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Das World Wide Web ist schon viele Jahre unglaublich erfolgreich und hat sich gerade die 
letzten Jahre bezüglich seiner zukünftigen technischen Basis als auch der Form der Darstel-
lung von Inhalten sowie der Interaktion mit dem Anwender und der Dynamik stark weiter-
entwickelt. Das Stichwort Dynamik deutet schon an, dass statische, passive Webseiten über-
holt sind und immer seltener werden. Bereits die Gegenwart und insbesondere die Zukunft 
gehören sogenannten Rich Internet Applications (RIAs). Gerade aber diese interaktiven 
Seiten und Applikationen im Web sind ohne geeignete Frameworks kaum noch effektiv zu 
erstellen und zu warten, nicht zuletzt auch deswegen, weil viele optische sowie funktionale 
Features wie animierte Inhaltsaufbereitung oder komfortable Benutzereingabemöglich-
keiten mittlerweile verbreitet sind und vom verwöhnten Anwender ebenfalls erwartet wer-
den. Dementsprechend wird jedoch der Aufwand zur Erstellung von solchen Webangeboten 
immer größer.

Nun war es einige Jahre nicht wirklich deutlich zu erkennen, in welche Richtung sich das 
World Wide Web zur Umsetzung solcher anspruchsvoller Applikationen wirklich entwi-
ckelt. Es gab längere Zeit verschiedene technische Ansätze, die als verschiedene Optionen 
für die Zukunft des Webs offen waren. Aber wenn Sie aktuell die populären und halbwegs 
modern gemachten interaktiven Angebote im World Wide Web betrachten, werden Sie 
eigentlich nur noch konservativ programmierte Applikationen auf Basis von Ajax (Asyn-
chronous JavaScript and XML) sowie klassisches DHTML (Dynamic HTML) vorfinden. Ein 
paar Seiten setzen vielleicht noch auf das veraltete, proprietäre Flash, aber die verschwin-
den mehr und mehr. Daneben gab es aber über eine geraume Zeit Versuche, neuere propri-
etäre Techniken wie JavaFX, Silverlight oder AIR/Flex einzusetzen und teils sogar vollkom-
men auf HTML, CSS und JavaScript zu verzichten. Aber die Aktivitäten der Hersteller in 
Hinsicht auf die Weiterentwicklung mit proprietären Ansätzen ist mittlerweile fast vollkom-
men zum Erliegen gekommen.

Dementsprechend setzen aktuell für interaktive anspruchsvolle Webapplikationen die 
meisten Firmen, Organisationen sowie auch Privatanwender weiter ganz konservativ auf 
dynamisches HTML und Ajax, zumal sich mit HTML 5 und CSS 3 offene Standards etablie-
ren, die zudem auch von den Anbietern der proprietären Techniken ganz offiziell unter-
stützt werden. Und nicht zuletzt setzen die großen – in der Hinsicht unabhängigen – Her-
steller wie Google oder Apple ebenso explizit auf HTML 5 und CSS 3 für die Zukunft.

Vorwort
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Ihnen sollte nun etwas aufstoßen, dass ich im Zusammenhang mit Ajax und HTML5/CCS3 
von konservativ spreche. Es ist noch nicht ganz so lange her, da war Ajax das Buzzword 
schlechthin im World Wide Web. Ajax ist die programmiertechnische Basis dessen, was um 
das Jahr 2005/2006 als Web 2.0 in aller Munde war. Immerhin hat erst Ajax es möglich 
gemacht, bei Bedarf nur die Inhalte einer Webseite auszutauschen, die tatsächlich neu vom 
Webserver angefordert werden müssen. Die bereits geladene Webseite bleibt bei einer 
Datennachforderung per Ajax im Browser vorhanden und mittels DHTML wird gezielt an 
einer bestimmten Stelle in der Webseite ein Austausch bestehenden Inhalts durch die neu 
nachgeladene Information vorgenommen. Dabei kann die nachgeladene Information entwe-
der aus Klartext (inklusive HTML-Fragmenten) oder aus strukturiertem XML oder JSON 
(JavaScript Object Notation) bestehen. Die Vorteile dieser Vorgehensweise sind bei stark 
interaktiven Applikationen mit häufigem Serverkontakt sofort offensichtlich und mittler-
weile voll etabliert.

Dennoch bedeutet die Verwendung von Ajax respektive DHTML keinen Einsatz von moder-
nen Webtechniken, denn die Grundlagen dieser damit zusammengefassten Technologien 
gibt es alle bereits seit 1997, was meine Bezeichnung als konservativ verdeutlicht. Und 
dass sich Ajax erst fast zehn Jahre später wie eine Explosion über das World Wide Web 
verbreitet hat, zeigt aus meiner Sicht ganz deutlich, dass das Internet und das World Wide 
Web in der Entwicklung recht träge, konservativ und langsam sind. Diese von mir provo-
kant formulierte These soll nun das Internet und das World Wide Web nicht diskreditieren! 
Es ist nur so, dass sich im Internet Technologien nur sehr langsam durchsetzen können, 
weil sich alle Beteiligten an diesem komplexen, sehr sensiblen Gebilde World Wide Web auf 
eine gemeinsame Basis einigen müssen. Und das dauert eben! In der Regel viele Jahre. Und 
auf Dauer setzt sich scheinbar im Web nur das durch, was gut und einfach ist.

