

 Leseprobe zu jQuery Das universelle JavaScript-Framework für das interaktive Web und mobile Apps von Ralph Steyer ISBN (Buch): 978-3-446-45558-0 ISBN (E-Book): 978-3-446-45651-8 Weitere Informationen und Bestellungen unter http://www.hanser-fachbuch.de/ sowie im Buchhandel © Carl Hanser Verlag, München

http://www.hanser-fachbuch.de/

Vorwort . XV

1 Einleitung . 1

1.1 Das Umfeld . 1

1.2 Frameworks und Toolkits . 2

1.3 Was behandeln wir in diesem Buch? . 3
1.3.1 Das Kern-Framework jQuery . 4
1.3.2 Plugins, UI, Mobile & Co . 4
1.3.3 Wen sehe ich als Zielgruppe für das Buch? . 5

1.4 Schreibkonventionen . 6
1.4.1 Listings . 6

1.5 Was benötigen Sie beziehungsweise was nutzt Ihnen? 6
1.5.1 Hardware und Betriebssystem . 6
1.5.2 jQuery, jQuery Mobile, jQuery UI & mehr . 7

1.6 Die Browser . 14
1.6.1 Verschiedene Betriebssysteme und virtuelle Maschinen zum Testen 15

1.7 Die Entwicklungsumgebungen und nützliche Helferlein 16
1.7.1 Editoren – oft bereits mit gewisser Hilfestellung 17
1.7.2 Integrierte Entwicklungsumgebungen . 17
1.7.3 Kleine Helferlein . 22
1.7.4 Node.js und Git . 23
1.7.5 Integrierte Entwicklungstools in Browser und Browser-Add-ons 24
1.7.6 Der Webserver zum realistischen Testen . 25

1.8 Zusammenfassung . 26

2 Sprung ins kalte Wasser . 27

2.1 Zugriff auf Elemente und Schutz des DOM . 27

2.2 Veränderung der Webseite mit DHTML . 33

2.3 Animiertes Verkleinern und Vergrößern eines Elements 36

2.4 Attribute dynamisch verändern . 41

2.5 Zusammenfassung . 43

Inhalt

VI  Inhalt

3 Grundlagenwissen . 45

3.1 Das WWW, das Web 2.0 und das Client-Server-Prinzip im Internet 45
3.1.1 Programmierung im WWW . 46
3.1.2 Das Web 2.0 und Ajax . 46

3.2 JavaScript und das Verhältnis zu jQuery . 47
3.2.1 Die allgemeine Einbindung von JavaScript in Webseiten 48
3.2.2 JSON . 50

3.3 DOM und Objekte . 51
3.3.1 DOM und der Zugriff auf Elemente einer Webseite 52

3.4 Style Sheets und DHTML . 53
3.4.1 CSS – die Standardsprache des Webs . 53
3.4.2 Die konkrete Syntax von CSS-Deklarationen . 54
3.4.3 Selektoren . 55

3.5 Zusammenfassung . 55

4 Wie jQuery grundsätzlich arbeitet . 57

4.1 Grundsätzliches zum Zugriff auf Elemente der Webseite 58
4.1.1 Ein Beispiel für unterschiedliche Knoten . 59

4.2 Der jQuery-Namensraum und das jQuery-Objekt . 62

4.3 Spezielle Datentypen und Strukturen in Query . 63
4.3.1 Methoden . 63
4.3.2 Optionen . 64
4.3.3 jqXHR . 64

4.4 Die Funktion jQuery() und der Alias $() . 64
4.4.1 Der Kontext . 66
4.4.2 Verketten von Methoden und die jQuery-Warteschlange 67
4.4.3 Funktionsaufrufe nacheinander ausführen – die

jQuery-Warteschlange . 67
4.4.4 jQuery.then() und jQuery.when() . 68

4.5 Funktionen nach Aufbau des DOM ausführen . 69
4.5.1 Callback oder anonyme Funktion als Parameter für jQuery() 69
4.5.2 Das ready-Event . 71
4.5.3 document.ready() in eine externe JavaScript-Datei auslagern 72
4.5.4 Mit jQuery.holdReady() das ready-Event beeinflussen 73

4.6 Ein Element mit jQuery() erstellen und in die Webseite einfügen 73
4.6.1 Ein trickreiches kleines Problem – können Sie es lösen? 75
4.6.2 Optionen zum Initialisieren von Attributen . 79

4.7 Direkter Zugriff auf DOM-Elemente mit get() . 81

4.8 Gemeinsame Verwendung von jQuery und anderen Frameworks 81
4.8.1 Die Funktion jQuery.noConflict() . 82
4.8.2 Einen alternativen Alias verwenden . 83

4.9 Datenspeicherung im DOM . 84

Inhalt  VII

4.10 Mehr zum Kontext und jQuery-Utilities . 90

4.11 Zusammenfassung . 92

5 Umgang mit Selektoren und Filtern . 93

5.1 Klassische DOM-Zugriffsmethoden . 93
5.1.1 Objektfelder . 94
5.1.2 Zugriff über einen Namen . 94
5.1.3 Verwandtschaftsbeziehungen . 94
5.1.4 Elementnamen, IDs und Klassennamen . 94
5.1.5 DOM-Zugriffsmöglichkeiten versus jQuery . 95

5.2 Was versteht man unter Selektoren? . 95
5.2.1 Was ist ein Selektor? . 95
5.2.2 Was sind Filter? . 96
5.2.3 CSS3, SQL und XPath als Grundlagen und Hintergrund 96

5.3 Basisselektoren und hierarchische Selektoren . 97
5.3.1 Beispiele zur Verdeutlichung . 99
5.3.2 Potenzielle Fallen . 110

5.4 Filterausdrücke . 110
5.4.1 Basisfilter . 111
5.4.2 Inhaltsfilter . 118
5.4.3 Sichtbarkeitsfilter . 121
5.4.4 Kindfilter . 125
5.4.5 Attributfilter . 128
5.4.6 Filter für Formularelemente und Formularfilter 133
5.4.7 Formularfilter zur Auswahl aufgrund des Zustands 137

5.5 Filtermethoden . 139
5.5.1 Praktische Beispiele von Filtermethoden . 140

5.6 Zusammenfassung . 149

6 Zugriff auf die Elemente einer Webseite . 151

6.1 Inhalte von Knoten abfragen und verändern – html() und text() 151
6.1.1 Ein Beispiel zu html() und text() . 152

6.2 Inhalt von Formularfeldern – val() . 156
6.2.1 Ein Beispiel für den Zugriff auf Formularfelder 156

6.3 Zugriff auf Attribute und Eigenschaften mit attr() und prop() 158
6.3.1 Zugriff auf Attribute . 158
6.3.2 Zugriff auf Eigenschaften . 158
6.3.3 Unterschied zwischen Attributen und Eigenschaften 159
6.3.4 Das Beispiel zum Zugriff auf Eigenschaften und Attribute 160

6.4 Einfügen von Knoten in eine Webseite . 166
6.4.1 append() und prepend() . 166
6.4.2 appendTo() und prependTo() . 171

VIII  Inhalt

6.5 Knoten nachher oder vorher einfügen . 176
6.5.1 after() und before() . 177
6.5.2 insertAfter() und insertBefore() . 177

6.6 Ummanteln . 177
6.6.1 Einzeln mit wrap() ummanteln . 177
6.6.2 Alles ummanteln mit wrapAll() . 180
6.6.3 Innere Bereiche ummanteln mit wrapInner() . 181
6.6.4 Den Mantel ablegen – unwrap() . 182

6.7 Ersetzen mit replaceWith() und replaceAll() . 182
6.7.1 Ersetzen mit replaceWith() . 182
6.7.2 Alles ersetzen mit replaceAll() . 186

6.8 Überflüssige Knoten entfernen . 188
6.8.1 Die Methoden empty() und remove() . 188
6.8.2 Die Alternative zu remove() – detach() . 194
6.8.3 Löschen von Attributen . 195

6.9 Vervielfachen mit clone() . 195

6.10 Suchen & Finden . 195
6.10.1 Von Kindern und Eltern . 196
6.10.2 Von Geschwistern . 199
6.10.3 Nachfolger mit has() suchen . 201

6.11 Finden mit find() und contents() . 201

6.12 Mit each() und map() über Arrays und Objekte iterieren 203
6.12.1 jQuery.each() und jQuery.map() . 204
6.12.2 Die Methoden each() und map() . 209

6.13 Die Methode add() . 210

6.14 Die Methoden end() und andSelf() . 212

6.15 Zusammenfassung . 213

7 Layout und Formatieren mit Style Sheets unter jQuery 215

7.1 Hintergrundinformationen . 215
7.1.1 CSS in jQuery – Vermischung von Layout und Funktionalität? 216

7.2 Die Methode css() . 217
7.2.1 Abfragen von Stileigenschaften . 217
7.2.2 Setzen von Eigenschaften . 217

7.3 Klassen von Elementen verändern . 218
7.3.1 Klassen hinzufügen – addClass() . 218
7.3.2 Klassen wegnehmen – removeClass() . 227
7.3.3 Klassen umschalten mit toggleClass() . 227
7.3.4 Test auf eine Klasse – hasClass() . 228

7.4 Methoden zur Positionierung . 228
7.4.1 Bestimmen der Position mit position() . 229
7.4.2 Position relativ zum Dokument – offset() . 234
7.4.3 Methoden zum Scrollen . 238

Inhalt  IX

7.5 Höhe und Breite . 241
7.5.1 height() und width() . 241

7.6 Innere und äußere Maße . 245

7.7 jQuery.cssHooks . 248

7.8 Zusammenfassung . 250

8 Ein Praxisbeispiel – eine Datumskomponente 251

8.1 Das Ziel . 251
8.1.1 Die Basiswebseite . 252

8.2 Die CSS-Datei – Templates . 253

8.3 Die JavaScript-Datei . 254

8.4 Zusammenfassung . 259

9 Ereignisbehandlung unter jQuery . 261

9.1 Grundlagen zu Ereignissen, Event handlern, Triggern und Datenbindung . . 262
9.1.1 Ereignisse . 262
9.1.2 Allgemeines zu Eventhandlern . 262
9.1.3 HTML-Eventhandler . 263
9.1.4 JavaScript/DOM-Eventhandler . 263
9.1.5 Das Ereignisobjekt . 264
9.1.6 Blubbern und die Bubble-Phase . 265
9.1.7 Datenbindung . 267
9.1.8 Trigger . 267
9.1.9 Delegation . 268
9.1.10 Versprechen (Promises) . 268

