Index

 a acceptance probability in a rejection method with combination of variables 75 in rejection methods 84, 85–87, 89–90, 93 exercises 95–96 in rejection with repetition methods simple case 97, 99–100 relation with correlation function 102 	- transformation to - 224-225 advection 293 - equation 296-297 - exercises 321 agent 235 aliasing 302, 369 - error 316-321, 371 - in FFT 375 alloy separation 134, see Kawasaki
- influence in the error 102-103- low average acceptance 103-104	interpretation of the Ising Model α addition property 69–70
– dynamical methods 104–107– – Glauber 108	annihilation, see self-annihilation archer 32–33
Metropolis et al. 107-108 Gaussian distribution 108-110 Poisson 111-112	area-preserving algorithms 278–285 arrival time 1, 16
Poisson 111–112 multidimensional distributions 112–116	asymptotic - distribution 105, 116, 125, 285, 344 exercises 345
Heat-bath method 116 exercises 121–123	- behavior near a critical point 157–163 autocorrelation
 in applications to statistical mechanics 128–130 	- time 101–102, 128 - near a critical point 160–162
- interacting particles 132, 133- Ising model 138, 140, 143, 146	function 102, 128, see also correlation
$-$ – lattice Φ^4 154 - – at the critical region 162	average – values 6, <i>see also</i> mean, variance,
 - exercises 164 - in hybrid Monte Carlo 280–283 - in collective algorithms 355–356 	moments, central moments – of jointly Gaussian variables, see Wick theorem
Adams-Bashford-Moulton method 229 - with integration of linear terms 229 - for partial differential equations 308–309	exercises 29–30, 62–63, 95–96 - acceptance, see acceptance probability - local - 143
- for stochastic partial differential equations 315–316	- of functions 120, 127, 131–132, 136–137 - , see ensamble, magnetization,
- warming 229, 309 - exercises 323–325	- over trajectories 218, 221, exercises 230–233
additive noise 173, 196 – in the decay from an unstable state 233	over time, exercises 231Avogadro number 61, 125

 ${\it Stochastic Numerical Methods: An Introduction for Students and Scientists, First Edition. Raúl Toral and Pere Colet.}$

^{© 2014} Wiley-VCH Verlag GmbH & Co. KGaA. Published 2014 by Wiley-VCH Verlag GmbH & Co. KGaA.

384	Index	
•	backward - Euler method 208 - rate, exercise 259	boundary condition – in continuity equation for probability 182 – in passage time problems 223–224 – for partial differential equations 287, 292
	balance, see detailed balance barrier 224	- for stationary probability distribution 185–186
	– exercises 189, 233, 258 bath, <i>see</i> heat-bath algorithm	– exercises 188– periodic
	Bayes theorem 25–26 – in rejection methods 74–75 Berg approach for multicanonical simulations	 for a sum 90, exercise 95 in multidimensional distributions 113, 115
	364 Bernoulli distribution 6–7, 34	- in Ising model 139 - in lattice ϕ^4 model 150
	 generation 44–45 use to generate a binomial distribution 70 use in rejection methods 75, 85, 99 	 - for partial differential equations - for pseudospectral algorithms 300-301 311, 316
	- acceptance in Metropolis algorithm 108 Bessel functions 54–56, 74, 344 β decay 1, 2, 4, 11–12, 16, 235, 244–245	 - in the generation of n-dimensional correlated Gaussian variables 338, 340–343
	Bhanot approach in multicanonical simulations 363 bifurcation	 – in the calculation of correlations 348 boundary value problems 235 Bortz-Kalos-Lebowitz 145, see residence time
	pitchfork, exercises 188Hopf, exercises 188	algorithm bounding 249, 246, 267–268, see also
	bilingual 235–235 bin size 358	chemical reaction Box-Mueller-Wiener algorithm 40, 68, 88 - exercises 94
	binary – experiment 6–8, 170 – variable 34, 149	broadcasting, fluctuations in radio 173 Brownian motion 167–170, 186
	 alloy, see alloy binomial distribution 7-8 limit of many repetitions 10-11 	 Einstein's description 167–169, 181 Langevin's description 169–170, 173 timescales 180
	 limit to a Gaussian distribution 13–14 approximation 14 in hit-and-miss methods 32–33 	– Master equation description 243 Bruce implementation of Monte Carlo for lattice ϕ^4 model, exercise 164
	generation 49–50, 70–71to describe random walk 174	Buffon problem, exercise 29
	 to describe a two-state particle 239–240 to describe disintegration processes 245 in the generating function method 253 	cancer, statistical incidence exercise 29 candidate sites 352–354
	- exercises 95, 257-258 birth-and-death process 245-246, 251-254	canonical distribution 276, 279, 361–362, 363–364 Cardano's formula 54
	- exercises 259, 273 bistable exercises 188–189, 233 Boltzmann	Cauchy distribution 39 – generation 39
	- distribution 2, 125, 148 - in hybrid Monte Carlo 284	- use in rejection methods 93-94 - exercises 95
	 factor 125, 136, 151, 154, 163 in hybrid Monte Carlo 283–285 in multicanonical simulations 361 	cdf, see cumulative distribution function cell – lattice 150
	constant 125, 169description of the Brownian motion 167,	in coarse graining 289–291in finite difference methods 291–293
	186 Boltzmann-Gibbs factor 140	centered space – derivatives 291–292

