Wolfgang Hess

Pitch Determination of Speech Signals

Algorithms and Devices

With 254 Figures

Springer-Verlag
Berlin Heidelberg New York Tokyo 1983

Contents

ı.	Intr	oduction	1
	1.1	Voice Source Parameter Measurement and the Speech Signal	1
	1.2	A Short Look at the Areas of Application	3
	1.3	Organization of the Book	6
2.	Basi	c Terminology. A Short Introduction to Digital Signal Processing	8
	2.1	The Simplified Model of Speech Excitation	8
	2.2	Digital Signal Processing 1: Signal Representation	13
	2.3	Digital Signal Processing 2: Filters	18
	2.4	Time-Variant Systems. The Principle of Short-Term Analysis	24
	2.5	Definition of the Task. The Linear Model of Speech Production	31
	2.6	A First Categorization of Pitch Determination Algorithms (PDAs)	34
3.	The	Human Voice Source	38
	3.1	Mechanism of Sound Generation at the Larynx	38
		Operational Modes of the Larynx. Registers	48
	3.3	The Glottal Source (Excitation) Signal	51
	3.4	The Influence of the Vocal Tract Upon Voice Source Parameters	55
	3.5	The Voiceless and the Transient Sources	59
4.	Mea	suring Range, Accuracy, Pitch Perception	63
	4.1	The Range of Fundamental Frequency	64
	4.2	Pitch Perception. Toward a Redefinition of the Task	66
		4.2.1 Pitch Perception: Spectral and Virtual Pitch	66
		4.2.2 Toward a Redefinition of the Task	76
		4.2.3 Difference Limens for Fundamental-Frequency Change	78
	4.3	Measurement Accuracy	83
	4.4	Representation of the Pitch Information in the Signal	88
	4.5	Calibration and Performance Evaluation of a PDA	90
5.	Mar	nual and Instrumental Pitch Determination, Voicing Determination	92
	5.1	Manual Pitch Determination	93
		5.1.1 Time-Domain Manual Pitch Determination	94
		5.1.2 Frequency-Domain Manual Pitch Determination	98
	5.2	Pitch Determination Instruments (PDIs)	103
		5.2.1 Clinical Methods for Larynx Inspection	105
		5.2.2 Mechanic PDIs	107
		5.2.3 Electric PDIs	116
		5.2.4 Ultrasonic PDIs	124
		5.2.5 Photoelectric PDIs (Transillumination of the Glottis)	127
		5.2.6 Comparative Evaluation of PDIs	129

	5.3	Voici	ng Determination - Selected Examples	133
		5.3.1	Voicing Determination: Parameters	136
		5.3.2	Voicing Determination - Simple Voicing Determination Algorithms (VDAs); Combined VDA-PDA Systems	138
		5.3.3	Multiparameter VDAs. Voicing Determination by Means of Pat-	
			tern Recognition Methods	144
		5.3.4	Summary and Conclusions	151
6.	Tim	e-Dom	ain Pitch Determination	152
	6.1	Pitch	Determination by Fundamental-Harmonic Extraction	154
	0.1	6.1.1	The Basic Extractor	156
		6.1.2	The Simplest Pitch Determination Device - Low-Pass Filter and	170
		0.1.2	Zero (or Threshold) Crossings Analysis Basic Extractor	162
		6.1.3	Enhancement of the First Harmonic by Nonlinear Means	166
		6.1.4	Manual Preset and Tunable (Adaptive) Filters	173
	6.2		Other Extreme - Temporal Structure Analysis	181
	0.2	6.2.1	Envelope Modeling - the Analog Approach	183
		6.2.2	Simple Peak Detector and Global Correction	198
		6.2.3		202
		6.2.4	Zero Crossings and Excursion Cycles	
		6.2.5	Mixed-Feature Algorithms	210
		6.2.3	Other PDAs That Investigate the Temporal Structure of the Signal	216
	6.3	The Ir	ntermediate Device: Temporal Structure Transformation and Sim-	210
	0.7		ition	220
		6.3.1		221
		6.3.2	The Discontinuity in the Excitation Signal: Event Detection	230
	6 lı		el Processing in Fundamental Period Determination. Multichannel	200
	0.4	PDAs		242
		6.4.1		243
		6.4.2	PDAs with Several Channels Applying Different Extraction Prin-	
		· ·	ciples	251
	6.0	-	al-Purpose (High-Accuracy) Time-Domain PDAs	254
		6.5.1	Glottal Inverse Filtering	255
		6.5.2	Determining the Instant of Glottal Closure	269
	6.6		ostprocessor	277
		6.6.1	Time-to-Frequency Conversion; Display	277
		6.6.2	F ₀ Determination With Basic Extractor Omitted	281
		6.6.3	Global Error Correction Routines	284
		6.6.4	Smoothing Pitch Contours	295
	6.7	Final	Comments	298
7.			d Implementation of a Time-Domain PDA for Undistorted and	
	Ban	d-Limi	ted Signals	302
	7.1	The L	inear Algorithm	302
		7.1.1	Prefiltering	303
		7.1.2	Measurement and Suppression of F1	303
		7.1.3	The Basic Extractor	304
		7.1.4	Problems with the Formant F2. Implementation of a Multiple Two-Pulse Filter (TPF)	307
		7.1.5	Phase Relations and Starting Point of the Period	308
		7.1.6	Performance of the Algorithm with Respect to Linear Distor-	200
		, .1.0	tions, Especially to Band Limitations	309
	7.2	Band-	Limited Signals in Time-Domain PDAs	310
		7.2.1	Concept of the Universal PDA	311
			Once More: Use of Nonlinear Distortion in Time-Domain PDAs	