9.2 Das Ereignisobjekt in jQuery . 269
9.2.1 Der Konstruktor von jQuery.Event . 269
9.2.2 Die Eigenschaften des Ereignisobjekts jQuery.Event 270
9.2.3 Die Methoden eines Objekts vom Typ jQuery.Event 274
9.2.4 Die Ausführung des bereitstehenden Ereignisses anhalten 277

9.3 Ich habe fertig – $(document).ready() . 278

9.4 Event-Helper . 278

9.5 Erweiterte Methoden für das Eventhandling . 283
9.5.1 Datenbindung . 283
9.5.2 Triggern . 288

9.6 Live Events . 292
9.6.1 Die veraltete Methode live() . 292
9.6.2 Die veraltete Methode delegate() und die delegate-Variante von on() 293
9.6.3 Die Methoden die() und undelegate() . 297

9.7 jQuery.proxy() . 297

9.8 Weiterentwicklung der Datumskomponente . 300

9.9 Zusammenfassung . 302

X  Inhalt

10 Effekte und Animationen . 303

10.1 Grundsätzliche Anwendung . 303
10.1.1 Speed is all you need . 303
10.1.2 Die Angabe eines Callback . 305
10.1.3 Verkettung . 305
10.1.4 Warteschlangen . 306
10.1.5 Beendigung mit stop(), finish() und jQuery.fx.off 306
10.1.6 Endlosanimationen . 307
10.1.7 Art der Animationen – Easing . 307

10.2 Konkrete Effekte mit Standard methoden . 309
10.2.1 Anzeigen und Wegblenden – die Methoden show()

und hide() . 309
10.2.2 Gleiteffekte – slideDown(), slideUp() und slideToggle() 309
10.2.3 Transparenzeffekte – fadeIn(), fadeOut() und fadeTo()

sowie toggle() . 312

10.3 Individuelle Animationen mit animate() . 316

10.4 Zusammenfassung . 324

11 Asynchrone Programmierung . 325

11.1 Ajax und XMLHttpRequest (XHR) – Grundlagen . 326
11.1.1 Ein XMLHttpRequest-Objekt manuell erzeugen 326
11.1.2 Die Methoden eines XHR-Objekts . 327
11.1.3 Die Eigenschaften eines XHR-Objekts . 328
11.1.4 Das Datenformat bei einer Ajax-Kommunikation 328
11.1.5 Exemplarischer Ablauf einer Ajax-Anfrage . 329

11.2 Spezialitäten bei der Ajax-Unterstützung in jQuery . 330
11.2.1 JSONP und Remote Requests . 330
11.2.2 Das jqXHR-Objekt . 331
11.2.3 Grundsätzliches zu Methoden in jQuery für Ajax-Anfragen 331
11.2.4 Vermeidung von Caching . 333

11.3 Anwendung der Standardmethoden für Ajax . 333
11.3.1 $.get() und $.post() . 333
11.3.2 JSON-Daten anfordern und verarbeiten –

getJSON() und parseJSON() . 342

11.4 Ein Skript per Ajax nachladen – jQuery.getScript() . 344

11.5 Die allgemeine Variante zum Laden von Daten – load() 346
11.5.1 Filter angeben . 347

11.6 Serialisieren von Daten . 351
11.6.1 Die Methode serialize() . 351
11.6.2 Die Methode serializeArray() . 353
11.6.3 Die allgemeine Version zum Serialisieren – $.param() 353

11.7 Vorgabewerte für Ajax – jQuery.ajaxSetup() . 354

Inhalt  XI

11.8 Ajax Events und Ajax-Eventhandler . 354
11.8.1 Lokale Ereignisse . 354
11.8.2 Globale Ereignisse . 356

11.9 Die vollständige Kontrolle . 357
11.9.1 jQuery.ajax() . 357
11.9.2 Erweiterte Techniken für $.ajax() . 365

11.10 Web Worker . 367
11.10.1 Was ist ein Web Worker? . 367
11.10.2 Erzeugen von Web Workern . 368
11.10.3 Die Kommunikation mit einem Web Worker 369
11.10.4 Einen Worker mit terminate() beenden . 369
11.10.5 Ein Beispiel zu einem klassischen Web Worker 370

11.11 Deferred Object und Promises . 372
11.11.1 Das Umfeld – Promises . 373
11.11.2 Die speziellen jQuery-Methoden zum Umgang mit einem

Deferred Object . 376
11.11.3 Ein konkretes Beispiel mit Deferred Objects 378

11.12 Ajax mit Deferred Objects . 379
11.12.1 Generische Ajax-Methoden mit then() verketten 380
11.12.2 Das Laden von Skripts mit Deferred Objects 380
11.12.3 JSONP und Deferred Objects . 381
11.12.4 Mehrere Ajax-Anfragen ausführen und synchronisieren 382

11.13 Das Callbacks Object . 383

11.14 Zusammenfassung . 387

12 jQuery UI . 389

12.1 Was versteht man unter jQuery UI? . 390
12.1.1 Komponenten zur Unterstützung der Interaktion 390
12.1.2 Widgets . 390
12.1.3 Erweiterte Effekte . 391
12.1.4 Das Themen-Framework samt ThemeRoller 391

12.2 Der Einstieg in jQuery UI . 392

12.3 Wie nutzt man jQuery UI grundsätzlich? . 393
12.3.1 Download und der ThemeRoller . 393
12.3.2 Die Bereitstellung und Einbindung lokaler Ressourcen 397
12.3.3 Einbindung über ein CDN . 398

12.4 Verwenden der Komponenten in jQuery UI . 399
12.4.1 Die Defaulteinstellung . 400
12.4.2 Einige grundsätzliche Regeln zu Komponenten und Widgets 403
12.4.3 Eigenschaften/Optionen von Komponenten 403
12.4.4 Methoden von Komponenten . 406
12.4.5 Events bei Komponenten und Widgets . 410

XII  Inhalt

12.5 Ein Überblick über die Komponenten und Widgets . 410
12.5.1 Die Interaktionskomponenten . 410
12.5.2 Die Widgets . 411

12.6 Effekte . 423
12.6.1 Die Methode effekt() . 423
12.6.2 Farbanimationen mit animate() . 423

12.7 Zusammenfassung . 424

13 jQuery Mobile . 425

13.1 Grundlagen . 426
13.1.1 Die Plattformen . 427
13.1.2 Widgets und Features . 429
13.1.3 Download und Bereitstellung . 429
13.1.4 Themes und der ThemeRoller . 431

13.2 Das Rollensystem und data-role . 432

13.3 Der grundsätzliche Aufbau einer mobilen Seite . 432
13.3.1 Ein erstes vollständiges Beispiel . 433

13.4 Verknüpfen von Seiten . 434
13.4.1 Externe Links mit Hijax . 435
13.4.2 Interne Links und das spezielle Verständnis einer Seite 435
13.4.3 Zurück in der Historie . 436

13.5 Die Übergänge . 438

13.6 Dialoge . 439

13.7 Schaltflächen . 440
13.7.1 Schaltflächen mit Icons . 440
13.7.2 Blockelement oder Inline-Element . 441
13.7.3 Gruppierung . 442

13.8 Toolbars und Navigationsbars . 443

13.9 Listen . 445

13.10 Formularelemente . 446
13.10.1 Feldcontainer . 447
13.10.2 Die verschiedenen Formularelemente . 447
13.10.3 Deaktivieren von Elementen . 448
13.10.4 Plugin-Methoden bei Formularelementen . 448
13.10.5 Abschicken der Formulardaten . 448

13.11 Spezielle Ereignisse . 448
13.11.1 Berührungsereignisse . 449
13.11.2 Änderung der Orientierung . 449
13.11.3 Verschiebeereignisse . 449
13.11.4 Seitenereignisse . 450
13.11.5 Ein Beispiel mit Reaktionen auf Events . 450

13.12 Kollabierte und expandierte Inhalte . 452

13.13 Zusammenfassung . 454

Inhalt  XIII

14 Plugins . 455

14.1 Die Plugin-Seiten von jQuery . 455

14.2 Ein vorhandenes Plugin suchen und verwenden . 458

14.3 Eigene Plugins erstellen . 465
14.3.1 Warum eigene Plugins erstellen? . 465
14.3.2 Erstellen eines ersten Plugins . 466
14.3.3 Die wesentlichen Regeln zur Erstellung eines einfachen Plugins . . 468
14.3.4 Regeln zur Erstellung komplexerer Plugins 469
14.3.5 Ein Beispiel für ein Plugin mit Optionen . 470
14.3.6 Ein weiteres Beispiel für ein Plugin mit Optionen 472
14.3.7 Ein Plugin veröffentlichen . 473

14.4 Zusammenfassung . 477

15 Das Habitat rund um jQuery . 479

15.1 Sizzle . 479

15.2 QUnit . 482
15.2.1 xUnit-Testing . 482

15.3 Bootstrap . 488
15.3.1 Responsive Design . 488
15.3.2 Bootstrap zur Umsetzung von RWD . 489
15.3.3 Herunterladen von Bootstrap . 490
15.3.4 Eine Basis-Vorlage . 490
15.3.5 Ein Kontaktbeispiel . 491

15.4 Zusammenfassung . 493

16 Anhang . 495

16.1 Grundlagen zu JavaScript . 495
16.1.1 Case-Sensitivität . 495
16.1.2 Variablen, Literale und Datentypen . 495
16.1.3 Funktionen und Methoden . 497
16.1.4 Objekte in JavaScript . 499

16.2 Die Webseite zum Buch . 501

Index . 503

Das World Wide Web ist schon viele Jahre unglaublich erfolgreich und hat sich gerade die
letzten Jahre bezüglich seiner zukünftigen technischen Basis als auch der Form der Darstel-
lung von Inhalten sowie der Interaktion mit dem Anwender und der Dynamik stark weiter-
entwickelt. Das Stichwort Dynamik deutet schon an, dass statische, passive Webseiten über-
holt sind und immer seltener werden. Bereits die Gegenwart und insbesondere die Zukunft
gehören sogenannten Rich Internet Applications (RIAs). Gerade aber diese interaktiven
Seiten und Applikationen im Web sind ohne geeignete Frameworks kaum noch effektiv zu
erstellen und zu warten, nicht zuletzt auch deswegen, weil viele optische sowie funktionale
Features wie animierte Inhaltsaufbereitung oder komfortable Benutzereingabemöglich-
keiten mittlerweile verbreitet sind und vom verwöhnten Anwender ebenfalls erwartet wer-
den. Dementsprechend wird jedoch der Aufwand zur Erstellung von solchen Webangeboten
immer größer.