Wenn Sie nun aber eine moderne Webapplikation auf Basis von Ajax und DHTML erstellen 
wollen, ist eine Programmierung von Hand wie erwähnt sehr aufwendig und fehlerträchtig. 
Zwar ist das grundsätzliche Erstellen von DHTML- bzw. Ajax-Applikationen nicht sonder-
lich schwierig, wenn man die Grundlagentechniken HTML bzw. XHTML, CSS und JavaScript 
beherrscht. Das Zusammenspiel dieser – einzeln gesehen – in der Tat recht einfachen Web-
technologien im Client kann jedoch äußerst diffizil sein, was nicht zuletzt ein Resultat der 
Browserkriege des letzten Jahrtausends ist. Dazu kommen im Fall von Ajax oft noch der 
permanente Austausch von Daten zwischen Client und Webserver sowie die sehr feinglied-
rige Verteilung von Geschäftslogik zwischen Client und Server hinzu.

Zudem erzwingt die eingeschränkte Leistungsfähigkeit von JavaScript oft eine nicht ganz 
triviale Programmierung von Strukturen, die in leistungsfähigeren (insbesondere objekt-
orientierten) Programmiertechniken auf dem Silbertablett serviert werden. So gesehen ist 
die Erstellung einer interaktiven Applikation für das Web heutzutage durchaus mit der 
Komplexität der Erstellung einer Desktop-Applikation bzw. einer verteilten Netzwerkappli-
kation zu vergleichen, wenn sie sich an den aktuellen Ansprüchen der Konkurrenz messen 
will. Das erkenne ich auch daran, dass in meinen Schulungen zu JavaScript, Ajax oder CSS 
mehr und mehr Programmierer sitzen, die aus mächtigen Sprachen wie Java oder C# kom-
men (früher war das Vorwissen im Programmierumfeld eher geringer). Für mich ist das ein 
deutliches Zeichen, dass die Ansprüche an eine moderne RIA steigen und von reinen Desi-
gnern nicht mehr erfüllt werden können. Anders ausgedrückt – mit modernen RIAs ist das 
Web endgültig den Kinderschuhen entwachsen.
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Nicht zuletzt bringt die Erstellung von modernen Webseiten und insbesondere Ajax-RIAs 
ein hohes Maß an Tests und Anpassung an verschiedene Webbrowser und Plattformen mit 
sich. An den unterschiedlichsten Stellen warten tückische Fallstricke. Natürlich ist die 
manuelle Erstellung von komplexen DHTML-Aktionen wie Drag & Drop oder animierten 
Menüs nicht jedermanns Sache. Ihnen sind sicher ebenfalls die oft extrem diffizilen Abhän-
gigkeiten von den verschiedenen Browsern, Browserversionen und Betriebssystemplattfor-
men bekannt. Diese Probleme nehmen zwar in modernen Browsern ab, sind aber immer 
noch vorhanden und zudem nutzen gerade viele Firmen auch noch alte Browser.

Sogenannte Frameworks und Toolkits für Ajax bzw. JavaScript versprechen nun für viele 
Aufgabenstellungen und Probleme im Umfeld von modernen Webseiten Abhilfe. Sie stellen 
vielfach vor allem JavaScript-Funktionsbibliotheken mit getesteten und hochfunktionellen 
Lösungen sowie ausgereifte Style Sheets bereit, damit Sie nicht jedes Mal das Rad neu erfin-
den und dessen einwandfreie Funktionalität umfangreich testen müssen. Dazu gibt es gele-
gentlich auch spezielle Tools und Programme, die eine Arbeit mit diesen Bibliotheken 
unterstützen oder gar erst möglich machen. Auch bringen einige mächtige HTML-Editoren 
mittlerweile sogar eigene Frameworks mit.

Wir werden uns in diesem Buch nun – wie der Titel unzweifelhaft aussagt – jQuery widmen 
und schauen, wie Sie dieses geniale Framework einsetzen können, um Ihre Webapplikatio-
nen zu verbessern bzw. die Erstellung zu vereinfachen oder bestimmte Features gar erst 
möglich zu machen. Wenn Sie die Möglichkeiten von jQuery nicht schon kennen, lassen Sie 
sich positiv überraschen, wie einfach Ihnen dieses mächtige Werkzeug Webseiten ermög-
licht, die alle moderne Effekte und Features enthalten.