– – exercises 322–323	– Glauber - 129, 138
- forward time - 295-297	– – exercises 121–122
central-limit theorem 12	- Metropolis - 108, 138, 280, 285
central moments 6	– – exercises 121–122
certainty 1, 11	– van Beijeren and Schulman - exercises 122
chain, see Markov chain	– to generate Poisson distribution 110–111
change	 to generate multidimensional distributions
– in probability 247	115
– of variables 6, 37,	cluster 351-356
– use to generate random variables 67–72	coalescence of droplets 154
 – use for multidimensional distributions 	coarsening 146
79-81	coarse-grained description of Brownian
– in Stratonovich interpretation 179	motion 167
 to integrate exactly the linear terms 225 	coarse-graining 289–292
in partial differential equations 306	coin tossing 1–2, 170, 174
in stochastic partial differential	collective
equations 313	– algorithms for spin systems 351–356
exercises 233	- update 130, 132, 163, 351-356, see also
 to generate n-dimensional correlated 	hybrid Monte Carlo
Gaussian variables 337–339	- state 265
– proposed - 114, 116	colored noise 181, see also
- configuration - 128, 132–133,	Ornstein-Uhlenbeck process
in Metropolis algorithm 137–138	- exercises 187, 231
– – in Kawasaki interpretation of Ising	combination of variables for random number
algorithm 143	generation 72–74
in heat-bath algorithm 146	compressibility 126
in Monte Carlo methods 153	conditional probability 23–26
energy - 129-130, 132-133	– in Markov chains 27
in Glauber proposal, exercise 122–123	– in multidimensional distributions 76
– – – in Metropolis algorithm 140	- in rejection methods 85-86
– – – in Kawasaki interpretation of Ising	– in heat-bath algorithm 117, 146
algorithm 144	– in equilibrium statistical mechanics 128,
in Monte Carlo methods 153, 155	see also detailed balance
– – of a single particle position 132–133	– in stochastic processes 171
of many variables 132, 163, 281,	- in Master equations 236, 238, 239
351–356, see also collective update	exercises 257
exercises 122–123, 163–165, 286	– in the residence-time algorithm 269
chaos, see Nikolaevskii equation	confidence 21
Chapman-Kolmogorov equations 238–239	- limits 23, 35, see also Chebyshev's theorem
characteristic configuration 128–129	configuration
Chebyshev's theorem 20	– microscopic 125
– use of - 21–22, 33, 35, 100	- – Ising model 134
chemical	– probability of a - 126–127, 137
– potential 143	- change of -, see
- reaction 235, 241, 246–248, 267–268	change/proposed/configuration
exercises 273	- characteristic, see characteristic
- turbulence, see Nikolaevskii equation	configuration
Chi and Chi-square distributions 14–16	– generation, see
choice	change/proposed/configuration
– optimal in importance sampling 51–53	congruential generator 329
- in rejection methods 85, 87, 92–93	- mixed - 330
exercises 95	– multiplicative - 330
– in collective algorithms 355–356	- examples 331
– in multicanonical simulations 362, 364	- test 332

congruential generator (contd.) - in stochastic partial differential equations - - space-time white noise 288 - exercises 335 -- coarse graining 289-291 connectivity - - in Fourier space 312-313 - full 134, 137 -- exercises 324 - nearest neighbor 139 - prey-predator - 255 - mapping in collective algorithms, see - spurious - in random number generation Fortuin and Kasteleyn mapping, 332 - 335Niedermayer algorithm, Wolf algorithm -- exercises 336 conservation - , see also generation correlated Gaussian - of probability 182-183, 243, see also variables Liouville equation Courant-Friedrichs-Levy criterium 295-299 - of energy 276, 279, 284 - exercises 322-323 -- exercises 286 covariance 17 conserved order parameter 284 Crank-Nicolson method 299 constant of motion 273 - exercises 322 exercises 274 critical contact area between two metals 145 - temperature 135, 137, 143, 146, 152, contagious disease 241 158 - 160– exercises 259, 273 - exponent 152, 157-160, 162-163 continuity equation 168, 182, 185 - region 155-163 convergence - slowing-down 156, 161-163 - to a stationary solution 28, - point 157-162 - in mean square limit, see mean square - fluctuations 160-161 convergence - opalescence 161 - of trajectories 198 - exercises 163-165 - of moments 198 cumulant 160-161 - of Berg recursive procedure 364 - exercises 164 of Wang and Landau approach 364 corrector, see predictor-corrector methods cumulative distribution function, cdf 4 - Bernoulli - 7 correlation - uniform - 8-9 - coefficient 17 - Gaussian - 12-13 - matrix of joint Gaussian variables 18-19, - Gamma 65 - function 101-102, 117-118 - ioint - 16 - multidimensional - 76 -- nonlinear 120 -- of a series 347-350 - max of two random variables 70 -- exercises 121-123 - piecewise approximation 91-94 - time 101-102, 110, 112, 114, 117-119 - inverse - method 37 – – nonlinear 120 - - approximate 40-41 -- exercises 121-123 -- Bernoulli 44-45 - in configurations 128, 140, 143 - - Cauchy 39 - - discrete random variables 43-44 - near the critical point 156-163 -- exercises 163-164, 286 - - exponential 38 -- Gamma 41-43 - in stochastic process 173 -- Gaussian 40-41 – random walk 174 - - Wiener process 175 − − geometric 45−46 -- Poisson 47-49 − − white noise 175−177 -- power-law 39-40 – Ornstein-Uhlenbeck process 180 -- Rayleigh 40 – – numerical realization 202 --- process g_h 204 - - using Newton-Raphson 42-43, 54-55 – – correlation time vs time step – using piecewise linear interpolation 209 - 21265 - 66– colored noise - 181 - exercises 94-95 - - exercises 187-188, 231-232 Curie temperature 142

