution in Inland and Coastal Waters of Great Britain	96
4.2.3 Heavy Metals in River Water of the Federal Republic of Germany	98
4.2.4 Metals in Waters of the People's Republic of China	100
4.2.5 Heavy Metals in River Water of the U.S.S.R.	102
4.2.6 Heavy Metals in Waters of Japan	103
4.3 Metal Transport in Freshwater Systems	104
4.3.1 Water Discharge and Metal Transport	104
4.3.2 Annual Cycles of Metal Transport	106

Chapter D	
Metal Pollution Assessment from Sediment Analysis (U. Förstner)	110
1 Introduction	110
1.1 Soluble/Solid Equilibrium	110
1.2 Surface Samples and Sediment Cores	112
2 Metal Investigations on Aquatic Sediments	113
2.1 Sampling and Storage	114
2.1.1 Soils and Sediments	114
2.1.2 Grab and Sore Samplers	114
2.1.3 Bottom Sediment Traps	115
2.1.4 Suspended Materials	115
2.1.5 Recovery of Pore Waters	115
2.1.6 Storage	115
2.2 The Mechanical Sediment Analysis	116
2.3 Mineralogical Analysis	116
2.4 Chemical Analysis of Nutrient Components (C–N–P)	117
2.4.1 Determinations of Oxidizable Matter (Organic Carbon) by the Chromic Acid Method	117
2.4.2 Determination of Kjeldahl Nitrogen	117
2.4.3 Determination of Total Phosphorus	117
2.5 Sediment Digestion in Metal Analysis	118
2.5.1 Hydrofluoric Acid Decomposition	118
2.5.2 Hydrochloric-Nitric Acid (Aqua Regia) Decomposition or Digestion by Nitric Acid	118
2.5.3 Lithium Metaborate Fusion (with Simultaneous Determination of Silica)	118
2.5.4 Transfer of Solid Suspensions into Graphite Cuvettes	118
3 Geochemical Reconnaissance of Aquatic Sediments	119
4 Grain-Size Effects	121
4.1 Grain-Size Dependencies of Trace Metal Concentrations	122
4.2 Reduction of Grain-Size Effects	124
4.2.1 Extrapolation from Grain-Size Distribution	124
4.2.2 Metal Concentrations vs Surface Area	126
4.2.3 Separation of Clay/Silt and Fine Sand Fractions by Sieving	126
4.2.4 Separation of the Pelitic Fraction (< 2 μ m) in Settling Tubes	127
4.2.5 Treatment with Dilute Acids (Hydrochloric Acid, Nitric Acid)	128
4.2.6 Mineral Separation: Quartz Correction Method	128
4.2.7 Comparison with “Conservative” Elements	129
4.2.8 The Relative Atomic Variations of Elements	130
5 Factors Controlling the Distribution of Metals in Aquatic Sediments	131

