
Yu. I. Shokin

The Method of Differential Approximation

Translated by K.G. Roesner

With 75 Figures and 12 Tables

Springer-Verlag Berlin Heidelberg New York Tokyo 1983

Contents

Pa	art I.	Stability Analysis of Difference Schemes by the Method of Differential Approximation
1.		ain Properties of the Theory of Linear Differential Equations Difference Schemes
	1.1	Cauchy's Problem
	1.2	One-dimensional Time-dependent Case
	1.3 1.4	Systems of Second-order Equations
_		
2.	The	Concept of the Differential Approximation of a Difference Scheme
	2.1	Γ -form and Π -form of the Differential Representation of a
		Difference Scheme
	2.2	General Form of the Π -form
	2.3	Γ - and Π -form of the First Differential Approximation 1
	2.4	Remarks on Nonlinear Differential Equations
	2.5	The Role of the First Differential Approximation
	2.6	On the Correctness of Giving the Π -form as an Infinite
		Differential Equation
	2.7	Differential Representations of Difference Schemes in Spaces
	2.0	of Generalized Functions
	2.8	Asymptotic Expansion of the Solution of a Difference Scheme 3
	2.9	On the Injective Character of the Mapping of Difference
		Schemes in the Set of Differential Representations
3.	Stab	ility Analysis of Difference Schemes with Constant Coefficients
	by N	Iteans of the Differential Representation
	3.1	Absolute and Conditional Approximation
	3.2	Lax' Equivalence Theorem
	3.3	On the Necessary Stability Conditions for Difference Schemes 4
4.		nection Between The Stability of Difference Schemes and the perties of Their First Differential Approximations
	4.1	Simple Difference Schemes

