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1.4 Ebene Tragwerke

1.4.1 Grundbegriffe

Die Grundelemente von Tragwerken sind Idealisierungen von Bau- und Maschinen-
bauelementen. Dazu gehoren unter anderem Linientragwerke (Seil, Stab, Balken,
Bogentrager) und Flachentragwerke (Scheibe, Platte, Schale).

f\

Stabachse Balkenachse * gekrimmte
Balkenachse

Stab, Seil Balken Bogentréager
(nur Langsbelastung) (L&ngs-, Momenten- und Querbelastung) (Belastungen wie Balken)

Bild 1.23 Linientragwerke

Bei Linientragwerken ist die Linge grofl gegentiber den Abmessungen des Quer-
schnitts (siehe Bild 1.23). Von Stiben und Balken sprechen wir, wenn die Stabldngs-
achse’ eine Gerade ist. Ein Stab wird nur auf Zug/Druck belastet (Krifte wirken nur in
der Stabachse), wihrend ein Balken zusitzlich auch durch Krifte senkrecht zur
Stabachse (Balkenachse) und durch Momente belastet werden kann. Wenn die
Stablangsachse gekrimmt ist, sprechen wir von einem Bogentriger oder einem
gekriimmten Trager."

|

Scheibe Platte Schale
(ebene Mittelflache, (ebene Mittelflache, (gekrimmte Mittelflache,
Belastung in der Mittelebene) Belastung beliebig) Belastung beliebig)

Bild 1.24 Flachentragwerke

Bei Flachentragwerken (siehe Bild 1.24) ist die Flichenausdehnung grofd gegeniiber
der Dicke. Wir unterscheiden auch hier zwischen ebenen und gekriimmten Fldchen-
tragwerken. Bei einem ebenen Fliachentragwerk ist die Mittelfliche eine Ebene. Nach

Verbmdungslmle der Flichenschwerpunkte
* Dabei wird haufig noch zwischen schwach und stark gekriimmten Trigern unterschieden.
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der Art der Belastung unterscheiden wir zwischen Scheiben (Belastung erfolgt
ausschlieSlich in der Mittelfliche, siehe Bild 1.24) und Platten (Belastung erfolgt
vorrangig senkrecht zur Mittelflache, kann aber auch zusitzlich in der Mittelfldche
erfolgen, siehe Bild 1.24). Wenn die Mittelfliche gekriimmt ist, sprechen wir von
einer Schale (siehe Bild 1.24). Es gibt noch weitere Modellannahmen, die in techni-
schen Anwendungen zu finden sind. Derartige Modellannahmen werden getroffen,
da sich dadurch wesentlich einfachere Berechnungsmdoglichkeiten im Vergleich zum
allgemeinen dreidimensionalen Fall ergeben. Die Ergebnisse der Berechnungen
stimmen umso besser mit der Realitét {iberein, je besser die Modellannahmen erfallt
sind. Es ist eine wichtige Aufgabe des Ingenieurs, sicherzustellen, dass die gewahlten
Modellannahmen korrekt sind und die daraus resultierenden Fehler im Hinblick auf
die Zielstellung der Berechnung vernachlassigbar klein werden.

1.4.2 Lagerung starrer Scheiben

Ein Lager bindet eine Scheibe an eine unbewegliche Umgebung. Fiir eine durch Lager
gebundene starre Scheibe gilt, wenn b, die Summe aller Lagerbindungen ist:

* die starre Scheibe ist statisch bestimmt gelagert, wenn fiir die Anzahl der Bewe-
gungsfreiheitsgrade f=3 - b, = 0 gilt,

* die starre Scheibe ist beweglich, wenn fiir die Anzahl der Bewegungsfreiheitsgrade
f=3-b,>0gil,

* die starre Scheibe ist statisch tiberbestimmt gelagert, wenn fiir die Anzahl der

Bewegungsfreiheitsgrade f=3-b_ < 0 gilt. Wenn das System statisch iiberbe-

stimmt gelagert ist, reichen die Gleichgewichtsbedingungen zur Bestimmung der

Lagerreaktionen nicht aus. Die Annahme eines starren Korpers muss dann fallen

gelassen werden (siehe Kapitel 2).

