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1.4 Ebene Tragwerke

1.4.1 Grundbegriffe

Die Grundelemente von Tragwerken sind Idealisierungen von Bau- und Maschinen-
bauelementen. Dazu gehören unter anderem Linientragwerke (Seil, Stab, Balken,
Bogenträger) und Flächentragwerke (Scheibe, Platte, Schale).

Stab, Seil
(nur Längsbelastung)

Stabachse

Bogenträger
(Belastungen wie Balken)

gekrümmte
Balkenachse

Balken
(Längs-, Momenten- und Querbelastung)

Balkenachse

Bild 1.23 Linientragwerke

Bei Linientragwerken ist die Länge groß gegenüber den Abmessungen des Quer-
schnitts (siehe Bild 1.23). Von Stäben und Balken sprechen wir, wenn die Stablängs-
achse9 eine Gerade ist. Ein Stab wird nur auf Zug/Druck belastet (Kräfte wirken nur in
der Stabachse), während ein Balken zusätzlich auch durch Kräfte senkrecht zur
Stabachse (Balkenachse) und durch Momente belastet werden kann. Wenn die
Stablängsachse gekrümmt ist, sprechen wir von einem Bogenträger oder einem
gekrümmten Träger.10

Platte
(ebene Mittelfläche,
Belastung beliebig)

Schale
(gekrümmte Mittelfläche,
Belastung beliebig)

Scheibe
(ebene Mittelfläche,

Belastung in der Mittelebene)

Bild 1.24 Flächentragwerke

Bei Flächentragwerken (siehe Bild 1.24) ist die Flächenausdehnung groß gegenüber
der Dicke. Wir unterscheiden auch hier zwischen ebenen und gekrümmten Flächen-
tragwerken. Bei einem ebenen Flächentragwerk ist die Mittelfläche eine Ebene. Nach

9
Verbindungslinie der Flächenschwerpunkte

10
Dabeiwirdhäufig noch zwischen schwach und stark gekrümmten Trägern unterschieden.
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der Art der Belastung unterscheiden wir zwischen Scheiben (Belastung erfolgt
ausschließlich in der Mittelfläche, siehe Bild 1.24) und Platten (Belastung erfolgt
vorrangig senkrecht zur Mittelfläche, kann aber auch zusätzlich in der Mittelfläche
erfolgen, siehe Bild 1.24). Wenn die Mittelfläche gekrümmt ist, sprechen wir von
einer Schale (siehe Bild 1.24). Es gibt noch weitere Modellannahmen, die in techni-
schen Anwendungen zu finden sind. Derartige Modellannahmen werden getroffen,
da sich dadurch wesentlich einfachere Berechnungsmöglichkeiten im Vergleich zum
allgemeinen dreidimensionalen Fall ergeben. Die Ergebnisse der Berechnungen
stimmen umso besser mit der Realität überein, je besser die Modellannahmen erfüllt
sind. Es ist eine wichtige Aufgabe des Ingenieurs, sicherzustellen, dass die gewählten
Modellannahmen korrekt sind und die daraus resultierenden Fehler im Hinblick auf
die Zielstellung der Berechnung vernachlässigbar klein werden.

1.4.2 Lagerung starrer Scheiben

Ein Lager bindet eine Scheibe an eine unbewegliche Umgebung. Für eine durch Lager
gebundene starre Scheibe gilt, wenn bges die Summe aller Lagerbindungen ist:

• die starre Scheibe ist statisch bestimmt gelagert, wenn für die Anzahl der Bewe-
gungsfreiheitsgrade f = 3 – bges = 0 gilt,

• die starre Scheibe ist beweglich, wenn für die Anzahl der Bewegungsfreiheitsgrade
f = 3 – b ges > 0 gilt,

• die starre Scheibe ist statisch überbestimmt gelagert, wenn für die Anzahl der
Bewegungsfreiheitsgrade f = 3 – b ges < 0 gilt. Wenn das System statisch überbe-
stimmt gelagert ist, reichen die Gleichgewichtsbedingungen zur Bestimmung der
Lagerreaktionen nicht aus. Die Annahme eines starren Körpers muss dann fallen
gelassen werden (siehe Kapitel 2).