Zu diesem Einstieg in jQuery wünsche ich Ihnen viel Spaß und viel Erfolg. Doch vorher 
möchte ich ein paar abschließende Bemerkungen zu meiner Person machen. Meinen Namen 
werden Sie auf dem Buchumschlag oder am Ende des Vorworts gelesen haben – Ralph 
Steyer. Ich habe in Frankfurt/Main an der Goethe-Universität Mathematik studiert (Diplom) 
und danach anfangs einen recht typischen Werdegang für Mathematiker genommen – ich 
bin erst einmal bei einer großen Versicherung gelandet, aber schon da mit EDV-Schwer-
punkt. Zunächst arbeitete ich einige Jahre als Programmierer mit Turbo Pascal und später 
mit C und C++. Nach vier Jahren wechselte ich in die fachliche Konzeption für eine Groß-
rechnerdatenbank unter MVS. Die Erfahrung war für meinen Schritt in die Selbstständig-
keit sehr motivationsfördernd, denn mir wurde klar, dass ich das nicht auf Dauer machen 
wollte. Seit 1996 verdiene ich daher meinen Lebensunterhalt als Freelancer, wobei ich flie-
gend zwischen der Arbeit als Fachautor, Fachjournalist, EDV-Dozent, Consultant und Pro-
grammierer wechsele. Daneben referiere ich gelegentlich auf Webkongressen, unterrichte 
an verschiedenen Akademien und Fachhochschulen, übersetze gelegentlich Fachbücher 
oder nehme Videotrainings auf. Das macht aus meiner Sicht einen guten Mix aus, bewahrt 
vor beruflicher Langeweile und hält mich sowohl in der Praxis als auch am Puls der Ent-
wicklung. Insbesondere habe ich das Vergnügen und gleichzeitig die Last, mich permanent 
über neue Entwicklungen auf dem Laufenden zu halten, denn die Halbwertszeit von Com-
puterwissen ist ziemlich kurz. Dementsprechend ist mein Job zwar anstrengend, aber vor 
allem immer wieder spannend. Doch nun ab in die Welt von jQuery!

Ralph Steyer

Frühjahr 2018
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In diesem Kapitel werden wir ohne weitere Vorbereitungen Kontakt zu jQuery schaffen und 
erste Beispiele mit jQuery erstellen. Wir springen also direkt ins kalte Wasser. Sie sollen 
bereits in dieser frühen Phase Ihres Einstiegs in dieses faszinierende Thema ein Gefühl für 
das bekommen, was man mit jQuery anstellen kann und was Ihnen dieses Framework 
bringt. Dabei wird bewusst in Kauf genommen, dass zu diesem Zeitpunkt bei den Quelltex-
ten Fragen offen bleiben. Diese Fragen werden aber im Laufe der folgenden Kapitel geklärt. 
Die Erläuterungen zu den Listings werden auch in dieser Phase nur oberflächlich

1

 sein, um 
nicht vom Stock zum Stöckchen zu geraten. Wir wollen möglichst schnell zur Praxis mit 
jQuery kommen und erst einmal spielen. Und das bedeutet Beispiele erstellen.

■■ 2 .1■ Zugriff auf Elemente und Schutz 
des DOM

Wenn Sie sich bereits etwas mit der Programmierung im WWW auskennen, wissen Sie, 
dass man auf die Bestandteile einer Webseite per JavaScript oder einer anderen Skriptspra-
che im Browser über ein Objektmodell mit Namen DOM (Document Object Model) zugreifen 
kann. Es gibt für so einen Zugriff verschiedene Standardtechniken, die aber alle ihre spezi-
fischen Schwächen haben. Insbesondere müssen Sie beim Zugriff auf ein einziges Element 
der Webseite (oder eine Gruppe) in der Regel ziemlich viele Zeichen eingeben. Das ist müh-
selig und fehleranfällig. Die meisten Frameworks stellen deshalb eine Notation zur Verfü-
gung, über die so ein Zugriff mit einer verkürzten, vereinheitlichten Schreibweise erfolgen 
kann. Und zudem kompensieren die dahinterliegenden Mechanismen der Frameworks 
diverse Schwächen der Standardzugriffsverfahren, indem sie vor allen Dingen browserab-
hängige Besonderheiten kompensieren sowie diverse fehlende Funktionalitäten des reinen 
DOM-Konzepts ergänzen. Besonders wichtig – diese Kompensation ist in der Regel auf allen 
offiziell unterstützten Browsern getestet und funktioniert deshalb sehr zuverlässig.

1 Aber keinesfalls unwichtig.

Sprung ins kalte Wasser
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Das folgende Beispiel zeigt weiterhin eine andere wichtige Funktionalität von jQuery – den 
Schutz des DOM. Was es damit auf sich hat, wird natürlich noch viel genauer erläutert. Nur 
soweit vorab – beim Laden (Parsen) der Webseite verarbeiten verschiedene Browser die 
Webseite unterschiedlich und es kann beim Zugriff auf die Elemente der Webseite zu einer 
Vielzahl von Problemen kommen. Das gilt vor allen Dingen dann, wenn man in einem Skript 
zu früh auf Elemente einer Webseite zugreifen will – also bevor der Browser den DOM 
korrekt aufgebaut hat. Hier bietet jQuery ein zuverlässiges Verfahren, um diesem Problem 
Herr zu werden. Und was Ihnen das Beispiel quasi nebenbei noch zeigt ist, wie Sie per 
jQuery standardisiert auf Inhalte von Elementen mit Text zugreifen und auf Ereignisse 
reagieren können. Doch genug der Vorbemerkung – hier ist unser erstes Listing (kap2_1.