Contents XIII

	7.3		sperimental Study Towards a Universal Time-Domain PDA Apply-	
		ing a	Nonlinear Function and a Threshold Analysis Basic Extractor	313
		7.3.1	Setup of the Experiment	313
		7.3.2	Relative Amplitude and Enhancement of First Harmonic	316
	7.4	Towar	d a Choice of Optimal Nonlinear Functions	322
		7.4.1	Selection with Respect to Phase Distortions	323
		7.4.2	Selection with Respect to Amplitude Characteristics	325
		7.4.3	Selection with Respect to the Sequence of Processing	327
	7 5		mentation of a Three-Channel PDA with Nonlinear Processing	328
	1.5	7.5.1	Selection of Nonlinear Functions	328
		7.5.2	Determination of the Parameter for the Comb Filter	329
		7.5.3	Threshold Function in the Basic Extractor	331
		7.5.4	Selection of the Most Likely Channel in the Basic Extractor	335
		1.5.4	Selection of the Most Likely Chamber in the Basic Extractor	227
8.	Sho	rt-Tern	n Analysis Pitch Determination	343
	8.1	The S	hort-Term Transformation and Its Consequences	345
	8.2		orrelation Pitch Determination	351
		8.2.1	The Autocorrelation Function and Its Relation to the Power	
			Spectrum	351
		8.2.2	Analog Realizations	356
		8.2.3	"Ordinary" Autocorrelation PDAs	359
		8.2.4	Autocorrelation PDAs with Nonlinear Preprocessing	359
		8.2.5	Autocorrelation PDAs with Linear Adaptive Preprocessing	366
	8.3	"Antic	correlation" Pitch Determination: Average Magnitude Difference	
		Functi	ion, Distance and Dissimilarity Measures, and Other Nonstation-	
		ary Sh	nort-Term Analysis PDAs	372
		8.3.1	0 , , , , , , , , , , , , , , , , , , ,	373
		8.3.2		383
		8.3.3	Nonstationary Short-Term Analysis and Incremental Time-	
			Domain PDAs	391
	8.4		ole Spectral Transform ("Cepstrum") Pitch Determination	396
		8.4.1	The More General Aspect: Deconvolution	396
		8.4.2	Cepstrum Pitch Determination	399
	8.5	-	ency-Domain PDAs	409
		8.5.1	Spectral Compression: Frequency and Period Histogram; Product	410
		0.5.2	Spectrum	417
		8.5.2 8.5.3	Harmonic Matching. Psychoacoustic PDAs	417
		8.7.5	Determination of F ₀ from the Distance of Adjacent Spectral Peaks	435
		8.5.4	The Fast Fourier Transform, Spectral Resolution, and the Com-	
			puting Effort	438
	8.6	Maxim	num-Likelihood (Least-Squares) Pitch Determination	446
		8.6.1	The Least-Squares Algorithm	447
		8.6.2	A Multichannel Solution	454
		8.6.3	Computing Complexity, Relation to Comb Filters, Simplified	
			Realizations	459
	8.7	Summ	ary and Conclusions	466
9.	Gen	eral D	iscussion: Summary, Error Analysis, Applications	471
	9.1	A Sho	ort Survey of the Principal Methods of Pitch Determination	472
		9.1.1	Categorization of PDAs and Definitions of Pitch	472
		9.1.2	The Basic Extractor	481
		9.1.3	The Postprocessor	484
		9.1.4		485

	9.1.5 The Impact of Technology of the Design of PDAs and the Question of Computing Effort
9.2	Calibration, Search for Standards
	9.2.1 Data Acquisition
	9.2.2 Creating the Standard Pitch Contour Manually, Automatically, and by an Interactive PDA
	9.2.3 Creating a Standard Contour by Means of a PDI
9.3	Performance Evaluation of PDAs
	9.3.1 Comparative Performance Evaluation of PDAs: Some Examples from the Literature
	9.3.2 Methods of Error Analysis
9.4	A Closer Look at the Applications
	9.4.1 Has the Problem Been Solved?
	9.4.2 Application in Phonetics, Linguistics, and Musicology
	9.4.3 Application in Education and in Pathology
	9.4.4 The "Technical" Application: Speech Communication
	9.4.5 A Way Around the Problem in Speech Communication: Voice- Excited and Residual-Excited Vocoding (Baseband Coding)
9.5	Possible Paths Towards a General Solution
	ne-Domain Pitch Determination Algorithms
	Examples for the Behavior of the Nonlinear Functions
A.4	nic
Δ 5	Processing Sequence, Preemphasis, Phase, Band Limitation
	Optimal Performance of Nonlinear Functions
	Performance of the Comb Filters
1107	reformance of the comb liners
	fix B. Original Text of the Quotations in Foreign Languages Through-
Bibliog	raphy
List of	Abbreviations
Author	and Subject Index