Contents

PART A: INTRODUCTION

Chapter I -	FUNDAMENTAL	LAWS AND	BASIC	CONCEPTS
-------------	-------------	----------	-------	----------

 Balance equations for incompressible fluids 	2
A. Conservation Of mass	2
B. Conservation of momentum	8
C. Conservation of energy	11
2. Fundamental thermodynamic relations; entropy balance equation and	
second law	15
A. Alternative forms of the energy balance equation	15
B. The entropy balance equation and the second law of thermodynamics	25
3. Kinetic and constitutive equations	28
4. Systems of coordinates	37
A. Rectangular coordinates	37
B. Cylindrical coordinates	40
C. Special two-dimentional case : the stream function	45
5. Equations for the fluctuations around a steady state	48
6. Definition of stability	53
7. Normal modes	57
8. Dimensionless numbers in fluid dynamics and heat transfer problems	61
Exercices	70
Bibliographical notes	76
Chapter II - MATHEMATICAL BACKGROUND AND COMPUTATIONAL TECHNIQUES	•
1. Use of variational principles and/or stationary properties of integra	1s 77
A. Elements of variational calculus. The Euler-Lagrange equations	77
B. Variational approach to the conservations laws based on nonequi-	
librium thermodynamics : the theory of the local potential	81
C. The numerical methods associated with the local potential theory	94
D. Relation between the local potential and the Galerkin techniques	98
2. Applications to stability problems	100
A. The excess local potential	100
B. Variational methods for linear eigenvalue problems	102
C. Stability criterion based on Lyapounov function	113
3. Purely numerical techniques	120
A. Finite differences methods	120
B. Conversion of a boundary value problem into an initial value probl	em134

Exercices Bibliographical notes	1 3 7
PART B : FLUIDS AT CONSTANT DENSITY, ISOTHERMAL FORCED CONVECTION	
Chapter III - PLANAR FLOWS OF NEWTONIAN FLUIDS	
1. Poiseuille and Couette flow	147
A. Plane Poiseuille flow and Poiseuille flow in rectangular channe	
B. Plane Couette flow	152
General statements of linear hydrodynamic stability of forced convection	153
	153
A. The Orr-Sommerfeld equation B. Variational or stationary presentations of the Orr-Sommerfeld	153
equation. Its relation with the Galerkin technique	161
C. The Chock-Schechter integration scheme	. 171
D. The Orr and the Prigogine-Glansdorff criterion	173
3. Numerical solutions of the Orr-Sommerfeld equation	179
A. Selection of trial functions	179
B. Solution for U = constant	184
C. Solution for plane Poiseuille flow	185
a. Effect of trial functions	185
b. High Reynolds numbers	192
c. Two and three dimensional perturbations without elimination	
of variables. Relation to Squire's theorem	192
d. Finite difference methods	197
e. Solution using the Chock-Schechter method	207
f. General discussion, comparison with experiments	210
D. Solution for Couette flow	213
4. Nonlinear stability of Poiseuille flow	22:
A. Introduction	2 2
B. A restricted variational approach to the nonlinear equations	2 28
C. Influence of the initial amplitude of the disturbance	233
5. An oscillatory solution in planar-Poiseuille flow	240
A. Introduction	240
B. Existence of statistically steady states	24:
C. Existence of periodic flows	242
D. Stability and/or instability of the new periodic flow	24
6. Remarks on the transition to turbulence	2 4 8
Bibliographical notes	252

Chapter IV - CYLINDRICAL FLOWS OF NEWTONIAN FLUIDS	
1. A. Poiseuille flow in a pipe	254
B. Poiseuille flow down an annular pipe	256
2. General statements on linear stability of forced convection in	
cylindrical coordinates	257
A. An equivalent of the Orr-Sommerfeld equation	25 7
B. Non axisymmetric disturbances	260
3. Linear stability of pipe Poiseuille flow	263
A. Stability with respect to two-dimensional axisymmetric	
disturbances	263
B . Stability with respect to three-dimensional non axisymmetric	
disturbances	273
Bibliographical notes	290
Chapter V - FLOW STABILITY OF NON-NEWTONIAN FLUIDS	
1. Stress-Strain relations for some particular non-newtonian fluids	291
A. Introduction	291
B. The Coleman-Noll model	292
2. Stability of plane Poiseuille flow for a second order viscoelastic	004
fluid	. 294
A. The generalized Orr-Sommerfeld equation	294
P. The solution of the generalized Orr-Sommerfeld equation for	2 9 8
plane flow	. 301
C. Plane Poiseuille flow: sufficient condition for stabilityD. Instability of plane Poiseuille flow of a second order fluid:	. 301
a numerical result.	303
3. Stability of pipe Poiseuille flow for a second order fluid.	306
Bibliographical notes	314
Bibliographical notes	314
PART C : NON ISOTHERMAL ONE COMPONENT SYSTEMS	
Chapter VI - FREE CONVECTION IN ONE COMPONENT FLUID	
1. Introduction	315
2. The linear theory of the Bénard problem	322
A. The eigenvalue problem. Its solution for simple boundary	
conditions	3 22