html):

Listing 2 .1■Das erste jQuery-Beispiel<!DOCTYPE html><html lang="de" xmlns="http://www.w3.org/1999/xhtml"><head>    <meta charset="utf-8" />    <title>Schutz des DOM</title>    <link href="lib/css/kap2_1.css" rel="stylesheet" type="text/css" />    <script src="https://code.jquery.com/jquery-3.2.1.min.js"            integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4="            crossorigin="anonymous"></script>  <script type="text/javascript">    $(document).ready(function () {      $("#a").click(function () {        $("#ausgabe").html("Muss das sein?");      });      $("#b").click(function () {        $("#ausgabe").html("Ein nettes Spiel.");      });      $("#c").click(function () {        $("#ausgabe").html("Ein seltsames Spiel. " +          "Der einzig gewinnbringende Zug ist " + "nicht zu spielen!");      });    });  </script></head><body>  <h1>Willkommen bei WOPR</h1><h3>Wie wäre es mit einem kleinen Spiel?</h3>  <button id="a">Tic Tac Toe</button><button id="b">Schach</button>  <button id="c">Weltweiter Thermonuklearer Krieg</button>  <div id="ausgabe"></div></body></html>
Erstellen Sie die HTML-Datei einfach in einem eigenen Arbeitsverzeichnis und speichern 
Sie sie unter dem genannten Namen.
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Hinweis

Beachten Sie, dass jQuery in dem Listing (als auch folgenden) von einem CDN 
geladen wird, aber das ist für die Funktionalität irrelevant. Sie können die 
 JavaScript­Datei von jQuery auch von Ihrem Webserver oder lokal referenzieren. 
Aber gerade für die ersten Beispiele ist die Referenz auf ein CDN einfacher, da 
Sie das Framework nicht selbst bereitstellen müssen. Die Attribute integrity crossorigin werden dabei für die Überprüfung der Unterressourcenintegrität 
(SRI – Subresource Integrity) verwendet. Dadurch können Browser sicher­
stellen, dass auf Servern von Drittanbietern gehostete Ressourcen nicht mani­
puliert wurden.

Die Verwendung von SRI wird allgemein empfohlen, wenn Bibliotheken aus 
 einer Drittanbieterquelle geladen werden. Sollte es Probleme geben, wenn 
man beispielsweise eine Webseite aus einer IDE wie Visual Studio und deren 
internen Webserver oder Ihren lokalen Webserver lädt, verzichten Sie zur 
 Entwicklungszeit einfach auf die beiden Attribute und notieren für die Referenz 
auf die jQuery­Bibliothek einfach <script src="https://code.jquery.com/jquery-3.2.1.min.js"></script>. Das funktioniert einwandfrei. Wenn Sie 
Webseiten veröffentlichen und ein CDN nutzen, sollten Sie aber auf jeden Fall 
die Attribute verwenden.



In der Praxis fasst man alle eigenen Ressourcen eines Projekts meist innerhalb eines eige-
nen Verzeichnisses zusammen. Für ein Webprojekt ist es das Sinnvollste, diese Verzeich-
nisse im freigegebenen Ordner Ihres Webservers anzulegen. Im Fall von Apache/XAMPP 
wäre das in der Regel das Verzeichnis htdocs. Das hat den Vorteil, dass Sie – wenn der 
Webserver läuft – zum Test unmittelbar über HTTP und einen richtigen Webaufruf gehen 
können und nicht nur die Datei über das FILE-Protokoll in den Browser laden müssen (also 
das klassische Öffnen als Datei oder das einfache Reinziehen der Datei in den Browser). 
Letzteres ist ja nicht praxisorientiert, da später die Seiten natürlich auch vom Besucher 
über einen Webserver angefordert werden.

Wenn Sie mit einer IDE wie Eclipse oder dem Visual Studio arbeiten, kann man meist direkt 
aus der IDE eine Webseite über einen integrierten Webserver ausführen und in einen Brow-
ser Ihrer Wahl (der natürlich installiert sein muss) laden. In Visual Studio können Sie die 
Ausführung über die Funktionstaste Strg + F5 aufrufen.

Im Head der Webseite sehen Sie einen Verweis auf eine CSS-Datei kap2_1.css, die wir der 
Vollständigkeit hier kurz angeben wollen (sie spielt aber im Grunde keine Rolle):

Listing 2 .2■Die referenzierte CSS-Dateibody {  background:black; color:white; font-size:20px;}#ausgabe {  background:white; color:red; font-size:20px; padding:10px; margin:10px;  border-width:1pt; border-style:solid; width:350px; min-height:75px;}
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Praxistipp

Wenn Sie in Visual Studio in einer Projektmappe mehrere Projekte zusammen­
fassen, müssen Sie immer das richtige Startprojekt festlegen, wenn Sie aus 
der IDE eine Webseite über den integrierten Webserver von Visual Studio in 
einen Browser laden wollen. Sonst kann es zu Fehlern kommen. Das Startpro­
jekt können Sie im Projektmappen­Explorer mit einem Klick mit der rechten 
Maustaste auf die passende Projektmappe und das Kontextmenü festlegen.