X	Contents

4.2 4.3 4.4 4.5	Majorant Difference Schemes	47 49 51 54
4.6	Remarks on Nonlinear Equations	57
5. Diss	sipative Difference Schemes for Hyperbolic Equations	58
5.1 5.2	Different Definitions of Dissipativity	58
5.3	Sense	59 61
5.4	Stability Theorem for a Partly Dissipative Scheme	62
6. A N	Means for the Construction of Difference Schemes with Higher	
Ord	er of Approximation	63
6.1	Convergence Theorem	63
6.2	A Weakly Stable Difference Scheme	65
6.3	Construction of a Third-order Difference Scheme	66
6.4	Application to Nonlinear Equations	67
6.5 6.6	Application of the Method to a Boundary Value Problem Stability Theorems for Dissipative Schemes	68 69
Part II	. Investigation of the Artificial Viscosity of Difference Schemes	73
7. <i>K</i> -p	roperty of Difference Schemes	75
7. <i>K</i> -p	roperty of Difference Schemes	75 75
7. <i>K</i> -p 7.1 7.2	roperty of Difference Schemes	75 75 76
7. <i>K</i> -p 7.1 7.2 7.3	roperty of Difference Schemes	75 75 76 77
7. K-p 7.1 7.2 7.3 7.4	roperty of Difference Schemes	75 75 76
7. <i>K</i> -p 7.1 7.2 7.3	roperty of Difference Schemes	75 75 76 77 80
7. K-p 7.1 7.2 7.3 7.4 7.5	roperty of Difference Schemes Introduction Definition of K-property Simple Difference Schemes Three-point Schemes Necessary and Sufficient Conditions for the Strong Property K	75 75 76 77 80 83
7. K-p 7.1 7.2 7.3 7.4 7.5	roperty of Difference Schemes	75 75 76 77 80 83 84
7. K-p 7.1 7.2 7.3 7.4 7.5 7.6 7.7	roperty of Difference Schemes Introduction Definition of K-property Simple Difference Schemes Three-point Schemes Necessary and Sufficient Conditions for the Strong Property K Predictor-Corrector Scheme Implicit Difference Schemes	75 75 76 77 80 83 84 85
7. K-p 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8	roperty of Difference Schemes Introduction Definition of K-property Simple Difference Schemes Three-point Schemes Necessary and Sufficient Conditions for the Strong Property K Predictor-Corrector Scheme Implicit Difference Schemes Higher-order Difference Schemes	75 75 76 77 80 83 84 85 87
7. K-p 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	roperty of Difference Schemes Introduction Definition of K-property Simple Difference Schemes Three-point Schemes Necessary and Sufficient Conditions for the Strong Property K Predictor-Corrector Scheme Implicit Difference Schemes Higher-order Difference Schemes Application to Gas Dynamics	75 75 76 77 80 83 84 85
7. K-p 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	roperty of Difference Schemes Introduction Definition of K-property Simple Difference Schemes Three-point Schemes Necessary and Sufficient Conditions for the Strong Property K Predictor-Corrector Scheme Implicit Difference Schemes Higher-order Difference Schemes Application to Gas Dynamics Connection Between Partly Dissipative Difference Schemes	75 75 76 77 80 83 84 85 87
7. K-p 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10	roperty of Difference Schemes Introduction Definition of K-property Simple Difference Schemes Three-point Schemes Necessary and Sufficient Conditions for the Strong Property K Predictor-Corrector Scheme Implicit Difference Schemes Higher-order Difference Schemes Application to Gas Dynamics Connection Between Partly Dissipative Difference Schemes and Those with the Strong Property K	75 75 76 77 80 83 84 85 87 88
7. K-p 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10	Introduction Definition of K-property Simple Difference Schemes Three-point Schemes Necessary and Sufficient Conditions for the Strong Property K Predictor-Corrector Scheme Implicit Difference Schemes Higher-order Difference Schemes Application to Gas Dynamics Connection Between Partly Dissipative Difference Schemes and Those with the Strong Property K	75 75 76 77 80 83 84 85 87 88
7. K-p 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.111 7.12	roperty of Difference Schemes Introduction Definition of K -property Simple Difference Schemes Three-point Schemes Necessary and Sufficient Conditions for the Strong Property K Predictor-Corrector Scheme Implicit Difference Schemes Higher-order Difference Schemes Application to Gas Dynamics Connection Between Partly Dissipative Difference Schemes and Those with the Strong Property K The Property $\mathcal{P}_{\mathcal{F}}^{(p, 1)}$	75 75 76 77 80 83 84 85 87 88
7. K-p 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 8. Investigation	roperty of Difference Schemes Introduction Definition of K -property Simple Difference Schemes Three-point Schemes Necessary and Sufficient Conditions for the Strong Property K Predictor-Corrector Scheme Implicit Difference Schemes Higher-order Difference Schemes Application to Gas Dynamics Connection Between Partly Dissipative Difference Schemes and Those with the Strong Property K The Property $\mathcal{P}_{j}^{(p, 1)}$ The Property $\mathcal{D}_{j}^{(p, 1)}$ estigation of Dissipation and Dispersion of Difference Schemes	75 75 76 77 80 83 84 85 87 88 89 90
7. K-p 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.111 7.12	roperty of Difference Schemes Introduction Definition of K -property Simple Difference Schemes Three-point Schemes Necessary and Sufficient Conditions for the Strong Property K Predictor-Corrector Scheme Implicit Difference Schemes Higher-order Difference Schemes Application to Gas Dynamics Connection Between Partly Dissipative Difference Schemes and Those with the Strong Property K The Property $\mathcal{P}_{j}^{(p, 1)}$ The Property $\mathcal{P}_{j}^{(p, 1)}$ estigation of Dissipation and Dispersion of Difference Schemes Dissipation and Dispersion of Difference Schemes	75 75 76 77 80 83 84 85 87 88 89 90
7. K-p 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 8. Invented in the second se	roperty of Difference Schemes Introduction Definition of K -property Simple Difference Schemes Three-point Schemes Necessary and Sufficient Conditions for the Strong Property K Predictor-Corrector Scheme Implicit Difference Schemes Higher-order Difference Schemes Application to Gas Dynamics Connection Between Partly Dissipative Difference Schemes and Those with the Strong Property K The Property $\mathcal{P}_{j}^{(p, 1)}$ The Property $\mathcal{D}_{j}^{(p, 1)}$ estigation of Dissipation and Dispersion of Difference Schemes	75 75 76 77 80 83 84 85 87 88 89 90 91