Neben den schon im Kapitel 1.3.6 erwähnten einwertigen Lagern gibt es noch eine
Reihe anderer Lager, die die Anzahl der Freiheitsgrade f der starren Scheibe ein-
schränken. Wir wollen nachfolgend die üblichen Lager genauer betrachten und die
dafür in Rechnungen üblichen symbolischen Darstellungen einführen.

a) Loslager: Die Anzahl der Bindungen ist b = 1, d. h. das Lager ist einwertig.
Praktische Beispiele für Loslager sind
− die Stabstütze (Pendelstütze),
− das Seil,
− das reibungsfreie Auflager,
− die reibungsfreie Gleithülse.
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Von diesen einwertigen Lagern können Stabstützen und reibungsfreie Gleithülsen
sowohl Zug- als auch Druckkräfte aufnehmen. Seile können nur Zugkräfte und
reibungsfreie Auflager nur Druckkräfte übertragen. Die üblichen symbolischen
Darstellungsformen dieser Loslager sind in Bild 1.25 zusammengestellt.

oder

Stabstütze (Pendelstütze):

Reibungsfreie Auflager:

Kraftrichtung Kraftrichtung

Reibungsfreie Gleithülse:

Kraftrichtung

Kraftrichtung

starrer
Körper

Kraftrichtung

Stab

Kraftrichtung

Bild 1.25 Darstellung einwertiger Lager (Loslager); gestrichelt = Richtung, in der Kräfte aufgenommen
werden

Das Foto in Bild 1.26 zeigt die reale Ausführung eines einwertigen Brückenlagers,
welches als reibungsfreies Auflager idealisiert werden kann.

Originallager der Friedrich-Ebert-Brücke Magdeburg
(heutige Sternbrücke): Einbauzeit 1918-2000,
Rekonstruktion 2000, Verstellbereich 12 cm,
Eigengewicht 6,8 t

Detail des Verstellbereichs:

12 cm Verstellrichtung

Lastaufnahmerichtung

Bild 1.26 Reale Ausführung eines Brückenlagers der Bauart: 4-gliedriges Stelzenlager

b) Festlager: Die Anzahl der Bindungen ist b = 2, d. h. das Lager ist zweiwertig.
Praktische Beispiele für Festlager sind
− reibungsfreies Gleitlager (Scharnier, Gelenk),
− Auflage mit Haftung,
− Schnittpunkt der Stabachsen zweier Pendelstützen.
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Die üblichen symbolischen Darstellungsformen von Festlagern und der Ersatz von
zwei Pendelstützen durch ein Festlager sind in Bild 1.27 dargestellt.

zwei beliebige Kraftrichtungen
(zweckmäßig senkrecht zueinander)

oder

Kraftrichtung mit
unbekanntem Winkel α

α

AErsatz zweier Pendelstützen
durch ein Festlager

A

Bild 1.27 Darstellung zweiwertiger Lager (Festlager); gestrichelt = Richtung, in der Kräfte aufgenom-
men werden

c) Einspannung: Die Anzahl der Bindungen ist b = 3, d.h. das Lager ist dreiwertig.
Neben zwei Lagerkräften (wie beim Festlager) nimmt das Lager auch ein Biege-
moment auf. Praktische Anwendungsfälle sind
− an eine starre Platte angeschweißter Träger,
− in eine Mauer eingefügter Träger (siehe Bild 1.28 a),
− durch Schrauben oder Niete mit einer starren Platte verbundener Träger.

Die übliche symbolische Darstellung einer Einspannung ist in Bild 1.28 dargestellt.

a) Einspannung:
Zwei beliebige Kraftrichtungen
(gestrichelt; senkrecht zueinander
zweckmäßig) und ein Moment

b) Bewegliche Einspannungen:
Eine Kraftrichtung
(Richtung gestrichelt)
und ein Moment

Bild 1.28 Darstellung einer Einspannung (b = 3) und von beweglichen Einspannungen (b = 2)

Hinweis: Eine starre Einspannung ist ein Idealfall, bei dem die Elastizität der
Lagerung vernachlässigt wird. So weisen reale Lager in Abhängigkeit von der
Ausführung des Lagers eine mehr oder weniger stark ausgeprägte Lagerelasti-
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zität auf, die gegebenenfalls das Ergebnis entscheidend beeinflussen kann und
daher in praktischen Anwendungsfällen genauer untersucht werden muss.
Teilweise liegen für reale Lager Messungen der Lagerelastizitäten vor, die bei
der Berechnung berücksichtigt werden können. Beispielsweise stellen Schrau-
ben- oder Nietverbindungen im Stahlbau typische elastische Verbindungsele-
mente dar, deren Elastizität in den meisten Fällen jedoch unberücksichtigt
bleibt. Ob allerdings diese Modellannahme gerechtfertigt ist, muss im Einzel-
fall gesondert untersucht werden.