cyclic loops	distribution
– in Markov chains 28	 probability -, see probability distribution
– in random number generators 328–329	 cumulative probability -, see cumulative probability distribution
d	– first passage time -, see first passage time
de Moivre-Laplace theorem, 13, 174	– canonical -, see canonical distribution
decay	- multicanonical -, see multicanonical
– from an unstable state 222–224	distribution
exercises 232	- energy -, see energy distribution
$-$ radioactive, see β decay	divergence
decimated series 118-119	– at the critical point 157–162, 351, 360
density of states 361	- moments - in linear equation with
deposition of particles 288	multiplicative noise 219-220
detailed balance	– numerical - 294, 296–297
– in Markov chains 27–28, 86	double-well potential 234
– in dynamical methods 106–107	drift term 173
– in Metropolis algorithm 108	
– in multidimensional distributions 116	e
– in heat-bath method 116, 146	effective
– Glauber 129	– potential, exercise 188–189
 for interacting particles 132 	– inverse temperature 363
– in lattice ϕ^4 model 155	efficiency
– in Master equations 237–238, 241–242	 finite differences vs
– in hybrid Monte Carlo 280	– in collective algorithms 351–356
– in collective algorithms 355–356	 in generating n Gaussian random variables,
– exercises 30, 164	exercise 345
diagrammatic representation of Wick's	– in importance sampling 53
theorem 19	– – exercises 62–63
diffusion	– in random number generation 339
- coefficient 168–170	of an integration method 60–61
– Einstein's - law 170	- of a rejection method 86–87, 93
- equation 168	exercises 94-95
- – finite difference methods 295–296, 299	- Adams-Bashford-Moulton vs Heun
exercises 322	pseudospectral methods, exercise 323
- of a Brownian particle, see Brownian motion	- first reaction method vs residence time
– process in an alloy 143	algorithm, exercise 273
- term 173	 hybrid Monte Carlo vs rejection, exercise 286
dynamical methods, see rejection methods	Einstein's
with repetition Dirac delta 4–5	
discrete Fourier transform, see Fourier	 fluctuation-dissipation relations 136, 359, 362
transform, discrete	- description of Brownian motion 167–169
discretization	electron
- time	– emission, see β decay
 – in stochastic differential equations 194 	- spin 1, 3
- in partial differential equations 293–300	Energy
- space 307	– barrier, see Michaelis-Menten reaction
 for stochastic partial differential 	- change, see change/proposed/energy
equations, see coarse graining	- conservation 279
- spatial derivatives	exercise 286
- centered 291	- distribution 2, 359-360, 361-366
- upstream 293	- equipartition, see equipartition theorem
- exercises 321–323	- fluctuations 136
disintegration, see β decay	- Helmholtz free -, see Helmholtz free energy

Energy (contd.) - - in hit-and-miss 32-33 -- in Ising model 137 - - in uniform sampling 35 - histogram 359-360, 361-366 - - in general sampling 36 - - in importance sampling 51-52 - interaction - in Ising model 134 - internal 126-127 - - in Monte Carlo importance sampling for - - in Ising model 129 sums 59 - – in lattice Φ^4 model - - in determining the efficiency of - kinetic -, see residence time algorithm integration methods - - average value 131, 276 - - in rejection methods 89 - - of a Brownian particle 169 - - in rejection with repetition 100-103 -- fake 279 - - in Metropolis algorithm 110 - potential - 131, 132 - - increase with correlation time 114 ensemble - - in equilibrium statistical mechanics 132, - average 136 - of Brownian particles 167-168 -- near the critical region 156, 160–162 - of trajectories 181-182 - - in hybrid Monte Carlo 276 - of particles 265, 267 - - minimization - microcanonical -, see microcanonical − − − in importance sampling 51−53, 56 ensemble --- exercises 63 multicanonical -, see multicanonical -- in dynamical methods 110, 117-119 simulations --- exercises 122-123 enthalpy 134 -- in multicanonical simulations 364 entropy 126-127, 128 -- exercises 62-63, 121 in multicanonical simulations 361–366 - systematic enzymatic reaction, see Michaelis-Menten – in piecewise linear inversion of cdf
 94 reaction – in dynamical methods 120 epidemic spreading 235, see contagious disease - - in integrating Hamilton's equations 276, equilibrium 127-129 283-284 - thermal 125 escape rate 244, 269-270 – of a Brownian particle 169 estimator 4, - sampling with molecular dynamics 276 - radioactive decay rate, 11 - mean 21-22 in hybrid Monte Carlo 281–282 - standard deviation 21-22 see also thermalization equipartition theorem 131 - unbiased 32, 35, 54 ergodic - optimal - 52 Markov chain 28 - efficiency 60-61 - exercises 62-63 - algorithm 109-110, 116, 119 - in dynamical methods 102 - for the correlation time 118 - function 12 - of a stochastic process 197-199 -- complementary 130 - correlation function 347-349 -- inverse 41, 68 – – approximations 41, exercise 94 - magnetization, see magnetization - in pseudospectral methods 316-321, see - entropy 361, 364 also aliasing - density of states 362 - integration - error, see error/statistical - - Euler-Maruyama algorithm 197 Euler algorithm - backward 208 -- Milshtein algorithm 197-199 – in the linear equation with multiplicative - deterministic 209 noise 218 - explicit 208 - - in hybrid Monte Carlo 277, 283-284 - forward 208 --, see also order/algorithm - implicit 208 - spatial discretization 291, 293 - semi-implicit 208 - statistical 3, 20-22 - for molecular dynamics 276-277 – for the sum of random variables 23 - for partial differential equations 295

Euler-Maruyama algorithm 197-198 -- predictor-corrector 315-316 - comparison with leap-frog for hybrid -- exercises 323-325 Monte-Carlo 283-284 - use to generate n-dimensional correlated event 1-2 Gaussian variables 337 - Poisson 10-11, 71 -- free model 338-340 - exponential 11-12 – translational invariance 340–344 - conditional 23-25 – exercises 344–345 - rare 216-220 feedback shift register generator 333 – in radioactive decay, see β decay Ferrenberg-Swendsen extrapolation expectation, a priori 2 357-360, 362 expected ferromagnetism 126, 134-136, 143 - value 6, see mean, variance, moments, TW exerciseI central moments 323 - frequency 2-3, 11Fibonacci generator 334-335 experiment, probabilistic 1-4, 6-8, 12, field 16-17, 20-22, 32-33, 36, 170, 172 - coarse-grained, see coarse-graining exponential distribution 11-12 - description in terms of partial differential relation with Poisson distribution 11–12. equations 287-288 - external, see magnetic field - Gaulois 333 - generation 38 - use in integral evaluation 56 - local, see local field – use to generate the Γ distribution 69 - magnetic, see magnetic field - use to generate Poisson distribution 71-72 - mean, see mean-field use to generate other distributions 76–77 modal decomposition 300 - first jump time 242, 261, see also first - model 149-150 reaction method stochastic 288 exponent, see critical exponent finite differences method 287-300 external field, see magnetic field evaluation of spatial derivatives 291, 293 extrapolation - for diffusion equation 295 - integration step 198 - for Fokker-Planck equation with constant - polynomial, see Adams-Bashford-Moulton coefficients 297 method - for KPZ equation 292, 297-300 - Histogram, see Histogram extrapolation - stability, see von Neumann stability analysis - Ferrenberg-Swendsen, see exercises 321–323 Ferrenberg-Swendsen extrapolation finite-size - effects 156-160 - scaling 160-161 factor -- exercises 164 - acceptance, see acceptance probability First passage time 221-224 - Boltzmann, see Boltzmann, factor - distribution 221 - Boltzmann-Gibbs, see Boltzmann-Gibbs - mean 221 factor - numerical evaluation 223-224 - normalization, see normalization - variance 221 structure 342–344 - exercises 232-233 factorization, probability 16, 56, 333 first reaction method 261-268 fast Fourier transform 373-375 fluctuating force, see Brownian motion - storage of Fourier modes 304-305 fluctuation use in pseudospectral methods 300 - of the order parameter 136 -- Heun 306-307 - energy 136 - - midpoint Runge-Kutta 307-308 - microscopic 136 -- predictor-corrector 308-309 - magnetization, see magnetization – fourth-order Runge-Kutta 310–311 fluctuations, magnetic susceptibility - use in stochastic pseudospectral methods near a critical point, see critical fluctuations -- Heun 314-315 - in a Brownian particle, see Brownian motion