Nun war es einige Jahre nicht wirklich deutlich zu erkennen, in welche Richtung sich das
World Wide Web zur Umsetzung solcher anspruchsvoller Applikationen wirklich entwi-
ckelt. Es gab längere Zeit verschiedene technische Ansätze, die als verschiedene Optionen
für die Zukunft des Webs offen waren. Aber wenn Sie aktuell die populären und halbwegs
modern gemachten interaktiven Angebote im World Wide Web betrachten, werden Sie
eigentlich nur noch konservativ programmierte Applikationen auf Basis von Ajax (Asyn-
chronous JavaScript and XML) sowie klassisches DHTML (Dynamic HTML) vorfinden. Ein
paar Seiten setzen vielleicht noch auf das veraltete, proprietäre Flash, aber die verschwin-
den mehr und mehr. Daneben gab es aber über eine geraume Zeit Versuche, neuere propri-
etäre Techniken wie JavaFX, Silverlight oder AIR/Flex einzusetzen und teils sogar vollkom-
men auf HTML, CSS und JavaScript zu verzichten. Aber die Aktivitäten der Hersteller in
Hinsicht auf die Weiterentwicklung mit proprietären Ansätzen ist mittlerweile fast vollkom-
men zum Erliegen gekommen.

Dementsprechend setzen aktuell für interaktive anspruchsvolle Webapplikationen die
meisten Firmen, Organisationen sowie auch Privatanwender weiter ganz konservativ auf
dynamisches HTML und Ajax, zumal sich mit HTML 5 und CSS 3 offene Standards etablie-
ren, die zudem auch von den Anbietern der proprietären Techniken ganz offiziell unter-
stützt werden. Und nicht zuletzt setzen die großen – in der Hinsicht unabhängigen – Her-
steller wie Google oder Apple ebenso explizit auf HTML 5 und CSS 3 für die Zukunft.

Vorwort

XVI  Vorwort

Ihnen sollte nun etwas aufstoßen, dass ich im Zusammenhang mit Ajax und HTML5/CCS3
von konservativ spreche. Es ist noch nicht ganz so lange her, da war Ajax das Buzzword
schlechthin im World Wide Web. Ajax ist die programmiertechnische Basis dessen, was um
das Jahr 2005/2006 als Web 2.0 in aller Munde war. Immerhin hat erst Ajax es möglich
gemacht, bei Bedarf nur die Inhalte einer Webseite auszutauschen, die tatsächlich neu vom
Webserver angefordert werden müssen. Die bereits geladene Webseite bleibt bei einer
Datennachforderung per Ajax im Browser vorhanden und mittels DHTML wird gezielt an
einer bestimmten Stelle in der Webseite ein Austausch bestehenden Inhalts durch die neu
nachgeladene Information vorgenommen. Dabei kann die nachgeladene Information entwe-
der aus Klartext (inklusive HTML-Fragmenten) oder aus strukturiertem XML oder JSON
(JavaScript Object Notation) bestehen. Die Vorteile dieser Vorgehensweise sind bei stark
interaktiven Applikationen mit häufigem Serverkontakt sofort offensichtlich und mittler-
weile voll etabliert.

Dennoch bedeutet die Verwendung von Ajax respektive DHTML keinen Einsatz von moder-
nen Webtechniken, denn die Grundlagen dieser damit zusammengefassten Technologien
gibt es alle bereits seit 1997, was meine Bezeichnung als konservativ verdeutlicht. Und
dass sich Ajax erst fast zehn Jahre später wie eine Explosion über das World Wide Web
verbreitet hat, zeigt aus meiner Sicht ganz deutlich, dass das Internet und das World Wide
Web in der Entwicklung recht träge, konservativ und langsam sind. Diese von mir provo-
kant formulierte These soll nun das Internet und das World Wide Web nicht diskreditieren!
Es ist nur so, dass sich im Internet Technologien nur sehr langsam durchsetzen können,
weil sich alle Beteiligten an diesem komplexen, sehr sensiblen Gebilde World Wide Web auf
eine gemeinsame Basis einigen müssen. Und das dauert eben! In der Regel viele Jahre. Und
auf Dauer setzt sich scheinbar im Web nur das durch, was gut und einfach ist.

Wenn Sie nun aber eine moderne Webapplikation auf Basis von Ajax und DHTML erstellen
wollen, ist eine Programmierung von Hand wie erwähnt sehr aufwendig und fehlerträchtig.
Zwar ist das grundsätzliche Erstellen von DHTML- bzw. Ajax-Applikationen nicht sonder-
lich schwierig, wenn man die Grundlagentechniken HTML bzw. XHTML, CSS und JavaScript
beherrscht. Das Zusammenspiel dieser – einzeln gesehen – in der Tat recht einfachen Web-
technologien im Client kann jedoch äußerst diffizil sein, was nicht zuletzt ein Resultat der
Browserkriege des letzten Jahrtausends ist. Dazu kommen im Fall von Ajax oft noch der
permanente Austausch von Daten zwischen Client und Webserver sowie die sehr feinglied-
rige Verteilung von Geschäftslogik zwischen Client und Server hinzu.

Zudem erzwingt die eingeschränkte Leistungsfähigkeit von JavaScript oft eine nicht ganz
triviale Programmierung von Strukturen, die in leistungsfähigeren (insbesondere objekt-
orientierten) Programmiertechniken auf dem Silbertablett serviert werden. So gesehen ist
die Erstellung einer interaktiven Applikation für das Web heutzutage durchaus mit der
Komplexität der Erstellung einer Desktop-Applikation bzw. einer verteilten Netzwerkappli-
kation zu vergleichen, wenn sie sich an den aktuellen Ansprüchen der Konkurrenz messen
will. Das erkenne ich auch daran, dass in meinen Schulungen zu JavaScript, Ajax oder CSS
mehr und mehr Programmierer sitzen, die aus mächtigen Sprachen wie Java oder C# kom-
men (früher war das Vorwissen im Programmierumfeld eher geringer). Für mich ist das ein
deutliches Zeichen, dass die Ansprüche an eine moderne RIA steigen und von reinen Desi-
gnern nicht mehr erfüllt werden können. Anders ausgedrückt – mit modernen RIAs ist das
Web endgültig den Kinderschuhen entwachsen.

Vorwort  XVII

Nicht zuletzt bringt die Erstellung von modernen Webseiten und insbesondere Ajax-RIAs
ein hohes Maß an Tests und Anpassung an verschiedene Webbrowser und Plattformen mit
sich. An den unterschiedlichsten Stellen warten tückische Fallstricke. Natürlich ist die
manuelle Erstellung von komplexen DHTML-Aktionen wie Drag & Drop oder animierten
Menüs nicht jedermanns Sache. Ihnen sind sicher ebenfalls die oft extrem diffizilen Abhän-
gigkeiten von den verschiedenen Browsern, Browserversionen und Betriebssystemplattfor-
men bekannt. Diese Probleme nehmen zwar in modernen Browsern ab, sind aber immer
noch vorhanden und zudem nutzen gerade viele Firmen auch noch alte Browser.

Sogenannte Frameworks und Toolkits für Ajax bzw. JavaScript versprechen nun für viele
Aufgabenstellungen und Probleme im Umfeld von modernen Webseiten Abhilfe. Sie stellen
vielfach vor allem JavaScript-Funktionsbibliotheken mit getesteten und hochfunktionellen
Lösungen sowie ausgereifte Style Sheets bereit, damit Sie nicht jedes Mal das Rad neu erfin-
den und dessen einwandfreie Funktionalität umfangreich testen müssen. Dazu gibt es gele-
gentlich auch spezielle Tools und Programme, die eine Arbeit mit diesen Bibliotheken
unterstützen oder gar erst möglich machen. Auch bringen einige mächtige HTML-Editoren
mittlerweile sogar eigene Frameworks mit.

Wir werden uns in diesem Buch nun – wie der Titel unzweifelhaft aussagt – jQuery widmen
und schauen, wie Sie dieses geniale Framework einsetzen können, um Ihre Webapplikatio-
nen zu verbessern bzw. die Erstellung zu vereinfachen oder bestimmte Features gar erst
möglich zu machen. Wenn Sie die Möglichkeiten von jQuery nicht schon kennen, lassen Sie
sich positiv überraschen, wie einfach Ihnen dieses mächtige Werkzeug Webseiten ermög-
licht, die alle moderne Effekte und Features enthalten.

Zu diesem Einstieg in jQuery wünsche ich Ihnen viel Spaß und viel Erfolg. Doch vorher
möchte ich ein paar abschließende Bemerkungen zu meiner Person machen. Meinen Namen
werden Sie auf dem Buchumschlag oder am Ende des Vorworts gelesen haben – Ralph
Steyer. Ich habe in Frankfurt/Main an der Goethe-Universität Mathematik studiert (Diplom)
und danach anfangs einen recht typischen Werdegang für Mathematiker genommen – ich
bin erst einmal bei einer großen Versicherung gelandet, aber schon da mit EDV-Schwer-
punkt. Zunächst arbeitete ich einige Jahre als Programmierer mit Turbo Pascal und später
mit C und C++. Nach vier Jahren wechselte ich in die fachliche Konzeption für eine Groß-
rechnerdatenbank unter MVS. Die Erfahrung war für meinen Schritt in die Selbstständig-
keit sehr motivationsfördernd, denn mir wurde klar, dass ich das nicht auf Dauer machen
wollte. Seit 1996 verdiene ich daher meinen Lebensunterhalt als Freelancer, wobei ich flie-
gend zwischen der Arbeit als Fachautor, Fachjournalist, EDV-Dozent, Consultant und Pro-
grammierer wechsele. Daneben referiere ich gelegentlich auf Webkongressen, unterrichte
an verschiedenen Akademien und Fachhochschulen, übersetze gelegentlich Fachbücher
oder nehme Videotrainings auf. Das macht aus meiner Sicht einen guten Mix aus, bewahrt
vor beruflicher Langeweile und hält mich sowohl in der Praxis als auch am Puls der Ent-
wicklung. Insbesondere habe ich das Vergnügen und gleichzeitig die Last, mich permanent
über neue Entwicklungen auf dem Laufenden zu halten, denn die Halbwertszeit von Com-
puterwissen ist ziemlich kurz. Dementsprechend ist mein Job zwar anstrengend, aber vor
allem immer wieder spannend. Doch nun ab in die Welt von jQuery!