Es gibt aber auch bewegliche Einspannungen, die zwar ein Lagermoment aufneh-
men können, das Tragwerk aber nur in einer Richtung fixieren. Die Anzahl der
Bindungen ist in diesem Fall b = 2. Ein typisches Beispiel ist ein mit Führungen
derart an einer starren Mauer befestigter Träger, dass er sich nur in vertikaler
Richtung bewegen kann oder eine Welle, die längsverschieblich in einer starren
Hülse geführt wird (siehe Bild 1.28 b).

1.4.3 Streckenlasten

1.4.3.1 Definition von Streckenlasten

Streckenlasten sind auf eine Linie bezogene
verteilte Lasten (siehe Bild 1.29), wie sie
beispielsweise durch das Eigenwicht eines
Trägers, durch Schüttlasten, durch Windlas-
ten, durch Schneelasten u. ä. hervorgerufen
werden.

Man kann sich eine Streckenlast als sehr viele
unterschiedlich große Kräfte ∆Fi vorstellen, die
auf den Träger wirken. Die Intensität der
Streckenlast an der Stelle zi ergibt sich zu

( )
i

i
ii z

F
zqq

∆
∆== ( ) iii zzqF ∆=∆⇒ (1.14)

Wenn wir zu differentiell kleinen Größen übergehen, erhalten wir statt (1.14)

( )
z
F

zq
d

d= ( ) zzqF dd =⇒ (1.15)

Die Streckenlast hat die Intensität q(z) mit der Einheit Kraft pro Länge. Die Einheit
ist N/m (kN/m, N/mm).

Balken

q(z)

z

y

zi

∆zi

∆Fi

qi

Bild 1.29 Streckenlast
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Beispiel 1.6 Eigengewicht eines Balkens als Streckenlast

Als Beispiel ermitteln wir die Streckenlast q(z), die durch das Eigengewicht eines Balkens
mit der Dichte ρ und der konstanten Querschnittsfläche A hervorgerufen wird (siehe Bild
1.30).

q

z dz

dFG= ρg⋅dV

A, ρ

ρ - Dichte
g - Erdbeschleunigung
A - Querschnittsfläche
dV - Volumenelement, dV = A⋅dz

Es bedeuten:

Bild 1.30 Eigengewicht eines Balkens als Streckenlast

Aus der Gewichtskraft des differentiell kleinen Balkenabschnitts der Länge dz ergibt sich
eine differentiell kleine Einzelkraft der Größe

( )
& zgAVgF

zq

G ddd ⋅=⋅= ρρ

Der Vergleich mit Gleichung (1.15) bzw. Einsetzen von dFG in (1.15) liefert:

( ) gAzq ρ=

In ähnlicher Weise lassen sich die Intensitäten von Streckenlasten infolge Schneelast,
Schüttgut o. ä. berechnen.

1.4.3.2 Ermittlung der Resultierenden einer Streckenlast

Die Resultierende einer Streckenlast ergibt sich
durch Aufsummieren, d. h. Integrieren, der
differentiellen Einzelkräfte (1.15) über die
Länge l des Balkens, auf der die Last wirkt.
Damit ergibt sich mit den in Bild 1.31
angegebenen Bezeichnungen

( )
( )∫∫

=

=

==
bz

azl

R zzqFF dd (1.16)

Hinweis: An der Gleichung (1.16) erkennt man, dass die Resultierende FR formal
aus der „Fläche“, die durch q(z) und durch die Länge l = (b – a) aufgespannt wird,
berechnet werden kann.

a bz

0
q(z)

dz
zR
l

dF = q(z)⋅dz

FR

Bild 1.31 Resultierende einer Streckenlast
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Wir wollen nun die Lage der Resultierenden ermitteln. Dazu bestimmen wir zunächst
das Moment der Streckenlast bezüglich des Punktes 0. Es ergibt sich aus der Summe
der Momente der differentiellen Kräfte dF, die jeweils den Hebelarm z bezüglich des
Punktes 0 besitzen

( ) ( )
( ) zzqzFzMM

b

all

ddd0 ∫∫∫ === (1.17)

Mit dem Moment der Resultierenden bezogen auf den Punkt 0

RR zFM =0 (1.18)

können wir durch Gleichsetzen der beiden Gleichungen (1.17) und (1.18) den
Angriffspunkt zR der Resultierenden berechnet. Wir erhalten

( ) RR

b

a

zFzzzq ⋅=∫ d ( )∫=⇒
b

aR
R zzzq

F
z d

1
(1.19)

Hinweis: An der Gleichung (1.19) erkennt man, dass FR durch den Flächenschwer-
punkt der durch q(z) und der Länge l = (b – a) aufgespannten Fläche verläuft (vgl.
Kapitel 1.10.3).