fluctuation (contd.)	FSR, see Feedback shift register
- large 219, 220, see also critical fluctuations	generator
– at a unstable point 222–223, exercise 232	
– anomalous exercise 233	g
fluctuation-dissipation, see Einstein's	Galerkin method 337-338
fluctuation-dissipation relation	Gamma distribution 13–14
flux	– cumulative function 65
– particle 182	– numerical generation 41–43, 69
– probability 185	– use in importance sampling 51–54
- , see also advection	use in combination of variables 74
Fokker-Planck equation 181–184	– exercises 286
– multivariate 184–185	Gaulois field 333
- numerical integration with finite differences	Gaussian
296–297	- distribution 12–13
- stationary solution 185-186	cutoff - 84-87, 104
exercises 188–189	joint - 18-20
- to approximate Master equations 256-257	– – statistical errors 21, 23
exercises 259	– – exercises 29–30
Fortuin and Kasteleyn mapping 351	– – approximation for entropy 365–366
forward	 – approximation to changes in energy
 Euler, see Euler algorithm forward 	129–130
- time centered space 295	 – approximation to a binomial distribution
– for the diffusion equation 295	33, 174
 – for Fokker-Planck equation with constant 	momentum distribution 131, 284, 285
coefficients 297	– generation– – using approximate inverse cdf 40–41,
– for advection equation 296Fourier	exercise 94
	 – – using Box-Mueller-Wiener algorithm
- acceleration 285	67–69, exercise 94
operator 301	 – – using interpolation for inverse cdf,
- inverse 301	exercise 94
- transform 301, 367	 – – using Metropolis algorithm 108–110,
- use in pseudospectral methods 300–303	117–118, exercises 122
discrete 368-372	– – n-dimensional uncorrelated 81–84
in pseudospectral methods	– – n-dimensional correlated 337–344,
 to generate n-dimensional correlated Gaussian variables 337-344 	exercises 344–345
	product of - 81
fast, see fast Fourier transform	– – use to implement Φ^4 model, exercise
– in von Neumann ansatz 294	164
- space 302-304	– – use in hybrid Monte Carlo 279–280,
- spatial derivatives 373- nonlinear terms 302-304	282
- white noise 312-313	- stochastic process 172, see white noise,
	Wiener process, Ornstein-Uhlenbeck
- mode 300-303, 318-320, 367-372	process
- series 367-368	– free model, see free/Gaussian
- filtering method 364	generalized
fractal – Ising model structure 143–144	- hybrid-Monte Carlo, see Hybrid
- Wiener process 185	Monte-Carlo/generalized
free	- sampling method, see sampling/generalized
– Lagrangian 90, 338	generating function 251
- Lagrangian 90, 338 exercises 286, 344–345	method for Master equations 251–254exercises 257–258, 273
- energy, see Helmholtz free energy	generation of random numbers, see random
- Gaussian - model 126, 338–340	number generation

geometric distribution 8 - generation 45 - modified 46 - use to evaluate sums with Monte Carlo 58–59 - use in rejection methods 91 - exercises 95	Hopf bifurcation 188 (exercise) Hybrid Monte Carlo 275–281 - tuning of parameters 281–283 - relation to Langevin dynamics 283–284 - generalized 284–285 - exercises 288
Gibbs factor, see Boltzmann-Gibbs factor	i
Gillespie algorithm, see residence time algorithm	importance sampling, see sampling, importance
Glauber acceptance probabilities 108	infection process 241
- exercises 121–123	- exercises 259
- in statistical mechanics 129	instability
	of a fixed point 217–218
 in the Ising model 138, 142 in lattice Φ⁴ model 155 	- threshold 218
- in lattice Ψ' model 155	
L	- of finite difference methods, see von
h	Neumann stability analysis
Hamiltonian 125, 127, 131 - Ising - 134–135	 – condition, see Courant-Friedrichs-Lewy criterion
– Heisenberg - 148	integral calculation
– Lattice ϕ^4 - 150	– with hit-and-hiss, see hit-and-miss method
 Numerical methods preserving - properties 277–279 	 with uniform sampling, see sampling, uniform
- fake - 279	- with general sampling, see sampling, general
- average error in - 283	 with importance sampling, see sampling,
Hamilton's equations 125, 275	importance
hard-core repulsion 133	– N-dimensional 56–57
hard-spheres model 133, 163, 355	- exercises 62-63, 121
heat-bath algorithm 116–117, 146–148, 153–154, 164	- with rejection with repetition, see rejection with repetition
type 316, 320	integral
heat, specific 126–127, 151, 359–360,	- Riemann, see Riemann integral
361–362	- stochastic, see stochastic integral
- per particle 136, 360	interaction
- scaling relations 159	- magnetic 127, see Ising model
Heisenberg model 148–149	- interacting particles 130–134
Helmholtz free energy 126, 129, 137	– potential 131–134
herding behavior, exercise 274	- exercises 164
Heun method	- leading to annihilation, see self-annihilation
- deterministic 206–209	interfacial growth, see KPZ equation
- stochastic white noise 207–208	internal energy 126–127
- stochastic Ornstein-Uhlenbeck noise	•
208–209	– per particle 136 – in lattice ϕ^4 model 151–153
– numerical implementation 209–211	inversion of the cumulative distribution
– multidimensional 213–215	function, see cumulative distribution
– for first passage time 223–224	function/inverse
 with exact integration of linear part 226–227 	irreducibility condition 28 – exercises 30
hit-and-miss method 31–33, 60–61	Ising model 127, 134–137
- exercises 62-63	– Metropolis algorithm for the - 137–143
homogeneous	- Kawasaki interpretation 143–146
- Markov chain, see Markov chain,	- Heat-Bath Algorithm for the - 146–148
homogeneous	 Data analysis around the critical point
– Fokker-Planck 195	155–157