Neben den schon im Kapitel 1.3.6 erwdhnten einwertigen Lagern gibt es noch eine
Reihe anderer Lager, die die Anzahl der Freiheitsgrade f der starren Scheibe ein-
schranken. Wir wollen nachfolgend die tiblichen Lager genauer betrachten und die
dafiir in Rechnungen tiblichen symbolischen Darstellungen einfiithren.

a) Loslager: Die Anzahl der Bindungen ist b=1, d.h. das Lager ist einwertig.
Praktische Beispiele fiir Loslager sind

die Stabstiitze (Pendelstiitze),

das Seil,

das reibungsfreie Auflager,

die reibungsfreie Gleithtilse.
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Von diesen einwertigen Lagern kénnen Stabstiitzen und reibungsfreie Gleithiilsen
sowohl Zug- als auch Druckkrifte aufnehmen. Seile konnen nur Zugkrifte und
reibungsfreie Auflager nur Druckkrifte tibertragen. Die tiblichen symbolischen
Darstellungsformen dieser Loslager sind in Bild 1.25 zusammengestellt.

Stabstitze (Pendelstiitze):

/ L Kraftrichtung / L Kraftrichtung
l oder
\
starrer Stab
Korper
Reibungsfreie Auflager: Reibungsfreie Gleithiilse:

L Kraftrichttmg L Kraftricht$ng L Kraftrichtung Kraftrichtung_/g\

b

1 ' !

Bild 1.25 Darstellung einwertiger Lager (Loslager); gestrichelt = Richtung, in der Krafte aufgenommen
werden

Das Foto in Bild 1.26 zeigt die reale Ausfithrung eines einwertigen Briickenlagers,
welches als reibungsfreies Auflager idealisiert werden kann.

Detail des Verstellbereichs:

Lastaufnahmerichtung ﬂ

MEERTE. e B 777,
Originallager der Friedrich-Ebert-Briicke Magdeburg
(heutige Sternbriicke): Einbauzeit 1918-2000,
Rekonstruktion 2000, Verstellbereich 12 cm,
Eigengewicht 6,8 t

Bild 1.26 Reale Ausfihrung eines Briickenlagers der Bauart: 4-gliedriges Stelzenlager

b) Festlager: Die Anzahl der Bindungen ist b=2, d.h. das Lager ist zweiwertig.
Praktische Beispiele fiir Festlager sind
— reibungsfreies Gleitlager (Scharnier, Gelenk),
— Auflage mit Haftung,
— Schnittpunkt der Stabachsen zweier Pendelstiitzen.
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Die tiblichen symbolischen Darstellungsformen von Festlagern und der Ersatz von
zwei Pendelstiitzen durch ein Festlager sind in Bild 1.27 dargestellt.

Kraftrichtung mit zwei beliebige Kraftrichtungen

unbekanntem Winkel & (zweckmaRig senkrecht zueinander)

/
|

o |

oder —/ﬁ

Ersatz zweier Pendelstitzen
durch ein Festlager

Bild 1.27 Darstellung zweiwertiger Lager (Festlager); gestrichelt = Richtung, in der Krafte aufgenom-
men werden

c) Einspannung: Die Anzahl der Bindungen ist b = 3, d.h. das Lager ist dreiwertig.
Neben zwei Lagerkriften (wie beim Festlager) nimmt das Lager auch ein Biege-
moment auf. Praktische Anwendungsfille sind
— an eine starre Platte angeschweifSter Trager,

— in eine Mauer eingefiigter Tréger (siche Bild 1.28 a),
— durch Schrauben oder Niete mit einer starren Platte verbundener Tréger.

Die tibliche symbolische Darstellung einer Einspannung ist in Bild 1.28 dargestellt.

g | NN

N
«

a) Einspannung: b) Bewegliche Einspannungen:
Zwei beliebige Kraftrichtungen Eine Kraftrichtung
(gestrichelt; senkrecht zueinander (Richtung gestrichelt)
zweckmanRig) und ein Moment und ein Moment

Bild 1.28 Darstellung einer Einspannung (b = 3) und von beweglichen Einspannungen (b = 2)

Hinweis: Eine starre Einspannung ist ein Idealfall, bei dem die Elastizitat der
Lagerung vernachldssigt wird. So weisen reale Lager in Abhdngigkeit von der
Ausfithrung des Lagers eine mehr oder weniger stark ausgeprégte Lagerelasti-
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zitdt auf, die gegebenenfalls das Ergebnis entscheidend beeinflussen kann und
daher in praktischen Anwendungsfillen genauer untersucht werden muss.
Teilweise liegen fiir reale Lager Messungen der Lagerelastizititen vor, die bei
der Berechnung berticksichtigt werden koénnen. Beispielsweise stellen Schrau-
ben- oder Nietverbindungen im Stahlbau typische elastische Verbindungsele-
mente dar, deren Elastizitit in den meisten Fillen jedoch unberiicksichtigt
bleibt. Ob allerdings diese Modellannahme gerechtfertigt ist, muss im Einzel-
fall gesondert untersucht werden.