Ralph Steyer

Frühjahr 2018

2

In diesem Kapitel werden wir ohne weitere Vorbereitungen Kontakt zu jQuery schaffen und
erste Beispiele mit jQuery erstellen. Wir springen also direkt ins kalte Wasser. Sie sollen
bereits in dieser frühen Phase Ihres Einstiegs in dieses faszinierende Thema ein Gefühl für
das bekommen, was man mit jQuery anstellen kann und was Ihnen dieses Framework
bringt. Dabei wird bewusst in Kauf genommen, dass zu diesem Zeitpunkt bei den Quelltex-
ten Fragen offen bleiben. Diese Fragen werden aber im Laufe der folgenden Kapitel geklärt.
Die Erläuterungen zu den Listings werden auch in dieser Phase nur oberflächlich

1

 sein, um
nicht vom Stock zum Stöckchen zu geraten. Wir wollen möglichst schnell zur Praxis mit
jQuery kommen und erst einmal spielen. Und das bedeutet Beispiele erstellen.

■■ 2 .1■ Zugriff auf Elemente und Schutz
des DOM

Wenn Sie sich bereits etwas mit der Programmierung im WWW auskennen, wissen Sie,
dass man auf die Bestandteile einer Webseite per JavaScript oder einer anderen Skriptspra-
che im Browser über ein Objektmodell mit Namen DOM (Document Object Model) zugreifen
kann. Es gibt für so einen Zugriff verschiedene Standardtechniken, die aber alle ihre spezi-
fischen Schwächen haben. Insbesondere müssen Sie beim Zugriff auf ein einziges Element
der Webseite (oder eine Gruppe) in der Regel ziemlich viele Zeichen eingeben. Das ist müh-
selig und fehleranfällig. Die meisten Frameworks stellen deshalb eine Notation zur Verfü-
gung, über die so ein Zugriff mit einer verkürzten, vereinheitlichten Schreibweise erfolgen
kann. Und zudem kompensieren die dahinterliegenden Mechanismen der Frameworks
diverse Schwächen der Standardzugriffsverfahren, indem sie vor allen Dingen browserab-
hängige Besonderheiten kompensieren sowie diverse fehlende Funktionalitäten des reinen
DOM-Konzepts ergänzen. Besonders wichtig – diese Kompensation ist in der Regel auf allen
offiziell unterstützten Browsern getestet und funktioniert deshalb sehr zuverlässig.

1 Aber keinesfalls unwichtig.

Sprung ins kalte Wasser

28  2 Sprung ins kalte Wasser

Das folgende Beispiel zeigt weiterhin eine andere wichtige Funktionalität von jQuery – den
Schutz des DOM. Was es damit auf sich hat, wird natürlich noch viel genauer erläutert. Nur
soweit vorab – beim Laden (Parsen) der Webseite verarbeiten verschiedene Browser die
Webseite unterschiedlich und es kann beim Zugriff auf die Elemente der Webseite zu einer
Vielzahl von Problemen kommen. Das gilt vor allen Dingen dann, wenn man in einem Skript
zu früh auf Elemente einer Webseite zugreifen will – also bevor der Browser den DOM
korrekt aufgebaut hat. Hier bietet jQuery ein zuverlässiges Verfahren, um diesem Problem
Herr zu werden. Und was Ihnen das Beispiel quasi nebenbei noch zeigt ist, wie Sie per
jQuery standardisiert auf Inhalte von Elementen mit Text zugreifen und auf Ereignisse
reagieren können. Doch genug der Vorbemerkung – hier ist unser erstes Listing (kap2_1.

html):

Listing 2 .1■Das erste jQuery-Beispiel<!DOCTYPE html><html lang="de" xmlns="http://www.w3.org/1999/xhtml"><head> <meta charset="utf-8" /> <title>Schutz des DOM</title> <link href="lib/css/kap2_1.css" rel="stylesheet" type="text/css" /> <script src="https://code.jquery.com/jquery-3.2.1.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script> <script type="text/javascript"> $(document).ready(function () { $("#a").click(function () { $("#ausgabe").html("Muss das sein?"); }); $("#b").click(function () { $("#ausgabe").html("Ein nettes Spiel."); }); $("#c").click(function () { $("#ausgabe").html("Ein seltsames Spiel. " + "Der einzig gewinnbringende Zug ist " + "nicht zu spielen!"); }); }); </script></head><body> <h1>Willkommen bei WOPR</h1><h3>Wie wäre es mit einem kleinen Spiel?</h3> <button id="a">Tic Tac Toe</button><button id="b">Schach</button> <button id="c">Weltweiter Thermonuklearer Krieg</button> <div id="ausgabe"></div></body></html>
Erstellen Sie die HTML-Datei einfach in einem eigenen Arbeitsverzeichnis und speichern
Sie sie unter dem genannten Namen.

2.1 Zugriff auf Elemente und Schutz des DOM  29

Hinweis

Beachten Sie, dass jQuery in dem Listing (als auch folgenden) von einem CDN
geladen wird, aber das ist für die Funktionalität irrelevant. Sie können die
 JavaScript­Datei von jQuery auch von Ihrem Webserver oder lokal referenzieren.
Aber gerade für die ersten Beispiele ist die Referenz auf ein CDN einfacher, da
Sie das Framework nicht selbst bereitstellen müssen. Die Attribute integrity crossorigin werden dabei für die Überprüfung der Unterressourcenintegrität
(SRI – Subresource Integrity) verwendet. Dadurch können Browser sicher­
stellen, dass auf Servern von Drittanbietern gehostete Ressourcen nicht mani­
puliert wurden.

Die Verwendung von SRI wird allgemein empfohlen, wenn Bibliotheken aus
 einer Drittanbieterquelle geladen werden. Sollte es Probleme geben, wenn
man beispielsweise eine Webseite aus einer IDE wie Visual Studio und deren
internen Webserver oder Ihren lokalen Webserver lädt, verzichten Sie zur
 Entwicklungszeit einfach auf die beiden Attribute und notieren für die Referenz
auf die jQuery­Bibliothek einfach <script src="https://code.jquery.com/jquery-3.2.1.min.js"></script>. Das funktioniert einwandfrei. Wenn Sie
Webseiten veröffentlichen und ein CDN nutzen, sollten Sie aber auf jeden Fall
die Attribute verwenden.



In der Praxis fasst man alle eigenen Ressourcen eines Projekts meist innerhalb eines eige-
nen Verzeichnisses zusammen. Für ein Webprojekt ist es das Sinnvollste, diese Verzeich-
nisse im freigegebenen Ordner Ihres Webservers anzulegen. Im Fall von Apache/XAMPP
wäre das in der Regel das Verzeichnis htdocs. Das hat den Vorteil, dass Sie – wenn der
Webserver läuft – zum Test unmittelbar über HTTP und einen richtigen Webaufruf gehen
können und nicht nur die Datei über das FILE-Protokoll in den Browser laden müssen (also
das klassische Öffnen als Datei oder das einfache Reinziehen der Datei in den Browser).
Letzteres ist ja nicht praxisorientiert, da später die Seiten natürlich auch vom Besucher
über einen Webserver angefordert werden.

Wenn Sie mit einer IDE wie Eclipse oder dem Visual Studio arbeiten, kann man meist direkt
aus der IDE eine Webseite über einen integrierten Webserver ausführen und in einen Brow-
ser Ihrer Wahl (der natürlich installiert sein muss) laden. In Visual Studio können Sie die
Ausführung über die Funktionstaste Strg + F5 aufrufen.

Im Head der Webseite sehen Sie einen Verweis auf eine CSS-Datei kap2_1.css, die wir der
Vollständigkeit hier kurz angeben wollen (sie spielt aber im Grunde keine Rolle):

Listing 2 .2■Die referenzierte CSS-Dateibody { background:black; color:white; font-size:20px;}#ausgabe { background:white; color:red; font-size:20px; padding:10px; margin:10px; border-width:1pt; border-style:solid; width:350px; min-height:75px;}

30  2 Sprung ins kalte Wasser

Praxistipp

Wenn Sie in Visual Studio in einer Projektmappe mehrere Projekte zusammen­
fassen, müssen Sie immer das richtige Startprojekt festlegen, wenn Sie aus
der IDE eine Webseite über den integrierten Webserver von Visual Studio in
einen Browser laden wollen. Sonst kann es zu Fehlern kommen. Das Startpro­
jekt können Sie im Projektmappen­Explorer mit einem Klick mit der rechten
Maustaste auf die passende Projektmappe und das Kontextmenü festlegen.



Bild 2 .1■Bei einer Meldung der Art findet der Webserver die HTML-Datei nicht oder darf darauf
nicht zugreifen.

2.1 Zugriff auf Elemente und Schutz des DOM  31

Praxistipp

Die CSS­Datei befindet sich in einem Unterverzeichnis lib des Projektverzeich­
nisses, in dem die Webseite gespeichert wurde. Dieses Verzeichnis enthält
noch ein weiteres Unterverzeichnis css, worin konkret die Datei gespeichert
ist. Wenn wir mit externen JavaScript­Dateien arbeiten, werden diese dann in
einem Unterverzeichnis js des Unterverzeichnisses lib des Projektverzeichnis­
ses gespeichert. Diese Strukturierung hat sich in der Praxis so oder ähnlich
auf breiter Front durchgesetzt. Das bedeutet, dass sich auch die jQuery­Biblio­
thek genau da befinden wird, wenn Sie statt eines CDN eine heruntergeladene
Version verwenden, die Sie dann selbst bereitstellen. Aber selbstverständlich
können Sie auch eine ganz andere Pfadstruktur wählen. Nur sollten Sie grund­
sätzlich strukturieren und das konsequent durchziehen.