Das Bild 1.32 zeigt die Ergebnisse für die Größe und die Lage der Resultierenden einer
konstanten und einer linear veränderlichen Streckenlast (Dreiecklast), wie man sie
nach den Gleichungen (1.16) und (1.19) bzw. mit Hilfe der obigen allgemeinen
Hinweise zur Größe und Lage der Resultierenden einer Streckenlast ermitteln kann.

Rechtecklast

Dreiecklast

l02

1
qFR =

l
3

2

FR = q0l

l
2

1l

q0

q0
(max. Intensität)

l

Bild 1.32 Resultierende einer Rechtecklast und einer linear veränderlichen Last (Dreiecklast)
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1.4.4 Beispiele

Beispiel 1.7 Balken auf zwei Stützen mit Einzellast

In Bild 1.33 sind ein Balken auf zwei Stützen mit einer Einzelkraft und die notwendige
Schnittskizze zur Berechnung der Lagerreaktionen mit Hilfe der Gleichgewichtsbedingun-
gen (vgl. Kapitel 1.3.5) dargestellt.

A BF

a b

α

Schnittskizze:

FAV

FAH A

FB

B

a b

Fcosα
Fsinα

Bild 1.33 Balken auf zwei Stützen mit Einzellast

Gleichgewichtsbedingungen:

→ : 0cos =− αFFAH αcosFFAH =⇒

A : ( ) ( ) 0sin =+− baFaF Bα F
ba

a
FB +

=⇒
αsin

B : ( ) ( ) 0sin =−+ bFbaFAV α F
ba

b
FAV +

=⇒
αsin

Kontrolle:

↑ : 0sin =+− BAV FFF α

Setzen wir hier die Ergebnisse der Lagerreaktionen ein, so folgt

0
sin

sin
sin =

+
+

+
+−

+
F

ba

a

ba

ba
FF

ba

b ααα
00 =⇒

Beispiel 1.8 Eingespannter Kragbalken mit Kräftepaar

Der eingespannte Balken und die Schnittskizze sind im Bild 1.34 dargestellt. Die Gleichge-
wichtsbedingungen am freigeschnittenen Balken liefern:

→ : 0=AHF

↑ : 0=+− FFFAV 0=⇒ AVF

A : ( ) 0=+−+ baFFaMA FbMA =⇒

Video
7
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A
F

a b F

MA

FAH FAV

A F

Fa b

Bild 1.34 Eingespannter Kragbalken mit Kräftepaar

Die Aufgabe zeigt, dass bei Wirkung eines Kräftepaares nur das Moment des Kräftepaares
in das Lagermoment eingeht und der Abstand des Kräftepaares vom Lager keine Rolle
spielt. Das ist eine Bestätigung des im Kapitel 1.3.2, Seite 27 aufgestellten Satzes, dass das
Moment (Kräftepaar) am starren Körper ein freier Vektor ist.

Beispiel 1.9 Verzweigter Träger mit Dreiecklast

Das Bild 1.35 zeigt einen verzweigten Träger, der bei A mit einem Festlager gelagert ist und
durch ein Seil, das am Punkt B des Trägers und bei C befestigt ist, gehalten wird. Zur
Berechnung der Auflagerreaktionen und der Seilkraft schneiden wir den Träger frei und
tragen die Kräfte an. Die Schnittskizze ist in Bild 1.35 dargestellt.

q0

a a

a

A

BC Schnittskizze:

a

a a

AFAH

FAV

FR

B

FS

xR

Bild 1.35 Verzweigter Träger mit Dreiecklast

Bevor wir die Gleichgewichtsbedingungen aufschreiben, wird die Streckenlast durch ihre
resultierende Kraft ersetzt (siehe Kapitel 1.4.3.2, Bild 1.32). Danach gilt:

aqaqFR 00 2
2

1 =⋅= und aaxR 3

4
2

3

2 =⋅=

Die Gleichgewichtsbedingungen liefern mit FR und xR:

↑ : 0=− RAV FF aqFAV 0=⇒

A : 0=−⋅ aFxF SRR aqFS 03

4=⇒

→ : 0=− SAH FF aqFF SAH 03

4==⇒