Bild 2 .1■Bei einer Meldung der Art findet der Webserver die HTML-Datei nicht oder darf darauf 
nicht zugreifen.
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Praxistipp

Die CSS­Datei befindet sich in einem Unterverzeichnis lib des Projektverzeich­
nisses, in dem die Webseite gespeichert wurde. Dieses Verzeichnis enthält 
noch ein weiteres Unterverzeichnis css, worin konkret die Datei gespeichert 
ist. Wenn wir mit externen JavaScript­Dateien arbeiten, werden diese dann in 
einem Unterverzeichnis js des Unterverzeichnisses lib des Projektverzeichnis­
ses gespeichert. Diese Strukturierung hat sich in der Praxis so oder ähnlich 
auf breiter Front durchgesetzt. Das bedeutet, dass sich auch die jQuery­Biblio­
thek genau da befinden wird, wenn Sie statt eines CDN eine heruntergeladene 
Version verwenden, die Sie dann selbst bereitstellen. Aber selbstverständlich 
können Sie auch eine ganz andere Pfadstruktur wählen. Nur sollten Sie grund­
sätzlich strukturieren und das konsequent durchziehen.



Bild 2 .2■Die Projektstruktur – hier im Projektmappen-Explorer von Visual Studio gut zu sehen

In den Zeilen hinter der Referenz auf die externe CSS-Datei sehen Sie die Referenz auf eine 
externe JavaScript-Datei – die jQuery-Bibliothek, die in dem konkreten Fall wie gesagt von 
einem CDN geladen wird. In den folgenden Zeilen steht ein gewöhnlicher JavaScript-Contai-
ner. In diesem wird mit $(document) die Webseite angesprochen. Die Funktion $() steht in 
jQuery für eine Kurzschreibweise, um ein Element der Webseite zu referenzieren. Sie ist 
der (!) zentrale Dreh- und Angelpunkt des gesamten Frameworks und Sie finden diese ver-
kürzten Zugriffsschreibweisen auch in den folgenden Zeilen immer wieder. Nur wird dort 
als Parameter eine sogenannte ID eines Elements verwendet.
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Hinweis

Beachten Sie, dass ein Element (im Sinne von jQuery) als Parameter von $() 
nicht in Hochkommata eingeschlossen wird, eine ID (oder ein anderer Selektor) 
hingegen schon.



Widmen wir uns kurz der Methode ready(). Diese stellt sicher, dass die enthaltenen Auf-
rufe erst dann ausgeführt werden, wenn die Webseite vollständig geladen und der DOM 
korrekt aufgebaut wurde. Wie schon angedeutet und ohne richtig in die Tiefe zu gehen – das 
ist bereits ein Feature, dessen Wert man hoch einschätzen muss.

Hinweis

Für die Leser mit entsprechenden Vorkenntnissen ein kleiner Vorgriff – die 
Methode ready() ist eine Alternative für den Eventhandler onload. Dieser 
Eventhandler galt jedoch lange Zeit als unzuverlässig, weil er fehlerhaft in 
verschiedenen älteren Browser implementiert war.



Im Inneren der ready()-Methode werden drei Ereignisbehandlungsroutinen notiert, die 
jeweils die Reaktion bei einem Klick auf die angegebenen Elemente spezifizieren. In unse-
rem Beispiel sind das drei Schaltflächen, die jeweils mit einer eindeutigen ID gekennzeich-
net sind.

Hinweis

Die Methode click() kapselt naheliegender Weise den Funktionsaufruf des 
Eventhandlers onclick.



Die Zuordnung zur richtigen Funktion erfolgt über die ID und das Auslösen der Funktion 
innerhalb der Methode click(). Beachten Sie, dass wir hier eine sogenannte anonyme 

Funktion (also ohne Bezeichner) verwenden.

Interessant wird es, wenn ein Anwender nun auf eine Schaltfläche klickt. Dabei wird in 
einem Bereich der Webseite eine spezifische Textausgabe angezeigt. Dazu verwenden wir 
wieder $() und eine ID für die Selektion des Bereichs (ein div-Block) und die Methode html() für den Zugriff auf den Inhalt.

Hinweis

Die Methode html() ist in jQuery die Alternative zur Verwendung von innerHTML. 
Das Interessante dabei ist, dass innerHTML schon in der Praxis seit vielen Jahren 
verwendet, aber erst mit HTML5 offiziell standardisiert wird.


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Bild 2 .3■Die Webseite mit den drei Buttons – der Anwender hat die dritte Schaltfläche angeklickt.

Hinweis

Wir werden in allen folgenden Beispielen darauf verzichten, den gesamten Head 
der Webseite abzudrucken. Die Notation würde nur Platz im Buch verschwenden, 
da sie immer (fast) gleich ist. Nur bei interessanten Änderungen wird der Code 
abgedruckt.