6	Natural Metal Content—Civilizational Accumulation	133
6.1	Average Shale: Global Standard Value	133
6.2	Fossil Lake Sediments: Standards Regarding Environmental Data	135
6.3	Fossil Fluviatile Deposits: Regional Influences	135
6.4	Short, Dated Sediment Cores: 200 Years of Industrial Development	136
6.5	Recent Lake Deposits in Relatively Unpolluted Areas	137
6.6	Metals in Suspended Matter: Background Values in Storm Water	137
6.7	Background Values and Nonpoint Sources	138
7	Lake Sediments as Indicators of Heavy Metal Pollution	140
7.1	Interference: Geochemical Background and Man's Impact	140
7.2	Metal Pollution in Lake Sediments (Examples)	143
7.3	Metal Contamination Recorded in Dated Sedimentary Cores	146
7.4	Mercury Poisoning of Lakes	151
7.4.1	Sources of Mercury Pollution	151
7.4.2	Swedish Lakes	152
7.4.3	Canadian Lakes: Clay Lake	153
7.4.4	Laurentian Great Lakes	153
8	Metal Pollution in River Sediments	157
8.1	Geochemical Reconnaissance of Mercury	158
8.2	Stream Sediments: a Response to Environmental Contamination	158
8.3	Heavy Metal Enrichment of River Sediments by Man-Made Influences	163
9	Assessing Metal Pollution in the Sea by Sediment Study	171
9.1	Mercury Contamination—Forms of Metal Enrichment in Coastal Sediments	172
9.1.1	Minamata—Industrial Metal Contamination in Japanese Coastal Waters	172
9.1.2	Firth of Clyde—Sewage Sludge Disposal	174
9.1.3	Southern Californian Coast—Sewer Outfalls and Atmospheric Influences	176
9.1.4	New Haven—Unregulated Effluent Discharge	178
9.2	Marine Waste Deposits in the New York Metropolitan Region	178
9.3	Industrial Effluents in New Bedford Harbor, Mass.	182
9.4	Heavy Metal Enrichment in the North Sea, Baltic Sea, and Mediterranean Sea	184
9.4.1	Metal Pollution in the Mediterranean Sea	184
9.4.2	Metal Pollution in the North Sea	185
9.4.3	Metal Contamination of the Baltic Sea	188
9.4.4	Other Restricted Basins—Fjords	189
9.5	Heavy Metal in Estuarine Sediments	191
9.5.1	The Estuarine Environment	191

9.5.2 The Rhine Estuary	193
9.5.3 The Elbe Estuary	194
9.5.4 Mixing Processes	194
 Chapter E	
Metal Transfer Between Solid and Aqueous Phases (U. Förstner) . . .	197
1 Residence Times of Metals in Aquatic Systems	197
2 Types of Metal Association in Sediments	200
2.1 Classification of Chemical Phases in Sediment	201
2.2 Heavy Metals in Detrital Minerals	201
2.3 Heavy Metal Precipitation	203
2.3.1 Hydroxides	203
2.3.2 Sulfides	205
2.3.3 Carbonates	205
2.4 Cation Exchange and Adsorption	207
2.5 Sorption onto Clay Minerals	210
2.6 Sorption and Coprecipitation on Hydrous Fe/Mn-Oxides and Fe-Sulfides	213
2.6.1 Formation of Hydrous Mn and Fe Oxides	214
2.6.2 Sorption of Heavy Metals onto Fe/Mn Oxides	216
2.6.3 Coprecipitation of Trace Elements with Iron Sulfides ..	218
2.7 Metal Associations with Organic Substances	220
2.7.1 Organic Substances in Natural Waters	221
2.7.2 Sorption and Complexation of Metals by Humic Substances	222
2.7.3 Coagulation and Flocculation of Metal-Organic Matter ..	223
2.7.4 Associations of Metal-Organic Compounds to Sediments	224
2.8 Sorption of Trace Elements on Carbonates and Phosphates ..	227
3 Metal Accumulation in Aquatic Sediments—Interactions and Effects of Various Processes and Sinks	230
3.1 Hydroxidic Coatings on Clay Minerals	230
3.2 Organic Coatings on Clay Minerals	232
3.3 Interactions Between Hydrous Metal Oxides, Organic Substances, Carbonate, and Phosphate	232
3.4 Significance of the Different Sinks in Natural Systems	234
3.5 Non-Conservative Effects of Trace Metals in Estuaries	236
4 Determination of Chemical Phases in Natural and Polluted Sediments	238
4.1 Proportion of the Individual Types of Metal Associations in Natural and Polluted Aquatic Sediments	239
4.2 Grain Size and Chronological Variations; Phase Concentration Factor	245
5 Mobilization of Heavy Metals from Sediments	247