Ising model (contd.)	Landau mean-field approximation, see
- Finite-size effects 157-160	mean-field
- Critical slowing down 161-163	 Wang and - method, see Wang-Landau
- exercises 163–165	method
– to test random numbers 334	Langevin
- collective algorithms 351	- description of Brownian motion 169-170
– histogram extrapolation 357–359	– random force 170
- density of states in the 3D - 363	- equation, see Stochastic differential
isothermal compressibility, 126	equations
Itô	- dynamics related to hybrid Monte Carlo, see
- calculus 178–179	hybrid Monte Carlo
- interpretation 178–179	language dynamics 235–236
- exercises 187	lattice
– Euler-Maruyama algorithm 197	- regular -, Ising model 134–135, 334
- Luici-Maruyama algomum 177	- programing for 2D - 138–143
i	- square -, 134–135, 144, 148, 156–158
J Jacobian 18, 68–69, 278, 280, 337	- programing 138–143
Jayne's principle, 2	exercises 163–164
Jensen's inequality 129, exercise 30	- triangular -, 134–135
Joint pdf 16,	- linear -, 134–135
– Gaussian 18–20	- cubic, exercises 164
- exercises 30	- torus topology 139
	- fully connected 137
- change of variables 67	- division in sublattices 142
jump	$- \Phi^4$ model 149–152
- in Brownian motion, see Brownian motion	- discretization for PDEs 287, 289
- in Master equations, see Master equations	- , see also Heisenberg model, Potts model,
k	
	collective algorithms, coarse graining leap-frog algorithm 277–281
Kardar-Parisi-Zhang equation, see KPZ	
equation	- comparison with Langevin dynamics
Kawasaki interpretation of the Ising model	283–284
143–147	- for hybrid Monte Carlo 284–285 - exercises 286
kinetic Monte Carlo, see residence time	
algorithm	Lennard-Jones potential 132–133 likeness 1–2
Kirman's model for herding behavior 274	
KPZ equation 288–289	linear combination of Gaussian variables 86 linear chain 135
- discretization 292	
- finite differences Milshtein method 297	linear equation with multiplicative noise 216–221
- von Neumann stability analysis 297–298	
- – numerical implementation 299	linear terms, exact integration 224–230., see
- finite differences Heun method 299	also pseudospectral algorithms Liouville equation 182–183
- numerical implementation 300	-
- stochastic pseudospectral algorithms	- theorem 278
311–315	local
- exercises 322–325	- average 143
Kramer's law exercises 234	- field 149
1	Lotka-Volterra model 249–251
-	- mean field 255–256
lagged Fibonacci generator, see Fibonacci	- residence time algorithm 270–273
generator	– exercises 258, 273
Lagrange multipliers 52	
Lagrangian (free) 90, 338,	m
- exercises 286, 344-345	macroscopic order 135
Lambert function, exercises 258	magnetic moment 127, 134

- interaction 127–128 - field	- value 6
	Bernoulli distribution 7
in Ising model 135–136, 140, 143	– binomial distribution 8
in Heisenberg model 148–150	geometric distribution 8
– susceptibility 136, 151, 157–158,	– uniform distribution 9
160, 162	– – Poisson distribution 10
magnetism 127, see also Ising model	– – Exponential distribution 11
magnetization 136, 140, 145, 151–153, 156,	– Gaussian distribution 12
158–160, 357, 361	– – Gamma distribution 14
- spontaneous - 136–137, 151–152, 156–157	– Chi distribution 16– sum of random variables 17
- fluctuations 140, 151, see also magnetic	independent 22
susceptibility	statistical error 20–22
– correlation time 162	sample - 22, 35-37, 54, 56, 60, 97, 100
- exercises 163-164	– – Wiener process 175
marginal probability 20, 24	– – white noise 177
Markov	– – Ornstein-Uhlenbeck process 180
- chain 26-28, 86, 100-102, 105-107,	mean-field
119–120, 162	- Ising model 134, 152
exercises 29-30, 121	- Master equation 254–255, 268,
not homogeneous 115-116	272–273
multiple - Monte Carlo 361	- exercises 258-259, 274
– process 28, 171–172, see also Wiener	metal alloy 134, 143–146
process and Ornstein-Uhlenbeck process	Metropolis et al. algorithm 107–112
- Master equation for - 235–238	– generalization 112–116
Marsaglia 255 256	- tuning 118
- theorem 332	- exercises 121–122
– planes 332	- in statistical mechanics 128–129, 132,
- exercises 335	137–143
mass action law 248	- lattice Φ^4 model 152–155
Master equation 235–257	- comparison with exact solution 156
- two state system 235–236	- results for magnetic susceptibility 158
 for particles, see particle point of view method 	- in critical slowing down 162–163 - exercises 163–164
– for occupation numbers, see occupation	- in Hybrid Monte Carlo 275, 279-281, 285
numbers point of view method	- comparison with collective algorithms 351,
– general case 242–244	355
- radioactive decay 244-245	Michaelis-Menten reaction exercises 258,
– birth and death process 245–246	273
– AB chemical reaction 246–248	microcanonical ensamble 276, 363
- self-annihilation 248-249	microscopic configuration 125–127, 134
- , see also Lotka-Volterra, Generating function	
method, mean field, Fokker-Planck	midpoint Runge-Kutta 227–229
equation,	 for stochastic partial differential equations
– exercises 257–259	307–308
– numerical simulations 261–273	Milshtein algorithm 196–197
– – first reaction method 261–268	– integration error 197–198
– residence time algorithm 268–273	– numerical implementation 199–200
exercises 273-274	– for several variables 213
mean	 for finite difference methods in stochastic
– first passage time 121	partial differential equations 292,
– exercises 232	295-297
– square convergence 179, 198	– for KPZ equation, 297–300
– square displacement 173	- exercises 230-233