■■ 2 .2■ Veränderung der Webseite mit DHTML

Grundsätzlich kann man mit Style Sheets die Optik einer Webseite viel besser und effek-
tiver gestalten als mit reinem HTML. Insbesondere kann man damit das Layout von der 
Struktur der Seite abtrennen. Diese Aussagen sollten – so richtig sie auch sind – für Sie 
kalter Kaffee sein. Wenn Sie nun die Style Sheets einer Seite dynamisch mit JavaScript ver-
ändern, reden wir von DHTML. Aber auch Animationseffekte wie das Ein- und Ausblenden 
von Teilen einer Webseite über andere JavaScript-Techniken gehören dazu. Lassen Sie uns 
in diesem und dem folgenden Beispiel ansehen, wie Sie animierte Webseitenänderungen 
mit jQuery schnell, einfach und bequem und dennoch zuverlässig in den unterschiedlichen 
Browsern bewerkstelligen können. In diesem Beispiel wechseln wir im Wesentlichen dyna-
misch die CSS-Klasse eines Elements.

Zuerst betrachten wir eine kleine CSS-Datei, die in der folgenden Webseite eingebunden 
werden soll und im lib/css-Verzeichnis gespeichert sein sollte (kap2_2.css):

Listing 2 .3■Die neue CSS-Dateibody {  background: black; color: white; font-size: 20px;}div {
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  background: white; color: red; font-size: 20px; padding: 10px; margin: 10px;  border-width: 1pt; border-style: solid; width: 350px; min-height: 75px;}.mKlasse {  background: red; color: yellow; font-size: 24px;}
In der CSS-Datei passiert nicht sonderlich viel. Es werden ein paar Eigenschaften für die 
gesamte Webseite und alle Elemente vom Typ div festgelegt. Von hauptsächlichem Interesse 
ist die Klasse .mKlasse. Diese soll beim Laden der folgenden Webseite noch nicht verwendet 
werden, sondern erst dynamisch bei einer Anwenderaktion zugewiesen werden. Und dazu 
kommen JavaScript und jQuery zum Einsatz (kap2_2.html):

Listing 2 .4■Verändern der verwendeten CSS-Klasse...  <script type="text/javascript">    $(document).ready(function () {      $("#a").click(function () {        $("#c").addClass("mKlasse");      });      $("#b").click(function () {         $("#c").removeClass("mKlasse");      });    });  </script></head><body>  <h1>Veränderung von Style Sheets mit jQuery</h1>  <button id="a">CSS-Klasse hinzufügen</button>  <button id="b">CSS-Klasse entfernen</button><hr />  <div id="c">Niemand ist weiter von der Wahrheit entfernt als derjenige,     der alle Antworten weiß.</div><hr />  <div id="div1">    Vom Wahrsagen lässt sich wohl leben, aber nicht vom Wahrheit sagen.  </div></body></html>
In dem Beispiel sehen Sie unterhalb einer Überschrift zwei Schaltflächen und zwei Texte 
jeweils innerhalb eines DIV-Bereichs, der mit einer Trennlinie abgegrenzt wird. Das ist 
pures HTML. Im Head finden Sie wieder die Verknüpfung mit der CSS-Datei (nicht abge-
druckt).
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Bild 2 .4■Die Seite nach dem Laden

Das Aussehen des Textes unterhalb der Schaltflächen beziehungsweise den ersten DIV-Con-
tainer wollen wir jedoch mit jQuery nun manipulieren. Dazu hat der DIV-Container eine ID. 
Der Text darunter ist als Vergleichstext gedacht.

Das Beispiel verwendet zum Zugriff auf Elemente der Webseite die im ersten Beispiel schon 
besprochenen jQuery-Mechanismen. Auch für die Reaktion auf den jeweiligen Klick auf 
eine Schaltfläche verwenden wir wieder die Methode click(). Soweit nichts Neues also.

Nun sollte Ihnen auffallen, dass wir die CSS-Klasse aus der verknüpften CSS-Datei beim 
Laden der Webseite noch keinem Element zuweisen. Aber beachten Sie die Zeile $("#c").addClass("mKlasse");. Wie der Name der Methode addClass() offensichtlich macht, wird 
durch den Aufruf dieser Methode dem vorangestellten Element die benannte Style-Sheet-
Klasse zugewiesen. Das geschieht dynamisch, aber ohne dass die Webseite irgendwie neu 
geladen wird. Die Funktionalität wird beim Klick des Anwenders auf den entsprechenden 
Button ausgelöst, wie Sie auf Grund der umgebenden click()-Methode sehen.

Bild 2 .5■Die CSS-Klasse wurde zugewiesen.
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In der Reaktion auf die zweite Schaltfläche können Sie erkennen, wie vollkommen analog 
die Klasse wieder entfernt wird. Dazu kommt die Methode removeClass() zum Einsatz. 
Wenn Sie das Beispiel testen, sehen Sie, dass Schrift und Hintergrund entsprechend verän-
dert werden.

Praxistipp

Mit der Methode toggleClass() könnten wir das Beispiel mit analoger Funk­
tionalität noch leichter schreiben. Damit wird eine CSS­Klasse entfernt oder 
hinzugefügt und zwar immer abhängig vom Zustand. Ist die Klasse bereits 
zugewiesen, wird sie entfernt und umgekehrt. Wir bräuchten also nur eine 
Schaltfläche.