Bild 2 .2■Die Projektstruktur – hier im Projektmappen-Explorer von Visual Studio gut zu sehen

In den Zeilen hinter der Referenz auf die externe CSS-Datei sehen Sie die Referenz auf eine
externe JavaScript-Datei – die jQuery-Bibliothek, die in dem konkreten Fall wie gesagt von
einem CDN geladen wird. In den folgenden Zeilen steht ein gewöhnlicher JavaScript-Contai-
ner. In diesem wird mit $(document) die Webseite angesprochen. Die Funktion $() steht in
jQuery für eine Kurzschreibweise, um ein Element der Webseite zu referenzieren. Sie ist
der (!) zentrale Dreh- und Angelpunkt des gesamten Frameworks und Sie finden diese ver-
kürzten Zugriffsschreibweisen auch in den folgenden Zeilen immer wieder. Nur wird dort
als Parameter eine sogenannte ID eines Elements verwendet.

32  2 Sprung ins kalte Wasser

Hinweis

Beachten Sie, dass ein Element (im Sinne von jQuery) als Parameter von $()
nicht in Hochkommata eingeschlossen wird, eine ID (oder ein anderer Selektor)
hingegen schon.



Widmen wir uns kurz der Methode ready(). Diese stellt sicher, dass die enthaltenen Auf-
rufe erst dann ausgeführt werden, wenn die Webseite vollständig geladen und der DOM
korrekt aufgebaut wurde. Wie schon angedeutet und ohne richtig in die Tiefe zu gehen – das
ist bereits ein Feature, dessen Wert man hoch einschätzen muss.

Hinweis

Für die Leser mit entsprechenden Vorkenntnissen ein kleiner Vorgriff – die
Methode ready() ist eine Alternative für den Eventhandler onload. Dieser
Eventhandler galt jedoch lange Zeit als unzuverlässig, weil er fehlerhaft in
verschiedenen älteren Browser implementiert war.



Im Inneren der ready()-Methode werden drei Ereignisbehandlungsroutinen notiert, die
jeweils die Reaktion bei einem Klick auf die angegebenen Elemente spezifizieren. In unse-
rem Beispiel sind das drei Schaltflächen, die jeweils mit einer eindeutigen ID gekennzeich-
net sind.

Hinweis

Die Methode click() kapselt naheliegender Weise den Funktionsaufruf des
Eventhandlers onclick.



Die Zuordnung zur richtigen Funktion erfolgt über die ID und das Auslösen der Funktion
innerhalb der Methode click(). Beachten Sie, dass wir hier eine sogenannte anonyme

Funktion (also ohne Bezeichner) verwenden.

Interessant wird es, wenn ein Anwender nun auf eine Schaltfläche klickt. Dabei wird in
einem Bereich der Webseite eine spezifische Textausgabe angezeigt. Dazu verwenden wir
wieder $() und eine ID für die Selektion des Bereichs (ein div-Block) und die Methode html() für den Zugriff auf den Inhalt.

Hinweis

Die Methode html() ist in jQuery die Alternative zur Verwendung von innerHTML.
Das Interessante dabei ist, dass innerHTML schon in der Praxis seit vielen Jahren
verwendet, aber erst mit HTML5 offiziell standardisiert wird.



2.2 Veränderung der Webseite mit DHTML  33

Bild 2 .3■Die Webseite mit den drei Buttons – der Anwender hat die dritte Schaltfläche angeklickt.

Hinweis

Wir werden in allen folgenden Beispielen darauf verzichten, den gesamten Head
der Webseite abzudrucken. Die Notation würde nur Platz im Buch verschwenden,
da sie immer (fast) gleich ist. Nur bei interessanten Änderungen wird der Code
abgedruckt.



■■ 2 .2■ Veränderung der Webseite mit DHTML

Grundsätzlich kann man mit Style Sheets die Optik einer Webseite viel besser und effek-
tiver gestalten als mit reinem HTML. Insbesondere kann man damit das Layout von der
Struktur der Seite abtrennen. Diese Aussagen sollten – so richtig sie auch sind – für Sie
kalter Kaffee sein. Wenn Sie nun die Style Sheets einer Seite dynamisch mit JavaScript ver-
ändern, reden wir von DHTML. Aber auch Animationseffekte wie das Ein- und Ausblenden
von Teilen einer Webseite über andere JavaScript-Techniken gehören dazu. Lassen Sie uns
in diesem und dem folgenden Beispiel ansehen, wie Sie animierte Webseitenänderungen
mit jQuery schnell, einfach und bequem und dennoch zuverlässig in den unterschiedlichen
Browsern bewerkstelligen können. In diesem Beispiel wechseln wir im Wesentlichen dyna-
misch die CSS-Klasse eines Elements.

Zuerst betrachten wir eine kleine CSS-Datei, die in der folgenden Webseite eingebunden
werden soll und im lib/css-Verzeichnis gespeichert sein sollte (kap2_2.css):

Listing 2 .3■Die neue CSS-Dateibody { background: black; color: white; font-size: 20px;}div {

34  2 Sprung ins kalte Wasser

 background: white; color: red; font-size: 20px; padding: 10px; margin: 10px; border-width: 1pt; border-style: solid; width: 350px; min-height: 75px;}.mKlasse { background: red; color: yellow; font-size: 24px;}
In der CSS-Datei passiert nicht sonderlich viel. Es werden ein paar Eigenschaften für die
gesamte Webseite und alle Elemente vom Typ div festgelegt. Von hauptsächlichem Interesse
ist die Klasse .mKlasse. Diese soll beim Laden der folgenden Webseite noch nicht verwendet
werden, sondern erst dynamisch bei einer Anwenderaktion zugewiesen werden. Und dazu
kommen JavaScript und jQuery zum Einsatz (kap2_2.html):

Listing 2 .4■Verändern der verwendeten CSS-Klasse... <script type="text/javascript"> $(document).ready(function () { $("#a").click(function () { $("#c").addClass("mKlasse"); }); $("#b").click(function () { $("#c").removeClass("mKlasse"); }); }); </script></head><body> <h1>Veränderung von Style Sheets mit jQuery</h1> <button id="a">CSS-Klasse hinzufügen</button> <button id="b">CSS-Klasse entfernen</button><hr /> <div id="c">Niemand ist weiter von der Wahrheit entfernt als derjenige, der alle Antworten weiß.</div><hr /> <div id="div1"> Vom Wahrsagen lässt sich wohl leben, aber nicht vom Wahrheit sagen. </div></body></html>
In dem Beispiel sehen Sie unterhalb einer Überschrift zwei Schaltflächen und zwei Texte
jeweils innerhalb eines DIV-Bereichs, der mit einer Trennlinie abgegrenzt wird. Das ist
pures HTML. Im Head finden Sie wieder die Verknüpfung mit der CSS-Datei (nicht abge-
druckt).

2.2 Veränderung der Webseite mit DHTML  35

Bild 2 .4■Die Seite nach dem Laden

Das Aussehen des Textes unterhalb der Schaltflächen beziehungsweise den ersten DIV-Con-
tainer wollen wir jedoch mit jQuery nun manipulieren. Dazu hat der DIV-Container eine ID.
Der Text darunter ist als Vergleichstext gedacht.

Das Beispiel verwendet zum Zugriff auf Elemente der Webseite die im ersten Beispiel schon
besprochenen jQuery-Mechanismen. Auch für die Reaktion auf den jeweiligen Klick auf
eine Schaltfläche verwenden wir wieder die Methode click(). Soweit nichts Neues also.

Nun sollte Ihnen auffallen, dass wir die CSS-Klasse aus der verknüpften CSS-Datei beim
Laden der Webseite noch keinem Element zuweisen. Aber beachten Sie die Zeile $("#c").addClass("mKlasse");. Wie der Name der Methode addClass() offensichtlich macht, wird
durch den Aufruf dieser Methode dem vorangestellten Element die benannte Style-Sheet-
Klasse zugewiesen. Das geschieht dynamisch, aber ohne dass die Webseite irgendwie neu
geladen wird. Die Funktionalität wird beim Klick des Anwenders auf den entsprechenden
Button ausgelöst, wie Sie auf Grund der umgebenden click()-Methode sehen.

Bild 2 .5■Die CSS-Klasse wurde zugewiesen.

36  2 Sprung ins kalte Wasser

In der Reaktion auf die zweite Schaltfläche können Sie erkennen, wie vollkommen analog
die Klasse wieder entfernt wird. Dazu kommt die Methode removeClass() zum Einsatz.
Wenn Sie das Beispiel testen, sehen Sie, dass Schrift und Hintergrund entsprechend verän-
dert werden.

Praxistipp

Mit der Methode toggleClass() könnten wir das Beispiel mit analoger Funk­
tionalität noch leichter schreiben. Damit wird eine CSS­Klasse entfernt oder
hinzugefügt und zwar immer abhängig vom Zustand. Ist die Klasse bereits
zugewiesen, wird sie entfernt und umgekehrt. Wir bräuchten also nur eine
Schaltfläche.



■■ 2 .3■ Animiertes Verkleinern und Vergrößern
eines Elements

Nun wollen wir mit jQuery ein Element animiert verkleinern und vergrößern und es damit
aus- beziehungsweise wieder einblenden. Zuerst schauen wir uns die externe CSS-Datei an.
Darin wird eine Eigenschaft definiert, die auf die folgenden Animationen konkrete Aus-
wirkungen hat (kap2_3.css):

Listing 2 .5■Die CSS-Dateibody { background: black; color: white; font-size: 20px;}#b2 { width: 300px;}#h2 { background: white; color: #0000FF; font-size: 18px; padding: 10px; margin: 10px;}
Die für das folgende Beispiel interessante Festlegung betrifft die Breitenangabe der Id #b2.
Die als Selektor verwendete ID referenziert ein Bild. Die Breitenangabe wird die Art der
folgenden Animation beeinflussen. Oder anders ausgedrückt – bei den anderen Bildern, bei
denen die Breite nicht festgelegt ist, wird die Animation anders ablaufen.