mixed congruential generator 330-332 nearest neighbors 134-135, 137-139 molecular dynamics 275-277 - with different spin as measure of contact moment 6, of the Hamiltonian 127 – in lattice Φ^4 model 150–151 - of the magnetization 160 - exercises 164 - convergence 198 neighbor - numerical evaluation in stochastic - nearest, see nearest neighbors differential equations 200 - array 139-140 - for the linear equation with multiplicative division in sublattices 142–143 noise 218-220 - in collective algorithms 351-356 - of the first passage time 221, 224 Newton's binomial theorem 253 - in processes described by a Master Equation Newton-Raphson method 42 252 - to invert the cumulative distribution 42, - in the context of mean-field theory for 54, 65-66, 79 Master Equations 254-256 n-fold way, see residence time algorithm - to check random number generators 328 Nikolaevskii equation 301 - exercises 230-231, 258, 274 - in Fourier space 302 , see also central moment, magnetic moment, pseudospectral methods - - exact integration of linear terms 305 Monte Carlo -- Heun 306-307 - integration 33-62 – midpoint Runge-Kutta 307–308 -- advantages 56-57 -- predictor-corrector 308-309 - efficiency 60-61-- fourth-order Runge-Kutta 310-311 - , see hit-and-miss, sampling methods -- exercises 323-324 – exercises 62–63 Niedermayer algorithm 351-352, 356 - simulation noise 173 -- step (MCS) 115, 140, 162 - term 173 -- tuning 117-121 - additive 173 – applications to statistical mechanics - multiplicative 173 125 - 163- white, see white noise - , see Metropolis et al. algorithm, heat-bath - colored, see colored noise algorithm nonlinear correlation -- exercises 121-123, 163-165 - function 120 - kinetic -, see residence time algorithm - time 120 - dynamic -, see residence time algorithm exercises 122–123 - hybrid -, see hybrid Monte Carlo normalization - exchange - 361 probability density function 3 - multiple Markov chain - 361 - cumulative probability function 4 transition matrix - 361 - correlation 17 multicanonical simulation 363–366 Novikov's theorem 183 Moore neighborhood 164 - exercises 30 multicanonical simulations 361-366 multidimensional distribution 76-81, 112 - 116- Gaussian 82-84, 337 occupation number 239-240 multiplier, see Lagrange multiplier - point of view method 239-242 multiplicative noise 173, 197, see also - - in radioactive decay 244-245 Milshtein method, Heun method - - in birth and death process 245-246 linear - 217–220 - - in a chemical reaction 246-248 - single point - 291 -- in self-annihilation 248-248 - - in Lotka-Volterra model 248-251 multiple point - 292 multiplicative congruential generator, see - - in first reaction method 265-268 congruential generator multiplicative - - in residence time algorithm 270-273

Onsager solution of the Ising model 145, 164, 157	particle – number 126
opalescence, critical 169	– noninteracting 126
opinion formation 135-136	- interacting, see interacting particles
optimal	- Brownian, see Brownian motion
 estimator, see estimator/optimal 	- conservation, see conservation of particles
 choice in importance sampling 52–54 	 point of view method in Master equations
exercises 63	236-239
– acceptance 109	– in first reaction method 261–265
– algorithm parameters 117–119	– in residence time algorithm 268–270
– – in hybrid Monte Carlo 279	- deposition 288
– in collective algorithms 356	partition function 126–127, 129
– – exercises 121–123, 164, 286	– in lattice Φ^4 model
 sampling in multicanonical simulations 	passage time, see first passage time
362-363	paramagnetic
order-disorder transition 135, 143, see also	– phase 135–136
order parameter	– to ferromagnetic transition 134
order	Pawula's theorem 256–257
– algorithm	pdf, see probability density function
– – Milshtein 196–199	percolation 351
– – Euler-Maruyama 196–197	phase
 – Euler for ordinary differential equations 	- separation 134, 146-147
– – – explicit 208, 276–277	- transition 135–136
– – – implicit 208	– – precursor 143
– – – semi-implicit 208	$-$ lattice Φ^4 model 150–152
 – Heun for ordinary differential equations 	 , see also critical region
208	– ferromagnetic - 135
– – stochastic Heun 208	– paramagnetic - 135
– – Midpoint Runge-Kutta 227, 229–230	Poisson distribution 10–11
Adams-Bashford-Moulton 229–230	 relation with exponential distribution
– – leap-frog 277	11–12
- spatial discretization	– Gaussian limit 13
centered space 291	– comparison with Gamma distribution 14
upwind 293	- exercises 29
– parameter 136, 152, 157–158, 161, 285, see	– generation
also magnetization	 – from cumulative distribution function
exercises 164	47–49
Ornstein-Uhlenbeck process 180	- using change of variables 71–72
- correlation time 180	- using rejection methods 93–94
- as example of colored noise 181	using Metropolis algorithm 110–112
- exact generation of trajectories 201–202	exercises 95, 122
- numerical integration of stochastic	- use to generate a Bessel distribution
differential equations driven by - 202–204	in birth and death process 254, exercises259
- – exact generation of $g_{h(t)}$ 204–206	population dynamics, see Lotka-Volterra model
- Heun method 208–211	potential
outcome, see experiment, probabilistic	- thermodynamic 126, 137, 364
outcome, sa experiment, probabilistic	- energy 131
n	- interaction 131–134
parallel tempering 361	- Lennard-Jones 132–133
parameter tuning	- chemical 143
- in dynamical methods 112, 117–121	- lattice Φ^4 model 150, 152
- near the critical region 162–163	- exercises 163–165
– in hybrid Monte Carlo 279, 281–283	– effective, exercises 188–189