B. Solutions based on approximate numerical calculations

348

a. The local potential method	348
b. The Chock-Schechter numerical integration	356
C. Solution based on the thermodynamic stability criterion	359
D. Experimental aspect	367
E. Effect of lateral boundaries	380
F. Extension of the Bénard problem	406
a. Surface tension effect	407
b. Effect of a magnetic field	412
3. The non-linear theory of the Bénard problem	427
A. Approximate computational techniques	427
B. Global properties of the flow	437
a. Variation of the Nusselt number with the Rayleigh number	
(free boundary conditions)	437
b. Variation of the Nusselt number with the Rayleigh number	
(rigid boundary conditions)	440
c. Variation of the number of convective cells with the Rayleigh	
number	446
C. Fine structure of the flow	4 49
D. Behavior near threshold	458
E. Behavior far from the critical point	475
a. The Lorenz model	475
b. The routes to turbulence	484
4. The thermogravitational process	488
A. The steady state profile	488
B. The stability of the steady state profile	490
Bibliographical notes	497
Chapter VII - NON ISOTHERMAL FORCED CONVECTION IN A ONE-COMPONENT FLUID	
1. General aspects of the effect of temperature gradients	500
2. Temperature gradients imposed by the boundary conditions	501
3. Temperature gradients due to viscous heating	507
A. Experimental interest	507
B. Cylindrical Poiseuille flow with viscous heating	5 09
a. the steady state	509
b. stability of cylindrical Poiseuille flow including viscous	
heating	518
4. Further discussion on the multiplicity of steady states when taking	
into account viscous heating	524
Bibliographical notes	528

Chapter VIII - MIXED CONVECTION IN A ONE-COMPONENT FLUID

SHAPES VIII MIXED CONVECTION IN A GNE-COMPONENT FEOTO	
1. Introduction in the Bénard problem with flow	529
2. Relation between two and three dimensional disturbances;	
extension of Squire's theorem	534
3. Experiments on the onset of free convection with a superposed	
small laminar flow	545
4. Effect of lateral boundaries	556
Bibliographical notes	565
DADT D. A. MILL TACOMPONIENT CYCTEMS	
PART D : MULTICOMPONENT SYSTEMS	
Chapter IX - FREE CONVECTION IN A MULTICOMPONENT FLUID	
1. Introduction to the influence of concentration gradients on	
hydrodynamic stability	567
2. Formulation of the linearized problem	569
A. The conservation equations	569
B. The thermohaline problem	571
C. The effect of thermal diffusion (or S oret effect)	574
3. The thermohaline convection: linear stability analysis	577
A. The role of boundary conditions	• 577
B. Free boundaries with specified solute concentrations and	
temperatures	581
C. Experimental observations	585
4. Free convection with thermal diffusion : linear analysis	· 587
A. Coupled equations for temperature and mass	587
B. Exact solution of the simplified problem for free and pervious	
boundaries	587
C. Variational solution for rigid boundaries	597

Bibliographical notes

5. Free convection with thermal diffusion : non linear effects

B. Results of the nonlinear analysis and comparison with experiments

D. Comparison with experimental results

A. Approximate computational techniques

E. The role of the Dufour effect

654

636

615

630

634 634

Chapter X - MIXED CONVECTION IN MULTICOMPONENT SYSTEMS

Soret coefficient

Appendix A Appendix B

Results of linear hydrodynamic stability theory	6 67
A. Results for $s>0$	66 8
B. Results for $s < 0$	6 70
3. Postface	6 7 2
Bibliographical notes	675

1. Mixed convection in multicomponent systems and measurements of the

657

676

679