2.3 Animiertes Verkleinern und Vergrößern eines Elements  37

Bild 2 .6■Das Originalaussehen

Aber widmen wir uns zuerst noch der Webseite selbst. Darin finden Sie im Wesentlichen drei
Bilder und einen Text darunter. Alle vier Elemente sollen animiert werden (kap2_3.html):

Listing 2 .6■Drei Bilder und einen Text verkleinern oder vergrößern... <script type="text/javascript"> $(document).ready(function () { $("#toggle1").click(function (event) { $('#b1').slideToggle('slow'); }); $("#toggle2").click(function (event) { $('#b2').slideToggle('slow'); }); $("#toggle3").click(function (event) { $('#b3').slideToggle(10000); $('#h2').slideToggle('slow'); }); }); </script></head><body> <h1>Ein Bild und Text mit jQuery animiert ein- und ausblenden</h1> <button id="toggle1">Toogle Bild 1</button> <button id="toggle2">Toogle Bild 2</button> <button id="toggle3">Toogle Text und Bild 3</button><hr /> <hr /> <h2 id="h2">Animierte Bilder und Texte</h2></body></html>

38  2 Sprung ins kalte Wasser

Im Zentrum dieser Animation steht die Methode slideToggle(). Auch dieser Name ist sehr
sprechend. Mit diesem Effekt lassen sich Objekte je nach aktuellem Zustand ein- oder aus-
blenden beziehungsweise verkleinern oder vergrößern. Es wird also der aktuelle Zustand
umgeschaltet. Sie sehen die Anwendung gleich vier Zeilen mit Animationsaktivitäten. Wie
Sie sicher erkennen, taucht als Parameter eine Zeitangabe auf. Diese legt fest, wie lang die
Animation benötigen soll. Man kann in allen Animationen in jQuery solche Parameter für
die Geschwindigkeit übergeben. Erlaubte Parameter sind slow, normal, fast oder die
Angabe in Millisekunden. Die Angabe in Millisekunden wird aber dann in der Regel nicht
in Hochkommata eingeschlossen.

Wenn Sie die Animation des ersten Bilds nachvollziehen, werden Sie sehen, dass das Bild
beim Verkleinern in der Höhe und Breite reduziert wird und dann ganz verschwindet. Dabei
wird kontinuierlich der rechts stehende Inhalt nach links verschoben, ohne dass „Lücken“
auftreten. Umgekehrt wächst das Bild von diesem Punkt aus nach oben und in der Breite
und Höhe, wenn Sie erneut die Schaltfläche betätigen. Die beiden anderen Bilder werden
dabei kontinuierlich nach links verschoben.

Bild 2 .7■Das erste Bild wird nach unten und in der Breite zusammengestaucht.

Für dieses Verhalten ist massiv von Bedeutung, dass die Breite von diesem Bild nicht (!)
über das width-Attribut beim img-Tag oder über CSS festgehalten wird.

2.3 Animiertes Verkleinern und Vergrößern eines Elements  39

Bild 2 .8■Das erste Bild wurde ausgeblendet.

Beim zweiten Bild wird die Breite hingegen über die CSS-Regel für die ID b2 festgelegt. Die
verhindert, dass auch die Breite verkleinert wird. Sie werden sehen, dass beim Verkleinern
das Bild nur in der Höhe zusammenschnurrt und dann ganz verschwindet.

Bild 2 .9■Bild 2 wird in der Höhe gestaucht.

40  2 Sprung ins kalte Wasser

Erst wenn das Bild 2 ganz verschwunden ist, wird Bild 3 schlagartig dessen ursprünglichen
Raum einnehmen.

Bild 2 .10■Bild 2 ist verschwunden.

Beachten Sie nun aber den Text und Bild 3, wenn Sie auf die dritte Schaltfläche klicken. Die
Überschrift verschwindet wieder nur hinsichtlich der Höhe. Das Bild 3 hingegen, für das
wieder die Breite nicht festgehalten wird, verändert sich in Höhe und Breite.

Bild 2 .11■Text und Bild 3 werden unterschiedlich animiert.

2.4 Attribute dynamisch verändern  41

Offensichtlich spielt es bei der Wirkung von slideToggle() eine Rolle, auf welche Art von
Element die Animationstechnik angewendet wird, beziehungsweise es spielen auch noch
die CSS- und teils auch formatierenden HTML-Regeln eine Rolle, die einem Element vorher
zugewiesen werden. Beachten Sie, dass die Zeitspannen beim Klick auf die dritte Schalt-
fläche für die jeweiligen Animationen des Textes und des Bilds bewusst unterschiedlich
gewählt wurden.

Die Animationen in dem Beispiel sind grundsätzlich unabhängig voneinander. Wenn Sie die
Zeitspanne zum Ausführen der verschiedenen Animationen lang genug wählen, um schnell
genug Klicks auf die drei Schaltflächen auslösen zu können, können Sie die Animationen
parallel laufen lassen.

Die jQuery-Warteschlange

Aber was passiert bei dem Beispiel, wenn Sie die gleiche Schaltfläche mehrfach anklicken?
Das ist vielleicht etwas überraschend. Die Ereignisse werden kumuliert. Das bedeutet, sie
werden nacheinander ausgeführt, wobei ein Folgeereignis erst dann ausgeführt wird, wenn
das vorangehende vollständig abgearbeitet wurde. Das ist ein explizites Feature in jQuery
– eine Warteschlange (die jQuery-Queue). Ein erneuter Klick auf die Schaltfläche führt also
nicht dazu, dass die laufende Animation abgebrochen und die neue unmittelbar gestartet
wird. Das müsste man gegebenenfalls explizit programmieren.

■■ 2 .4■ Attribute dynamisch verändern

Wir wollen in einem abschließenden Beispiel durchspielen, wie man mit jQuery Attribute
bei einem Element der Webseite dynamisch verändern kann. Dazu stellt jQuery die flexible
und nützliche Methode attr() zur Verfügung. Damit können Sie eines oder mehrere Attri-
bute eines Elements dynamisch verändern. Sie setzen in geschweiften Klammern ein Wer-
tepaar als Parameter, wobei zuerst das Attribut spezifiziert wird, dann folgen ein Doppel-
punkt und anschließend ein String mit dem neuen Wert. Alternativ können Sie auch zwei
String-Parameter angeben. Bei der Variante stehen der erste Parameter für den Attribut-
namen und der zweite Parameter für den Wert (in dem Fall können Sie aber nur ein Attribut
ändern). Wollen Sie nur den Wert eines Attributs abfragen, geben Sie nur den Namen des
Attributs als String-Parameter an.

Praxistipp

Wir werden der Einfachheit halber im folgenden Beispiel nur ein Attribut
 verändern, aber wenn Sie gleichzeitig mehrere Attribute ändern wollen,
brauchen Sie in den geschweiften Klammern nur durch Komma getrennt
weitere Wertepaare notieren.



Für unser Beispiel wollen wir ein Bild in der Webseite austauschen, indem wir den Wert des
Attributs src eines -Tags verändern (kap2_4.html):

42  2 Sprung ins kalte Wasser

Listing 2 .7■Attribute mit jQuery manipulieren... <script type="text/javascript"> $(document).ready(function () { $("#toggle1").click(function () { $("img").attr({ src: "images/b1.jpg" }); }); $("#toggle2").click(function () { $("img").attr("src", "images/b2.jpg"); }); }); </script></head><body> <h1>Ein Bild austauschen</h1> <button id="toggle1">Bild 1</button><button id="toggle2">Bild 2</button> <hr /></body></html>

Bild 2 .12■Das Bild vor dem Austausch

Wir ändern einmal mit der Notation in den geschweiften Klammern den Wert und einmal
mit den zwei String-Parametern. Wie oben beschrieben wird jeweils der Wert von src aus-
getauscht.

2.5 Zusammenfassung  43

Bild 2 .13■Auf die zweite Schaltfläche wurde geklickt.

■■ 2 .5■ Zusammenfassung

Sie haben in dem Kapitel erst einige wenige Beispiele gesehen, die aber schon recht gut
entscheidende Schlüsselfaktoren von jQuery demonstriert haben. Sie sollten sich insbeson-
dere die Funktion $() und die ready()-Methode merken. Aber auch Techniken zur Spezifi-
zierung von Reaktionen wie die click()-Methode sind elementar wichtig. Und Animations-
techniken wie addClass(), toggleClass(), removeClass() oder slideToogle() werden
Ihnen auch später in der Praxis bei DHTML-Effekten hilfreich sein. Auch das Verändern von
Attributwerten (attr()) haben Sie kennengelernt. Richtig verständlich werden die Tech-
niken in den weiteren Kapiteln des Buchs, wenn Sie in das Gesamtkonzept von jQuery tiefer
eingestiegen sind.

Symbole

$()  64
$.ajax()  357
$.ajaxPrefilter()  365
$.ajaxSetup()  354
$.ajaxTransport()  367
$.Callbacks()  383
$.data()  84
$(document).ready()  69, 278
$.each()  88, 204
$.Event  269
$.fn  466
$.get()  333
 –Deferred Object  380

$.getJSON()  342
$.getScript()  344
 –Deferred Object  381

$.load()  346
$.map()  204
$.param()  336
$.parseJSON()  342
$.post()  333
 –Deferred Object  380

$.proxy()  297
$.ready()
 – jQuery Mobile  450

$.removeData()  84
*.jquery.json package manifest
 –Plugin  474

.ui-menu  422

A

abort()
 –XHR  327

accepts  358
Accordion  390, 411
Achsen  96
adaptive Webseite  489
add()  210
 –Callbacks  383

addClass()  35, 218, 255
after()  177
ajax()  357
Ajax  46, 325
 –Mehrere Anfragen ausführen und
 synchronisieren  382

ajaxComplete()  355
ajaxError  356
ajaxError()  355
Ajax Events  354
ajaxSend  356
ajaxSend()  355
ajaxSetup()  354
ajaxStart  357
ajaxStop  357
ajaxSuccess  357
ajaxSuccess()  355
ajaxTransport()  367
aktuelle Systemzeit  91
always
 –animate()  317

always()
 –Deferred Object  377

Ancestor  97
andSelf()  212
 –deprecated  57

animate()  316, 423

Index

504  Index

animated  111
Animationen  303
 –endlos  307

Animationsfilter  113
Animationsrate  304
Annahmen
 –QUnit  482

Anzeigen  309
Apache  25
append()  166, 209, 255
appendTo()  74, 171
application/x-www-form-urlencoded  336,