5.1	Saltwater/Sediment Interactions	247
5.1.1	Desorption Experiments	248
5.1.2	Estuary-Sediment Boundary	249
5.2	Redox Changes and Metal Release	250
5.2.1	Chemical Factors Affecting Metal Distribution in Interstitial Water	252
5.2.2	Physical Processes Affecting Metal Release from Pore Water	254
5.3	Metal Release by Acidic Water	258
5.3.1	Acid Mine Drainage	259
5.3.2	Acid Precipitation	260
5.4	Mobilization of Metals by Organic Complexing Agents	262
5.5	Mobilization of Heavy Metals by Microbial Activity	265
5.5.1	Microbial Interactions in Natural Environments	265
5.5.2	Bacterial Leaching of Metals	266
5.5.3	Microbial Action in the Mercury Cycle	267
5.5.4	Bacterial Methylation of Arsenic, Lead, and Selenium	269

Chapter F

Heavy Metals in Aquatic Organisms (F. Prosi)	271
--	-----

1	Physico-Chemical Influences on the Toxicity and the Uptake of Heavy Metals with Respect to Organisms	273
1.1	Temperature and Oxygen Content	273
1.2	Water Hardness	274
1.3	Organic Compounds	276
1.4	pH Values	279
1.5	Salinity	280
2	Biologic Factors Affecting Heavy Metal Concentrations in Aquatic Organisms	281
2.1	General Physiologic Behavior	282
2.2	Life Cycle and Life History of the Organism	282
2.3	Seasonal Variations of Metal Content in Organisms	284
2.4	Species-Specific and Individual Variability	285
2.5	Contamination by Food and Intestine Content	285
3	Heavy Metal Enrichment in Limnic and Marine Organisms at Different Trophic Levels	286
3.1	Autotrophic Organisms	286
3.1.1	Phytoplankton	286
3.1.2	Marine Macroalgae	288
3.1.3	Freshwater Algae	290
3.1.4	Mosses	291
3.1.5	Higher Water Plants	292

3.2 Heterotrophic Organisms	294
3.2.1 Zooplankton	295
3.2.2 Bivalves	297
3.2.3 Higher Marine Crustaceans	304
3.2.4 Freshwater Crustaceans	305
3.2.5 Marine and Freshwater Fish	306
3.3 The Mobilization of Heavy Metals from Sediment by Aquatic Biota	313
3.4 Food Chain Enrichment in Aquatic Life	318

Chapter G**Trace Metals in Water Purification Processes**

(U. Förstner and J. H. van Lierde)	324
--	-----

1 Heavy Metal Removal for the Production of Drinking Water	324
1.1 Obtaining Water by Bank Filtration	324
1.2 Artificial Recharge of Groundwater by Land Spreading and Injection	327
1.3 Direct Water Purification by Traditional Physico-Chemical Treatment (PCT) and Related Advanced Methods	330
1.3.1 Traditional Removal of Trace Metals by Pre-Clarification, Chlorination, Flocculation, and Filtration	331
1.3.2 Heavy Metal Removal by Chemical Precipitation	333
1.3.3 Activated Carbon Filtration in Drinking Water Purification	334
1.3.4 Heavy Metal Removal by Ion Exchange	336
1.3.5 Potential Metal Enrichments in the Water Distribution System	337
2 Heavy Metals in Industrial and Domestic Effluents	340
2.1 Effluents from the Electroplating Industry	340
2.2 Mercury Removal from Chlor-Alkali Plant Effluents	343
2.3 Prevention and Control of Acidic Mine Drainage	344
2.4 Heavy Metals in Urban Drainage Systems—Biologic Treatment (BT)	345
2.4.1 Metal Extraction in the Mechanical (Primary) Sedimentation Unit	346
2.4.2 Reduction of Metal Loads in the Biologic Stage	346
2.5 Tertiary Physico-Chemical Treatment of Wastewater	347
3 Heavy Metals in Sewage Sludges	352
3.1 Land Application of Sewage Sludges	352
3.2 Impact of Heavy Metals on Groundwater Quality	355
3.3 Sewage Sludge Disposal to the Sea	358
3.4 Incineration of Sewage Sludge	359

Chapter H	
Concluding Remarks	360
1 Disposal Versus Reuse	363
2 Alternative Materials	364
Appendix	367
References	399
Subject Index	475