Potts model, exercise 164 - - Chi and Chi-square, see Chi distribution - Fortuin and Kasteleyn mapping onto - - energy, see energy distribution percolation model 351 - - exponential, see exponential distribution Power-law - - first passage time, see first passage time distribution -- Gamma, see Gamma distribution – in bounded domain 39 - - Gaussian, see Gaussian distribution - - in infinite domain 39-40 - - geometric, see geometric distribution - singularity 158, 351 -- multicanonical, see multicanonical - growth of Monte Carlo correlation time near distribution -- Poisson, see Poisson distribution critical point 162 -- exercise 163-164 - - power-law, see power-law distribution - ad hoc correlation 342-344 - - Raleigh, see Raleigh distribution – exercise 345 - - uniform, see uniform distribution precursor, see phase transition precursor - current 185-186, 237, 243 predictor-corrector method 191-192, see -- exercises 188-189 Adams-Bashford-Moulton process, see stochastic process prey-predator, see Lotka-Volterra model pseudorandom number 328, see also random probability number acceptance, see acceptance probability pseudospectral methods - concept 1-2 - comparison with finite differences 303, - assignation 2-3 - conditional, see conditional probability for partial differential equations 300–305 - of a microscopic configuration 125 - - with exact integration of linear terms 306 density function (pdf) --- Heun 306-307 – for a continuous variable 3 -- midpoint Runge-Kutta 307-308 – for a discrete variable 5 – – predictor-corrector 308–309 - - of a sum of random variables 22-23, 69 -- fourth-order Runge-Kutta 310-311 – of the maximum of two variables 70 - for stochastic partial differential equations – combination of variables 72 311 - 313 – in polar coordinates 67–68, 79 - - with exact integration of linear terms - - in spherical coordinates 79-80 313 - 314 – joint - 16–18 --- Heun 314-315 – – factorization 16 --- predictor-corrector 315-316 – – Gaussian variables 18–20 - integration error 316-321 - - - - correlated 337 - exercises 323-325 – , see also Markov chain, multidimensional distribution radio broadcasting fluctuations 173 – – in hit-and-miss method 31 -- in change of variables method 67 radioactive decay, see β decay − − − in rejection methods 85, 90 random – – of a stochastic process 170–172 - number generation -- Bernoulli distribution 44-45 --- exercises 29-30 -- marginal - 20, 24 - - binomial --- inverse cdf 49-50 - - conditional, see conditional probability – stationary stationary probability --- change of variables 70-71 distribution - - Cauchy distribution 39 -- transition, see transition rates - - exponential distribution 38 – change of variables 67 - - Gamma distribution - distribution -- - Newton-Raphson to invert the cdf - - Bernoulli, see Bernoulli distribution 41 - 43- - Boltzmann, see Boltzmann distribution --- change of variables 69 - - canonical, see canonical distribution - - Gaussian distribution – binomial, see binomial distribution − − − approximate inverse cdf 40−41, exercise - - Cauchy, see Cauchy distribution

 – – Box-Mueller-Wiener algorithm 67–69, exercise 94 	 – dynamical methods 103–107, see also Metropolis et al. algorithm, heat-bath
– – interpolation for inverse cdf, exercise94	algorithm tuning the algorithms 117–121
Metropolis algorithm 108–110,	replica exchange 361
117–118, exercises 122	residence time algorithm 268–270
n-dimensional uncorrelated 81–84	– for Lotka-Volterra model
n-dimensional correlated 337–344,	270–273
exercises 344–345	- exercises 273–274
	response function 136, 161
geometric distribution 45	reversibility 277–278, 284–286, exercises
Poisson distribution	286
inversion of discrete cdf 47-49	Riemann
change of variables 71-72	
rejection methods 93-94	integral 31, 36zeta function, exercise 345
– – – Metropolis algorithm 110–112	
exercises 95, 122	Runge-Kutta methods 191–192
 – power law distribution in bounded 	- Heun, see Heun method
domain 39	- midpoint, see midpoint Runge-Kutta
 – power law distribution in infinite domain 	- fourth-order 310–311
39-40	– – exercises 324
– Raleigh distribution 40	_
– – uniform	S1:11
– – – von Neumann method 328–329	sampling methods
congruential generators 329-330	- uniform 34–36
 – – feedback shift register generators 	- generalized 36-37
333-334	- importance 50–56
 – – RCARRY and lagged Fibonacci 	for sums 57-60
generators 335	- efficiency 60–61
, see also rejection methods, cumulative	- exercises 62-63
distribution function/inverse	scaling 159–161
- variable 2–5, <i>see</i> probability	- exercises 164
- update 115	self-annihilation
- walk 109, 170–171	segregation 134
- limit to Wiener process 174–175	sequential update 115–116, 142
rare events 216–221	simulated tempering 361
Rayleigh distribution 40	SIR model, exercises 259, 273
– generation 40	specific heat, see heat, specific
-	spin 1, 3
 use in Box-Mueller-Wiener algorithm 68–69 	– variable 127
	– dynamics, see Ising model
RCARRY generator 335	– collective algorithms 351–356
realization	spinodal decomposition 154
- Markov chain 105	spontaneous magnetization, see
- Langevin random force 169	magnetization/spontaneous
- Wiener process 175	square lattice, see lattice/square
- stochastic process 177, 191–192, 198, see	stability
also stochastic process/trajectory	– of a fixed point 217–218
rejection	 of finite difference methods, see von
- methods 84-94	Neumann stability analysis
– with combination of variables 74–75	 condition, see Courant-Friedrichs-Lewy
– – exercises 94–96	criterion
– with repetition methods 97	standard deviation 6, 20, 21, 23, 32, 35, 37,
– – simple case 97–100	60, 349
statistical error 100–103	– exercises 62