359
Aptana  17
Array  500
 –assoziiertes  500
 –durchsuchen  91
 –sortieren  91

Arrayliteral  501
Array-Notation  203, 500
asserts
 –QUnit  482

async  358
attr()  41, 158
Attribute  158
 – löschen  195

Attributfilter  128
Auslöser
 –Ereignis  267

Außenabstand  245
autocomplete()  413
Autocomplete  390, 413
axis  96

B

BarCamp  3
Basisfilter  111
Basisselektoren  97
before()  177
beforeSend  358
 –Ajax  355

bind()  283
blur()  279
Bootstrap  13
border  245
Bower  11, 462
Brackets  17
Browser  14
Bubble-Phase  265

button  133
Button  391, 415

C

cache  358
Caching  358
 –Ajax  333

callback=?
 – JSONP  332

Callback-Hölle  268
Callbacks  498
 –add()  383
 –disable()  383
 –disabled()  384
 –empty()  383
 –fire ()  383
 –fired()  384
 –fireWith()  383
 –has()  384
 – lock()  383
 – locked()  384
 – remove()  383

Callbacks Object  383
cancelBubble  276
cancelBubble()  276
Cascading Style Sheets  53
catch()
 –Deferred Object  377
 –Promises  373

CDN  12, 29
 – jQuery Mobile  430
 – jQuery UI  398

change()  279
checkbox  133
Checkboxradio  391
checked  137
Child  97
children()  196
clearQueue()  68, 306
click()  32, 272, 279
clone()  195
cloneNode()  195
closest()  198
collapsible  452
Color()
 – jQuery  318

complete  358
 –Ajax  355
 –animate()  317

Index  505

contains()  91, 118, 141
Content Distribution Network  12
contents  358
contents()  201
contentType  358
 –Ajax  336

context  90, 359
contextmenu()  279
controlgroup  391, 442
converters  332, 359
Core
 – jQuery  58

createElement()  73
crossDomain  359
Cross-Domain-Zugriff  327
crossorigin  29
CSS  53
css()  66, 217, 255
cssHooks  248
CSS-Klassen
 – jQuery-Zugriff  218

CSS-Template  253
currentTarget  270

D

data  359
 –Event  270
 –Textknoten  151

Data binding  267
data()  84
data-ajax  435
data-direction  436, 438
dataFilter  359
data-fullscreen  444
data-icon  440
data-iconpos  441
data-inline  441
data-rel  436, 439
data-role  432 f., 442 f., 445, 447,

452
 – jQuery Mobile  429

data-theme
 – jQuery Mobile  431

data-transition  438
data-type  442
dataType  360
Date  256
Datenbindung  262, 267, 283
 –Praxis  416

Datenkapselung  51
Datenspeicherung  84
Datentypen  495
 – JavaScript  496

Datepicker  391, 415
Datumskomponente  251
dblclick()  279
defaultChecked
 –prop()  159

defaultSelected
 –prop()  159

Deferred Object  372, 376
 – JSONP  381
 –Laden von Skripts  380
 – then()  380

deferred.isRejected()
 –deprecated  57

deferred.isResolved()
 –deprecated  57

deferred.pipe()
 –deprecated  57

Deklaration  496
delay()  68, 306
delegate()  293
 –deprecated  57

Delegaten  268
delegateTarget  270
Delegation  268
deprecated  57, 261
dequeue()  68, 306
Descendant  97
Design
 – reaktionsfähig  488

Designvorlagen  489
detach()  194
DHTML  53, 215
dialog()  416
Dialog  391, 406, 416
 – jQuery Mobile  439

die()  297
 –deprecated  57

disable()
 –Callbacks  383

disabled  137, 448
disabled()
 –Callbacks  384

disable-Methode  448
Document Object Model  27, 52
Document Type Definition  159
document.createElement()  73
document.getElementById()  94

506  Index

document.getElementsByClassName() 
94

document.getElementsByName()  94
document.getElementsByTagName() 

94
document.ready()
 – jQuery Mobile  450

Dokumentationstools  23
DOM  27, 52
done
 –animate()  317

done()
 –Deferred Object  377

DOT-Notation  203, 500
Download
 – jQuery UI  393

Download Builder
 – jQuery Mobile  430
 – jQuery UI  393

Drag & Drop  390, 400
Draggable  410
draggable()  401
Droppable  411
DTD  159
duration
 –animate()  317

Duration  304

E

each()  148, 203, 209
easing
 –animate()  317

Easing  307, 314
Eclipse  17
effekt()  423
Effekte  303
 – jQuery UI  391, 423

Eigenschaften  51, 158
empty  118
empty()  188
 –Callbacks  383

Emulator  426
enabled  137
enable-Methode  448
end()  212
Endlosanimationen  307
eq()  111, 140, 148
equal()
 –QUnit  484

Ereignisbehandlung  261
Ereignisobjekt
 – jQuery  269

Ereignisquelle  268
Ereignisse
 –eigene erstellen  269

error  360
 –Ajax  355

error()  279
 –deprecated  57

eval()  50, 342
even  111
Event  262
Event-Bubbling  266
Eventhandler  262
 –Ajax  354

Event-Helper  278
Event-Objekt  264
event source  268
extend()  470
extends()  470

F

Factory
 –ajax()  367

fadeIn()  312
fadeOut()  312
fadeTo()  312
fail
 –animate()  317

fail()
 –Deferred Object  377

Farbanimationen  423
Farben
 –animieren  391

fast  304
Feld  157
file  133
FileZilla  25
Filter  96
 – load()  347

filter()  140, 142, 201
Filterausdrücke  110
Filtermethoden  139
find()  201
finish()  306
fire()
 –Callbacks  383

Firebug  24

Index  507

fired()
 –Callbacks  384

fireWith()
 –Callbacks  383

first  111
first()  140
first-child  125
first-of-type  125
Fluid Layout  489
focus  111
focus()  279
focusin()  279
focusout()  280
Formularelemente
 –Filter  133
 – jQuery Mobile  446

Formularfilter  133
Framework  2
fulfilled
 –Promises  373

Funktionen  497
Funktionsaufruf  498
Funktionsreferenz  498
fx.interval  304

G

Geschwister  199
get()  83, 147, 333
getAllResponseHeaders()
 –XHR  327

getElementById()  53, 94
getElementsByClassName()  94
getElementsByName()  53, 94
getElementsByTagName()  53, 94
getJSON()  342
getResponseHeader()
 –XHR  327

getScript()  73, 327, 344
Getter-Methoden  160
Git  23, 473
Gleiteffekte  309
global  360
globalEval()  91
grep()  91
Größenänderungen  390
Grunt  489
Gruppierung
 –Button  442

gt()  111

H

has()  119, 140, 201
 –Callbacks  384

hasClass()  228
hasData()  84
Hash  64
header  111
headers  360
height()  241
hidden  121
hide()  309
Hijax  435
Historie
 – jQuery Mobile  436

history.back()  436
holdReady()  73, 277
hover()  280
html()  32, 151

I

IETester  15
ifModified  360
image  133
inArray()  91
Indexbereich  140
Information Hiding  51
Inhaltsfilter  118
Innenabstand  245
innerHeight()  245
innerHTML  32, 151
innerText  152
innerWidth()  245
input  133
insertAfter()  177
insertBefore()  177
integrity  29
interval
 – jQuery.fx  304

is()  140, 144
isArray()  91
isDefaultPrevented()  274
isEmptyObject()  91
isFunction()  91
isImmediatePropagationStopped()  276
isLocal  360
isNumeric()  91
isPlainObject()  91
isPropagationStopped()  276

508  Index

isWindow()  91
isXMLDoc()  91

J

Java Development Kit  19
Java Runtime Environment  19
JavaScript
 –Versionsangabe  49

JavaScript Object Notation  50
Java Virtual Machine  19
JDK  19
jQuery
 –Download  7

jQuery Foundation  3
jQuery Migrate Plugin  8
jQuery Mobile  425
jQuery UI  389
 –Download  393

jQuery UI CSS Framework  396
jQuery UI Position utility  409, 421
jQuery Upgrade Guide  8
jQuery XMLHttpRequest  331
jQuery()  64
jQuery.ajax()  357
jQuery.ajaxPrefilter()  365
jQuery.ajaxTransport()  367
jQuery.boxModel
 –deprecated  57

jQuery.browser  276 f.
 –deprecated  57

jQuery.Callbacks()  383
jQuery.Color()  318
jQuery.contains()  91
jQuery.cssHooks  248
jQuery.data()  84
jQuery.Deferred()  372
jQuery.each()  163, 204
jQuery.Event  269
 –Eigenschaften  270
 –Methoden  274

jQuery.extend()  469 f.
jQuery.fn  466
jQuery.fn.extends()  469 f.
jQuery.fx.interval  304
 –deprecated  57

jQuery.fx.off  306
jQuery.get()  333
jQuery.getJSON()  342
jQuery.getScript()  344

jQuery.globalEval()  91
jQuery.grep()  91
jQuery.holdReady()  73, 277
jQuery.inArray()  91
jQuery.isArray()  91
jQuery.isEmptyObject()  91
jQuery.isFunction()  91
jQuery.isNumeric()  91
jQuery.isPlainObject()  91
jQuery.isWindow()  91
jQuery.isXMLDoc()  91
jQuery.makeArray()  91
jQuery.map()  91, 204
jQuery.merge()  91
jQuery-Namensraum  62
jQuery.noConflict()  82
jQuery.noop()  91
jQuery.now()  91
jQuery.param()  336, 353
jQuery.parseHTML()  91
jQuery.parseJSON()  91, 342
jQuery.parseXML()  91
jQuery.post()  333
jQuery.proxy()  297
jQuery-Queue  41
jQuery.removeData()  84
jQuery.sub()
 –deprecated  57

jQuery.support
 –deprecated  57

jQuery.then()  68
jQuery.trim()  91
jQuery.type()  91
jQuery.uniqueSort()  91
jQuery-Warteschlange  41, 67
jQuery.when()  68
jqXHR  64, 331
JRE  19
JSFiddle  23
JSLint  23
JSON  50
JSON with Padding  327
jsonp  360
JSONP  327, 330, 362
 –Deferred Objects  381