Contents XI

	8.5	Classification of Difference Schemes According to Dissipative Properties	101
	8.6	Some Remarks on Using Finite Number of Terms of the Differential Approximation	101
	8.7	Connection Between Dispersion, Dissipation and Errors of Difference Schemes	102
9.		dication of the Method of Differential Approximation to the estigation of the Effects of Nonlinear Transformations	107
	9.1 9.2 9.3 9.4	Introduction	107 107 109 111
10.		stigation of Monotonicity of Difference Schemes	115
	10.1 10.2	Introduction	115 115
11.	Diffe	erence Schemes in an Arbitrary Curvilinear Coordinate System	118
		Introduction	118
	11.3	Definition of a Mesh	119
	11.4	Meshes	120 122
	11.4	Example of Convective Equation	122
Pa	rt III	. Invariant Difference Schemes	127
12.	Som	e Basic Concepts of the Theory of Group Properties of erential Equations	131
	12.1	Infinitesimal Operator of G_r	131
	12.2	Invariant Subsets of G_r	132
		First-order Differential Equations	133
13.		ups Admitted by the System of the Equations of Gas Dynamics	134
		Lie-Algebra for Two-dimensional Gas Dynamics One-dimensional Gas Dynamics	134 135
14.	A N	ecessary and Sufficient Condition for Invariance of Difference emes on the Basis of the First Differential Approximation	136
15.	Con	ditions for the Invariance of Difference Schemes for the One-	
		ensional Equations of Gas Dynamics	138
	15.1	The Class of Two-level Difference Schemes for the Eulerian Equations of Gas Dynamics	138
	15.2	Condition for Invariance for the Difference Scheme (15.1)	140

	15.3 15.4	Property M of a Difference Scheme	144 146
	15.5	Weak Solutions of Difference Scheme (15.1), $\alpha = \beta$	148
	15.6	One-dimensional System of the Equations of Gas Dynamics	170
	15.0	in Lagrangean Coordinates	149
	15.7	Polytropic Gas	153
16.		tigation of Properties of the Artificial Viscosity of Invariant	
	Differ	ence Schemes for the One-dimensional Equations of Gas	
	Dyna	mics	157
	16.1	Γ -matrices in Eulerian Coordinates	157
	16.2	Property \bar{K}	159
	16.3	Polynomial Form of the Viscosity Matrix	161
	16.3	Numerical Experiments for Equations of Gas Dynamics in	101
	10.4	Eulerian Coordinates	163
	16.5	Damping of Oscillatory Effects	169
	16.5		170
		Γ-matrices in Lagrangean Coordinates	
	16.7	Width of Shock Smearing	174
	16.8	Numerical Experiments on the Equations of Gas Dynamics	175
	160	in Lagrangean Coordinates	175
	16.9	Conservative and Fully Conservative Schemes	181
17	Cond	itions for the Invariance of Difference Schemes for the	
1,.		dimensional Equations of Gas Dynamics	186
		•	
	17.1	Two-level Class of Difference Schemes	186
		Conditions for the Invariance of the Difference Scheme (17.1)	188
	17.3	Theorem on Invariance	191
	17.4	Property \underline{M}	191
	17.5	Property \bar{K}	194
	17.6	Some Remarks on Stability	195
	17.7	Γ -matrices	195
	17.8	Numerical Experiments for the Problem of the Interaction	
		of a Shock with Obstacles	198
	17.9	Numerical Experiments for the Shallow Water Equations .	203
	17.10	Analysis of the Properties of the Artificial Viscosity for	
		Difference Schemes of Two-dimensional Gas Flows	210
		17.10.1 Schemes of Class J_1	210
		17.10.2 Schemes of Class J_2	212
		17.10.3 The Lax' Scheme	213
		17.10.4 The Rusanov-Scheme	215
		17.10.5 The Lax-Wendroff-Scheme	216
		17.10.6 Two-step Variant of the Lax-Wendroff-Scheme	217
		17.10.7 Modification of the Lax-Wendroff-Scheme	218
		17.10.8 The MacCormack-Scheme	219
		17.10.9 Comparison of Numerical Results	220

Contents	XIII
Contents	AIII

 18. Investigation of Difference Schemes with Time-splitting Using the Theory of Groups	235 235 236 238 239
Part IV. Appendix	247
A.1 Introduction	249 251
Dynamics	
References	
Subject Index	293