Es gibt aber auch bewegliche Einspannungen, die zwar ein Lagermoment aufneh-
men konnen, das Tragwerk aber nur in einer Richtung fixieren. Die Anzahl der
Bindungen ist in diesem Fall b =2. Ein typisches Beispiel ist ein mit Fithrungen
derart an einer starren Mauer befestigter Trager, dass er sich nur in vertikaler
Richtung bewegen kann oder eine Welle, die ldngsverschieblich in einer starren
Hiilse geftihrt wird (siehe Bild 1.28 b).

1.4.3 Streckenlasten

1.4.3.1 Definition von Streckenlasten

Streckenlasten sind auf eine Linie bezogene

verteilte Lasten (sieche Bild 1.29), wie sie q(z) A
beispielsweise durch das Eigenwicht eines m }qi
Tragers, durch Schiittlasten, durch Windlas- - AR o
ten, durch Schneelasten u. 4. hervorgerufen ~ X .
werden. i ' Balken
y aag

Man kann sich eine Streckenlast als sehr viele Az
unterschiedlich grof3e Krifte AF, vorstellen, die Bild 1.29 Streckenlast
auf den Trager wirken. Die Intensitit der
Streckenlast an der Stelle z; ergibt sich zu

qi ZQ(Zi):% = A =4(z)Az (1.14)

Wenn wir zu differentiell kleinen Grofien tibergehen, erhalten wir statt (1.14)
glz)=— = dF=g(z)dz (1.15)

Die Streckenlast hat die Intensitit q(z) mit der Einheit Kraft pro Lange. Die Einheit
ist N/m (kN/m, N/mm).
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Beispiel 1.6 Eigengewicht eines Balkens als Streckenlast

Als Beispiel ermitteln wir die Streckenlast q(z), die durch das Eigengewicht eines Balkens
mit der Dichte p und der konstanten Querschnittsfliche A hervorgerufen wird (siehe Bild
1.30).

q ”/ dFs=pg-dV Es bedeuten:
h U p - Dichte
V_‘_V_‘ ____'__‘_F!_-‘___V. g - Erdbeschleunigung

A - Querschnittsflache
dV - Volumenelement, dV = Adz

Bild 1.30 Eigengewicht eines Balkens als Streckenlast

Aus der Gewichtskraft des differentiell kleinen Balkenabschnitts der Linge dz ergibt sich
eine differentiell kleine Einzelkraft der Grofie

dF; =pg-dV=pgA-dz
)

Der Vergleich mit Gleichung (1.15) bzw. Einsetzen von dF, in (1.15) liefert:
q(z)= pgA
In dhnlicher Weise lassen sich die Intensititen von Streckenlasten infolge Schneelast,

Schiittgut o. 4. berechnen.

1.4.3.2 Ermittlung der Resultierenden einer Streckenlast

dF = q(z)-dz Die Resultierende einer Streckenlast ergibt sich
qa(2) Fr durch Aufsummieren, d.h. Integrieren, der
|=(.) Vo4 . differentiellen Einzelkrifte (1.15) tber die
a , |4z b Lange | des Balkens, auf der die Last wirkt.
>z, Damit ergibt sich mit den in Bild 1.31
L angegebenen Bezeichnungen

Bild 1.31 Resultierende einer Streckenlast z=b
Fp = IdF= Iq(z)dz (1.16)

0 =

Hinweis: An der Gleichung (1.16) erkennt man, dass die Resultierende F, formal
aus der ,,Flache®, die durch ¢(z) und durch die Lange | = (b — a) aufgespannt wird,
berechnet werden kann.
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Wir wollen nun die Lage der Resultierenden ermitteln. Dazu bestimmen wir zunichst
das Moment der Streckenlast beziiglich des Punktes 0. Es ergibt sich aus der Summe
der Momente der differentiellen Krifte dF, die jeweils den Hebelarm z beziiglich des
Punktes 0 besitzen

M, :dezjzsz.i‘zq(z)dz (1.17)
) (1) a

Mit dem Moment der Resultierenden bezogen auf den Punkt 0

M, =Fpzy (1.18)
konnen wir durch Gleichsetzen der beiden Gleichungen (1.17) und (1.18) den
Angriftspunkt z, der Resultierenden berechnet. Wir erhalten

b b
Iq(z)zdz=FR-zR = 2z =Lj.q(z)zdz (1.19)
Fy

a

Hinweis: An der Gleichung (1.19) erkennt man, dass F, durch den Flachenschwer-
punkt der durch q(z) und der Linge [ = (b — a) aufgespannten Flache verlauft (vgl.
Kapitel 1.10.3).