JSON.parse()  50, 342
jsonpCallback  361
JUnit  482
Just-in-time-Compiler
 – JavaScript  47

JVM  19

Index  509

K

keydown()  280
keypress()  280
keyup()  280
Kindfilter  125
Klonen  195
Knoten  58, 96
 –verbundene  270

Knotentest
 –XPath  97

Kompressoren  23
Konstruktor  499
Kontext  66, 90, 297, 359
Kontextmenü
 –Reaktion  279

Kontrollkästchen  133
Konverter
 –ajax()  366

L

Laden von Skripts
 –Deferred Objects  380

landscape  449
lang  111
last  111
last()  140
last-child  125
Last-Modified
 –Headerfeld  360

last-of-type  125
Leerzeichen
 –entfernen  91

Lesezugriff  160
Less  489
Listen  445
Listener  268
listview  445
Literale  495
Live Event  292
live()  292
 –deprecated  57

load()  280
 –deprecated  57
 –Filter  347

localhost  335
lock()
 –Callbacks  383

locked()
 –Callbacks  384

Löschen von Attributen  195
lt()  112

M

makeArray()  91
Map  64, 145
map()  91, 140, 145, 203, 209
margin  245
MariaDB  25
Media Queries  489
Mehrere Ajax-Anfragen
 –ausführen und synchronisieren 
382

Member  51
menu()  422
Menu  391
Menü  421
merge()  91
metaKey  270
Methoden  51, 497
mimeType  361
Mixins  490
Mobile
 – jQuery  425

Mobile-First-Ansatz  489
mousedown()  281
mouseenter()  281
mouseleave()  281
mousemove()  272, 281
mouseout()  272, 281
mouseover()  281
mouseup()  281
Multithreading  367
MySQL  25

N

Nachfolger  201
Namensraum  466
 –Ereignis  270
 – jQuery  62

namespace
 –Event  270

navbar  443
Navigationsbars  443
navigator.userAgent  277

510  Index

Nebenläufigkeit  368
next()  199
nextAll()  199
nextUntil()  201
noConflict()  82
Node Package Manager  11,

457
Node.js  11, 23, 457
nodeName  90
 –prop()  159

nodes  96
nodeType
 –prop()  159

nodeValue
 –Textknoten  151

noop()  91
normal  304
not()  112, 117, 140
Notepad++  17
notEqual()
 –QUnit  484

notify()
 –Deferred Object  377

notifyWith()
 –Deferred Object  377

notOk()
 –QUnit  484

now()  91
npm  11, 457
nth-child()  125, 128, 144
nth-last-child()  125
nth-last-of-type()  125
nth-of-type()  125
NuGet  462
NYC  3

O

Objekt
 – JavaScript  499
 –verzögert  372

Objektfelder  94
Objektliteral  499
odd  112, 255
off()  285
Offset  228
offset()  234
offsetParent()  198, 229
on()  285
onclick  32

one()  288
onerror
 –window  279

onload  32
only-child  125, 127
only-of-type  125
onmessage
 –Web Worker  369

onreadystatechange
 –XHR  328

open()
 –XHR  327

option  133
Optionen  64
Optionsfelder  133
orientationchange  449
outerHeight()  245
outerWidth()  245
ownerDocument
 –prop()  159

P

package.json-Datei  474
padding  245
page
 – jQuery Mobile  433

pagebeforecreate  450
pagebeforehide  450
pagebeforeshow  450
pagecreate  450
pagehide  450
pageshow  450
pageX  270
pageY  270
Paketmanager  11
Paketmanifest
 –Plugin  474

param()  336, 353
parent  97, 119
parent()  196
parents()  196
parentsUntil()  196
parseHTML()  91
parseJSON()  91, 342
parseXML()  91
password  133, 361
pending  378
 –Promises  373

phpMyAdmin  25, 337

Index  511

Plugin  455
 –erstellen  465
 –Validierung Webformular  458
 –veröffentlichen  473

Plugin-Methoden
 –Formularelemente in jQuery Mobile  448

Polsterung  245
portrait  449
position()  229
Positionierung  228
 – jQuery UI  409

post()  333
postMessage()
 –Web Worker  369

Präfixfilter  131
Prefilter
 –ajax()  365

prepend()  166, 209
prependTo()  171
prev()  199
prevAll()  199
preventDefault()  274, 285
prevUntil()  201
processData  336, 361
progress
 –animate()  317

Progressbar  416
promise()  379
 –Deferred Object  377

Promises  268, 373
 – JSONP  381
 –Laden von einem Skript  381

prop()  158
proxy()  297
Punktnotation  203, 500

Q

queue  67
 –animate()  317

queue()  68, 306
QUnit  13, 482

R

radio  133
Rahmen  245
range
 –Slider  447

rangeslider  447
Range Slider  447
ready()  32, 69, 278
 – jQuery Mobile  450

ready-Event  71
readyState
 –XHR  328

reaktionsfähiges Design  488
Registerblätter  417
reject()
 –Deferred Object  377

rejected
 –Promises  373

rejectWith()
 –Deferred Object  377

Rekursion  114
rel=  435
relatedTarget  270
Remote Requests
 –Ajax  330

remove()  188
 –Callbacks  383

removeAttr()  195
removeAttribute()  195
removeClass()  36, 227
removed  57
removeData()  84
replaceAll()  182, 186
replaceWith()  182
requestAnimationFrame()  305
reset  133
Resig, John  3
Resizable  411
resizable()  411
resize()  281
resolve()
 –Deferred Object  377

resolveWith()
 –Deferred Object  377

responseText  360
 –XHR  328

responseXML  360
 –XHR  328

Responsive Design  13, 488
Responsive Webdesign  488
result
 –Event  270

Rollensystem
 – jQuery Mobile  432

root  97, 112
RWD  488

512  Index

S

Same-Origin-Policy  327
Sandbox  327
Sass  489
Schaltflächen
 – jQuery Mobile  440

Schreibzugriff  160
scriptCharset  361
scroll()  281
Scrollen  238
scrollLeft()  238
scrollstart  449
scrollstop  449
scrollTop()  238
select  133
select()  281
Selectable  411
selectable()  411
selected  137
selectedIndex
 –prop()  159

Selectmenu  391
selector  90
 –deprecated  57

Selektion  390
Selektor  95
 –CSS  55
 –hierarchischer  98

send()
 –XHR  328

Serialisieren  351
serialize()  351
serializeArray()  353
setMimeType()
 –XHR  328

setRequestHeader()
 –XHR  328

Setter-Methoden  160
setTimeout()  303
settled
 –Promises  373

show()  309
Sibling  97
siblings()  199
Sichtbarkeitsfilter  121
Simulator  426
size()
 –deprecated  57

Sizzle  13, 479
Sizzle()  480

slice()  140
slideDown()  309
Slider  391, 416, 447
slideToggle()  38, 114, 309
slideUp()  309
slow  304
Sortable  411
sortable()  411
Sortieren  390
specialEasing
 –animate()  317

Spinner  391, 421
spinner()  421
SQL  96
SRI  29
start
 –animate()  317

state()  378
 –Deferred Object  377

status
 –XHR  328

statusCode  361
statusText
 –XHR  328

step
 –animate()  317

stop()  306
stopImmediatePropagation()  276
stopPropagation()  276, 285
Style Sheets  53
style-Objekt  216
submit  134
submit()  281
Subresource Integrity  29
success  361
 –Ajax  355

swipe  449
Systemzeit  91

T

Tabs  391, 417
tagName
 –prop()  159

tap  449
taphold  449
target  112
 –Event  270

TDD  482
Templates  251, 489

Index  513

terminate()
 –Web Worker  369

Test Driven Development  482
test()
 –QUnit  483

testgetriebene Entwicklung 
482

text  134
text()  151
textarea  133
Themen-Framework
 – jQueryUI  391

ThemeRoller  391, 395
 – jQuery Mobile  431

Themes
 – jQuery Mobile  431

then()  68
 –Deferred Object  377, 380
 –Promises  373

Thenable-Objekte  377
this  90
Threads  368
timeout  361
timeStamp
 –Event  270

toggle()  281, 312
 –deprecated  57

toggleClass()  36, 227, 287
Toolbars  443
Toolkit  2
Tooltip  391, 420
traditional  362
Transparenz  121
Transparenzeffekte  312
Transporter
 –ajax()  366

Trigger  165, 262, 267
trigger()  288
triggerHandler()  291
trim()  91
type  362
 –Event  270

type()  91

U

Übergänge
 – jQuery Mobile  438

ui-state-disabled  422
Ummanteln  177

unbind()  283
 –deprecated  57

undelegate()  297
 –deprecated  57

uniqueSort()  91
unload()  282
 –deprecated  57

unwrap()  182
url  362
URL-Kodierung  351
userAgent  277
username  362

V

val()  156
Variablen  495
verbundene Knoten  270
Verkettung  305
Versatz  228
Version
 – JavaScript  49

Versprechen  268
Verwandtschaftsbeziehungen
 –DOM  94

verzögertes Objekt  372
viewport  434
VirtualBox  15
visible  121
Visual Studio  21
VMWare Player  15
Vorlagen  251

W

Warteschlange  306
 – jQuery  41, 67

Web 2.0  46, 325
Web Tools Platform Project 

17
Web Worker  367
Webformular
 –Validierung  458

Webseite
 –adaptive  489

Webserver  25
Wegblenden  309
when()  68
 –Deferred Object  377

514  Index

which
 –Event  270

Widgets  390
 – jQuery UI  389

width()  241, 255
window.onerror  279
window.setTimeout()  303
Worker  368
wrap()  177
wrapAll()  180
wrapInner()  181
WTP  17
Wurzel  97

X

XAMPP  25, 337
xhr  362

XHR  326
xhrFields  362
XHR-Objekt
 –Eigenschaften  328
 –Methoden  327

XML Path Language  96
XMLHttpRequest  326
XPath  96
xUnit  13
xUnit-Testing  482
 –Ergebnis  482

Z

Zugangsverifizierung  336
Zusicherungen  268

	00_9783446456518_Deckblatt
	9783446456518_LPR-sw
	01_9783446456518_TOC
	02_9783446456518_Vorwort
	03_9783446456518_LPR
	04_9783446456518_Index