■■ 2 .3■ Animiertes Verkleinern und Vergrößern 
eines Elements

Nun wollen wir mit jQuery ein Element animiert verkleinern und vergrößern und es damit 
aus- beziehungsweise wieder einblenden. Zuerst schauen wir uns die externe CSS-Datei an. 
Darin wird eine Eigenschaft definiert, die auf die folgenden Animationen konkrete Aus-
wirkungen hat (kap2_3.css):

Listing 2 .5■Die CSS-Dateibody {  background: black; color: white; font-size: 20px;}#b2 {  width: 300px;}#h2 {  background: white; color: #0000FF; font-size: 18px;  padding: 10px; margin: 10px;}
Die für das folgende Beispiel interessante Festlegung betrifft die Breitenangabe der Id #b2. 
Die als Selektor verwendete ID referenziert ein Bild. Die Breitenangabe wird die Art der 
folgenden Animation beeinflussen. Oder anders ausgedrückt – bei den anderen Bildern, bei 
denen die Breite nicht festgelegt ist, wird die Animation anders ablaufen. 
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Bild 2 .6■Das Originalaussehen

Aber widmen wir uns zuerst noch der Webseite selbst. Darin finden Sie im Wesentlichen drei 
Bilder und einen Text darunter. Alle vier Elemente sollen animiert werden (kap2_3.html):

Listing 2 .6■Drei Bilder und einen Text verkleinern oder vergrößern...  <script type="text/javascript">    $(document).ready(function () {      $("#toggle1").click(function (event) {        $('#b1').slideToggle('slow');      });      $("#toggle2").click(function (event) {        $('#b2').slideToggle('slow');      });      $("#toggle3").click(function (event) {        $('#b3').slideToggle(10000);        $('#h2').slideToggle('slow');      });    });  </script></head><body>  <h1>Ein Bild und Text mit jQuery animiert ein- und ausblenden</h1>  <button id="toggle1">Toogle Bild 1</button>  <button id="toggle2">Toogle Bild 2</button>  <button id="toggle3">Toogle Text und Bild 3</button><hr />  <img src="images/b1.jpg" id="b1" /><img src="images/b2.jpg" id="b2" />  <img src="images/b3.jpg" id="b3" /><hr />  <h2 id="h2">Animierte Bilder und Texte</h2></body></html>
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Im Zentrum dieser Animation steht die Methode slideToggle(). Auch dieser Name ist sehr 
sprechend. Mit diesem Effekt lassen sich Objekte je nach aktuellem Zustand ein- oder aus-
blenden beziehungsweise verkleinern oder vergrößern. Es wird also der aktuelle Zustand 
umgeschaltet. Sie sehen die Anwendung gleich vier Zeilen mit Animationsaktivitäten. Wie 
Sie sicher erkennen, taucht als Parameter eine Zeitangabe auf. Diese legt fest, wie lang die 
Animation benötigen soll. Man kann in allen Animationen in jQuery solche Parameter für 
die Geschwindigkeit übergeben. Erlaubte Parameter sind slow, normal, fast oder die 
Angabe in Millisekunden. Die Angabe in Millisekunden wird aber dann in der Regel nicht 
in Hochkommata eingeschlossen.

Wenn Sie die Animation des ersten Bilds nachvollziehen, werden Sie sehen, dass das Bild 
beim Verkleinern in der Höhe und Breite reduziert wird und dann ganz verschwindet. Dabei 
wird kontinuierlich der rechts stehende Inhalt nach links verschoben, ohne dass „Lücken“ 
auftreten. Umgekehrt wächst das Bild von diesem Punkt aus nach oben und in der Breite 
und Höhe, wenn Sie erneut die Schaltfläche betätigen. Die beiden anderen Bilder werden 
dabei kontinuierlich nach links verschoben.

Bild 2 .7■Das erste Bild wird nach unten und in der Breite zusammengestaucht.

Für dieses Verhalten ist massiv von Bedeutung, dass die Breite von diesem Bild nicht (!) 
über das width-Attribut beim img-Tag oder über CSS festgehalten wird.
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Bild 2 .8■Das erste Bild wurde ausgeblendet.

Beim zweiten Bild wird die Breite hingegen über die CSS-Regel für die ID b2 festgelegt. Die 
verhindert, dass auch die Breite verkleinert wird. Sie werden sehen, dass beim Verkleinern 
das Bild nur in der Höhe zusammenschnurrt und dann ganz verschwindet. 

Bild 2 .9■Bild 2 wird in der Höhe gestaucht.
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Erst wenn das Bild 2 ganz verschwunden ist, wird Bild 3 schlagartig dessen ursprünglichen 
Raum einnehmen.

Bild 2 .10■Bild 2 ist verschwunden.

Beachten Sie nun aber den Text und Bild 3, wenn Sie auf die dritte Schaltfläche klicken. Die 
Überschrift verschwindet wieder nur hinsichtlich der Höhe. Das Bild 3 hingegen, für das 
wieder die Breite nicht festgehalten wird, verändert sich in Höhe und Breite. 