stationary probability distribution	– – exercises 187
– Markov chain 27–28	 partial differential equation
– – exercises 30	287-288
- dynamical methods 106, 116-117,	– – coarse graining 289–291
119–121, 128	– – finite difference methods 291–293
– – exercises 121–122	– – – Milshtein 297
– Fokker-Planck equation 185–186	stability analysis 298
exercises 187	– – – numerical implementation
- stochastic process	299-300
exercises 230-233	– – – Heun 299
 – also, see Ornstein-Uhlenbeck process 	– – – stability analysis 299
- Master equations 237-238, 253-254, see	numerical implementation 300
also detailed balance	- – pseudospectral methods 311–312
exercises 259	coarse graining in Fourier space
- hybrid Monte Carlo 283, 285	312–313
statistical error	 exact integration of the linear terms
- minimization 51–53, 56	313
- exercises 63	Heun 314
stiff equations 305	– – – – numerical implementation314–315
Stirling approximation 10, 11, 93 stochastic	
	predictor-corrector 315-316
- differential equation 172–173	numerical implementation 316 exercises 322–323
driven by white noise 174–177	
interpretation, see stochastic integral	- process 167, 170
for the Ornstein-Uhlenbeck process 180	- Langevin approach 169–170, 173, see
colored noise 181	stochastic differential equation
numerical simulation 191–192	- – Einstein's approach 167–169, 181, see
Milshtein algorithm 192–197	Fokker-Planck equation
integration error 197–198	characterization 170–172
– – – numerical implementation	, see also Brownian motion, white noise,
199–200	colored noise, Wiener process,
multidimensional 212–213	Ornstein-Uhlenbeck process
– – Euler-Maruyama algorithm 197–198	exercises 187–189
Exact generation of Ornstein-Uhlenbeck	
trajectories 201–202	Stokes law 169
$$ Exact generation of process $g_{h(t)}$	storage
205-206	– of nodes in a square lattice 138
Euler algorithm for Ornstein-Uhlenbeck $$	
noise 203–204	Stratonovich
– – – Heun method	– calculus 178–179
white noise 207–208	– interpretation 178–179
Ornstein-Uhlenbeck noise 208-209	structure factor 342–344
– – – numerical implementation 207–211	successions of random variables 16-18, see
– – – multidimensional 213–216	also Markov chain
 – – exact integration of linear terms 	 generalization 171, see stochastic process
224–225	surface growth 288
Heun method 226-227	susceptibility, see magnetic susceptibility
– – – midpoint Runge-Kutta 227–229	Swendsen and Wang algorithm 351
predictor-corrector 228-229	symmetry breaking 135
integration error 229–230	symplectic algorithms 278, see also leap-frog
exercises 230-233	algorithm
– integral 177–179	systematic
– Ito interpretation 177	- error, see error/systematic
– Stratonovich interpretation 179	- correction 365

t	congruential 329-330
tempering	feedback shift register 333-334
- simulated 361	 – – RCARRY and lagged Fibonacci 335
– parallel 361	- sampling methods, see sampling methods
thermalization	uniform
– dynamical methods 99–100, 119–120	universality class 152
– Ising model 140–141	update
– critical region 156, 163	– random 115
thermodynamic	– sequential 115–116, 142
– limit 157, 255	- collective 130, 132, 163, 275, 351–356
– potential 126, 137, 364	– exercises 163
trajectory	upstream space derivatives 293
- in phase space 167	use in the advection equation 297
– of a Brownian particle, see Brownian motion	– – exercises 321–322
- stochastic 170–171	
– random walk 171	ν
- – Wiener process 174–175	van Beijeren and Schulman transition
averages 173	probability 108
– numerical generation 191–192, see	variance, 2
stochastic differential	– Bernoulli distribution 7
equation/numerical generation exercises 230–233	 binomial distribution 8
	– Chi distribution 16
 deterministic 181 transient anomalous fluctuations, exercise 	– exponential distribution 11
233	– first passage time 221
transition rates	exercises 232
– in Markov chains 27	– Gamma distribution 14
- exercises 30	– Gaussian distribution 12
	– geometric distribution 8
- in dynamical methods 100, 105–106	- interpretation 20–22
– Metropolis 108– Glauber 108	- minimum
– - Van Beijeren and Schulman 108	– – in importance sampling 51–53, 56
- multidimensional 115–116	exercises 63
- heat-bath 116	– – in dynamical methods 119
- in Master equations 235, 236, 243	– Poisson distribution 10
exercises 257-259	- sample - 22, 35-37, 51, 56, 58, 60, 97, 100,
- in multicanonical simulations 365	102
translational invariance 340–344	sum of random variables 17
trial 85-86	– – independent 22
- repeated 97-98, 104, 116, 145	– uniform distribution 9
exercises 163	– exercises 29
tuning parameters, see parameter tuning	Verlet algorithm, see leap-frog algorithm
turbulence, see Nikolaevskii equation	von Neumann
•	- algorithm for random number generation
и	328-329
unbiased estimator, see estimator/unbiased	exercises 335
uniform	– ansatz 294
- distribution 8-9	– stability analysis 293–294
– generation	– – advection equation 296–297
– – effect of finite precision 327	– diffusion equation 295–296
requirements 329	 – Fokker-Planck equation with constant
– – residual correlations 332	coefficients 296
– generators	– – KPZ equation 297–299
– – – von Neumann method 328–329	exercises 321-322

Wang-Landau method 364 weight function 390

white noise

- characterization 174–177
- in space and time 288
- - discretization, see coarse graining
- – in Fourier space 312–313
- Itô interpretation, see Itô
- Stratonovich interpretation, see Stratonovich
- time discretization, see stochastic differential z equation/integration
- exercises 187-189 Wick's theorem 18-20

Wiener process 174 - correlation 175

- derivative 175-177

- in the numerical integration of sde with white noise 193-196
- in the solution of the linear equation with multiplicative noise 219

– mean 175

Wolf algorithm 351-356

ziggurat rejection method 94