Das Bild 1.32 zeigt die Ergebnisse fiir die Grofle und die Lage der Resultierenden einer
konstanten und einer linear verinderlichen Streckenlast (Dreiecklast), wie man sie
nach den Gleichungen (1.16) und (1.19) bzw. mit Hilfe der obigen allgemeinen
Hinweise zur Grof3e und Lage der Resultierenden einer Streckenlast ermitteln kann.

Rechtecklast

Fr=qol
Qo
/ {V \ y
-2 = pal
! 777 oy “
2
<>
Dreiecklast
o ]
[ (max. Intensitat) - *FR _;qol
y
= g
7 2
—1/
<l 3 | -

Bild 1.32 Resultierende einer Rechtecklast und einer linear veranderlichen Last (Dreiecklast)
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1.4.4  Beispiele

Beispiel 1.7 Balken auf zwei Stlitzen mit Einzellast @Vi‘;eo

In Bild 1.33 sind ein Balken auf zwei Stiitzen mit einer Einzelkraft und die notwendige
Schnittskizze zur Berechnung der Lagerreaktionen mit Hilfe der Gleichgewichtsbedingun-
gen (vgl. Kapitel 1.3.5) dargestellt.

Schnittskizze:

sina
A F A B Fai A Fcosax B

— ——
g;, a b 7-%-;—7 _F-;L—G><L>TFB

D EEE—— g b

Bild 1.33 Balken auf zwei Stiitzen mit Einzellast

Gleichgewichtsbedingungen:

—: Fyy—Fcosa=0 = F,, =Fcosa
A (Fsina)a—Fz(a+b)=0 = Fy= asina
a+b
. b :
B : F,,(a+b)-(Fsina)b=0 = F,y = sina
—__a+b
Kontrolle:

T F,y—Fsina+Fz =0

Setzen wir hier die Ergebnisse der Lagerreaktionen ein, so folgt

bSIHaF—Fsinaa+b+asmaF=0 ~ 0=0
a+b at+b a+b =

Beispiel 1.8 Eingespannter Kragbalken mit Kraftepaar

Der eingespannte Balken und die Schnittskizze sind im Bild 1.34 dargestellt. Die Gleichge-
wichtsbedingungen am freigeschnittenen Balken liefern:

—: Fuy=0

T: F,—F+F=0 = F,, =0

e M, +Fa—F(a+b)=0 = M,=Fb
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Bild 1.34 Eingespannter Kragbalken mit Kraftepaar

Die Aufgabe zeigt, dass bei Wirkung eines Kriftepaares nur das Moment des Kriftepaares
in das Lagermoment eingeht und der Abstand des Kriftepaares vom Lager keine Rolle
spielt. Das ist eine Bestdtigung des im Kapitel 1.3.2, Seite 27 aufgestellten Satzes, dass das
Moment (Kriftepaar) am starren Korper ein freier Vektor ist.

Beispiel 1.9 Verzweigter Trager mit Dreiecklast

Das Bild 1.35 zeigt einen verzweigten Tréger, der bei A mit einem Festlager gelagert ist und
durch ein Seil, das am Punkt B des Trigers und bei C befestigt ist, gehalten wird. Zur
Berechnung der Auflagerreaktionen und der Seilkraft schneiden wir den Tréger frei und
tragen die Krifte an. Die Schnittskizze ist in Bild 1.35 dargestellt.

Schnittskizze: B
«

Bild 1.35 Verzweigter Trager mit Dreiecklast

Bevor wir die Gleichgewichtsbedingungen aufschreiben, wird die Streckenlast durch ihre
resultierende Kraft ersetzt (siche Kapitel 1.4.3.2, Bild 1.32). Danach gilt:

1 2 4
Fr=—q,-2a=q,a und Xp=—:2a=—a
RTS 9o 9o RT3 3
Die Gleichgewichtsbedingungen liefern mit F, und x,:
T F,v—F; =0 = F,y,=¢q,a
A 4
A Fyp-xp—Faa=0 = Fszg%a

4
—>: Fuy—-F=0 = FAHZFSZqua