Bild 2 .11■Text und Bild 3 werden unterschiedlich animiert.
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Offensichtlich spielt es bei der Wirkung von slideToggle() eine Rolle, auf welche Art von 
Element die Animationstechnik angewendet wird, beziehungsweise es spielen auch noch 
die CSS- und teils auch formatierenden HTML-Regeln eine Rolle, die einem Element vorher 
zugewiesen werden. Beachten Sie, dass die Zeitspannen beim Klick auf die dritte Schalt-
fläche für die jeweiligen Animationen des Textes und des Bilds bewusst unterschiedlich 
gewählt wurden.

Die Animationen in dem Beispiel sind grundsätzlich unabhängig voneinander. Wenn Sie die 
Zeitspanne zum Ausführen der verschiedenen Animationen lang genug wählen, um schnell 
genug Klicks auf die drei Schaltflächen auslösen zu können, können Sie die Animationen 
parallel laufen lassen.

Die jQuery-Warteschlange

Aber was passiert bei dem Beispiel, wenn Sie die gleiche Schaltfläche mehrfach anklicken? 
Das ist vielleicht etwas überraschend. Die Ereignisse werden kumuliert. Das bedeutet, sie 
werden nacheinander ausgeführt, wobei ein Folgeereignis erst dann ausgeführt wird, wenn 
das vorangehende vollständig abgearbeitet wurde. Das ist ein explizites Feature in jQuery 
– eine Warteschlange (die jQuery-Queue). Ein erneuter Klick auf die Schaltfläche führt also 
nicht dazu, dass die laufende Animation abgebrochen und die neue unmittelbar gestartet 
wird. Das müsste man gegebenenfalls explizit programmieren.

■■ 2 .4■ Attribute dynamisch verändern

Wir wollen in einem abschließenden Beispiel durchspielen, wie man mit jQuery Attribute 
bei einem Element der Webseite dynamisch verändern kann. Dazu stellt jQuery die flexible 
und nützliche Methode attr() zur Verfügung. Damit können Sie eines oder mehrere Attri-
bute eines Elements dynamisch verändern. Sie setzen in geschweiften Klammern ein Wer-
tepaar als Parameter, wobei zuerst das Attribut spezifiziert wird, dann folgen ein Doppel-
punkt und anschließend ein String mit dem neuen Wert. Alternativ können Sie auch zwei 
String-Parameter angeben. Bei der Variante stehen der erste Parameter für den Attribut-
namen und der zweite Parameter für den Wert (in dem Fall können Sie aber nur ein Attribut 
ändern). Wollen Sie nur den Wert eines Attributs abfragen, geben Sie nur den Namen des 
Attributs als String-Parameter an.

Praxistipp

Wir werden der Einfachheit halber im folgenden Beispiel nur ein Attribut 
 verändern, aber wenn Sie gleichzeitig mehrere Attribute ändern wollen, 
brauchen Sie in den geschweiften Klammern nur durch Komma getrennt 
weitere Wertepaare notieren.



Für unser Beispiel wollen wir ein Bild in der Webseite austauschen, indem wir den Wert des 
Attributs src eines <img>-Tags verändern (kap2_4.html):
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Listing 2 .7■Attribute mit jQuery manipulieren...  <script type="text/javascript">    $(document).ready(function () {      $("#toggle1").click(function () {        $("img").attr({          src: "images/b1.jpg"        });      });      $("#toggle2").click(function () {        $("img").attr(          "src", "images/b2.jpg"        );      });    });  </script></head><body>  <h1>Ein Bild austauschen</h1>  <button id="toggle1">Bild 1</button><button id="toggle2">Bild 2</button>  <hr /><img src="images/b1.jpg" /></body></html>

Bild 2 .12■Das Bild vor dem Austausch

Wir ändern einmal mit der Notation in den geschweiften Klammern den Wert und einmal 
mit den zwei String-Parametern. Wie oben beschrieben wird jeweils der Wert von src aus-
getauscht.



2.5 Zusammenfassung  43

Bild 2 .13■Auf die zweite Schaltfläche wurde geklickt.

■■ 2 .5■ Zusammenfassung

Sie haben in dem Kapitel erst einige wenige Beispiele gesehen, die aber schon recht gut 
entscheidende Schlüsselfaktoren von jQuery demonstriert haben. Sie sollten sich insbeson-
dere die Funktion $() und die ready()-Methode merken. Aber auch Techniken zur Spezifi-
zierung von Reaktionen wie die click()-Methode sind elementar wichtig. Und Animations-
techniken wie addClass(), toggleClass(), removeClass() oder slideToogle() werden 
Ihnen auch später in der Praxis bei DHTML-Effekten hilfreich sein. Auch das Verändern von 
Attributwerten (attr()) haben Sie kennengelernt. Richtig verständlich werden die Tech-
niken in den weiteren Kapiteln des Buchs, wenn Sie in das Gesamtkonzept von jQuery tiefer 
eingestiegen sind.
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