IX – 9 Gerinnungsmanagement beim Polytrauma

H. LIER

Für das Gerinnungsmanagement beim polytraumatisierten Patienten sollte ein spezifisches Massivtransfusions- und Gerinnungstherapieprotokoll (eskalierender Algorithmus; an lokale Gegebenheiten im Detail angepasst; vordefinierte Interventionstrigger) an der Klinik etabliert sein (AWMF 2016).

Unter einer Koagulopathie ist eine Störung des "Organsystems Gerinnung" zu verstehen (Lier et al. 2018).

Merke: Die traumainduzierte Koagulopathie ist ein eigenständiges Krankheitsbild mit deutlichen Einflüssen auf das Überleben. Aus diesem Grund sollen Gerinnungsdiagnostik und -therapie spätestens im Schockraum begonnen werden (AWMF 2016). \rightarrow "complex multisystem dysfunction syndrome" (Pohlman et al. 2018).

1 Pathophysiologie

Bei der traumainduzierten Koagulopathie gibt es unterschiedliche Phänotypen → der zeitliche Verlauf ist entscheidend (Moore et al. 2019):

Hyperfibrinolyse (anhaltend überschießende fibrinolytische Aktivität): Häufigkeit ~ 20 %, hohe Sterblichkeit → frühzeitig starke Blutung

Physiologische Fibrinolyse (initiale Aktivierung, dann langsame Abnahme der fibrinolytischen Aktivität): Häufigkeit ~ 20 %, geringe Sterblichkeit

Hypofibrinolyse (abgeschwächt bis fehlende initiale Aktivierung und frühzeitig niedrige fibrinolytische Aktivität)

"fibrinolytic shutdown" (initiale Aktivierung, dann sehr schnelle Abnahme der fibrinolytischen Aktivität): Häufigkeit ~ 60 %, mittlere Sterblichkeit → späteres Risiko für (Multi-)-Organversagen

Alle Phänotypen gehen in einen Zustand erniedrigter fibrinolytischer Aktivität über; ursächlich ist eine, durch die Reanimation bedingte, erworbene Fibrinolysehemmung infolge PAI1 (Moore et al. 2019).

2 Diagnostik

Merke: Visuelle Diagnose einer Koagulopathie: nicht-chirurgische, diffuse Blutungen aus Schleimhaut, Serosa und Wundflächen, Auftreten von Blutungen aus den Einstichstellen intravasaler Katheter, Blutungen aus liegenden Blasenkathetern oder Magensonden (AWMF 2016).

- initial: klinische Beurteilung durch Arzt, dann ggf. "focused assessment with sonography in trauma (FAST)" zum Ausschluss von freier Flüssigkeit und/oder KM-verstärktes Ganzkörper-CT zur Lokalisation der Blutungsquelle (Spahn et al. 2019)
- Messung von BGA, Quick (Prothrombinzeit, INR), aPTT, Fibrinogen und Thrombozytenzahl sowie eine Blutgruppenbestimmung
- zusätzlich viskoelastische Tests (TEG®, ROTEM®, ClotPro®, Quantra®) plus Thrombozytenfunktionsdiagnostik (Multiplate®, ROTEM® platelet) (Kozek-Langenecker et al. 2017, Spahn et al. 2019)
- hämostaseologische Messungen → frühzeitig und wiederholt (Spahn et al. 2019), d. h. während aktiver Blutung etwa alle 30 Minuten (Peralta et al. 2019)

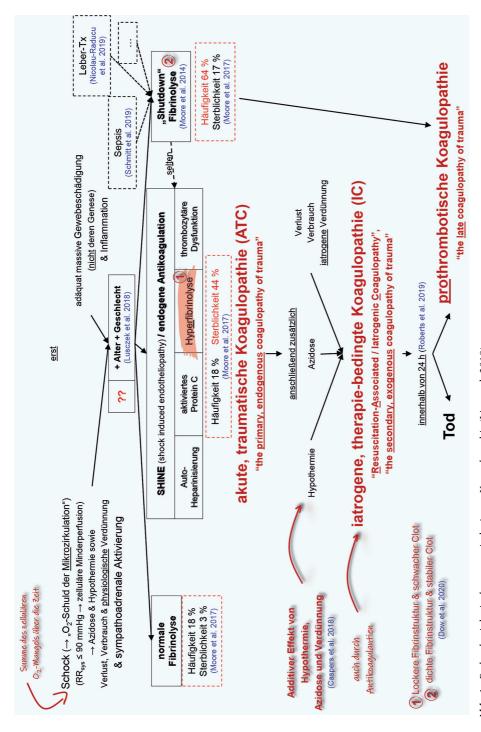


Abb. 1: Pathophysiologie der traumainduzierten Koagulopathie (Lier et al. 2019)

3 Therapie

<C>ABCDE → zunächst die vorübergehende Versorgung stärkster, lebensbedrohlicher Blutungen ("catastrophic haemorrhage") (Lier et al. 2017):

- bei starker Blutung Stufenschema: Kompression → Druckverband (ggf. mit "wound packing") → Tourniquet
- ergänzend Hämostyptika auf Chitosan-Basis (z. B. Celox®), da nur diese auch bei Antikoagulation wirksam sind.

Therapie bei massiver Blutung gemäß "hybrid approach": initial "ratio-driven", d. h. Verhältnis Erythrozytenkonzentrate: therapeut. Plasma: Thrombozytenkonzentrate von 4(bis 6) zu 4(bis 6) zu 1, dann schnellstmöglich ersetzen durch "goal-directed", d. h. zielgerichtet, auf viskoelastischen Verfahren und Thrombozytenfunktionsdiagnostik beruhend (Kozek-Langenecker et al. 2017, Spahn et al. 2019).

"Damage control resuscitation" bei hämorrhagischem Schock:

- "permissive Hypotension":
 - bei aktiver Blutung \rightarrow MAP 65 mmHg, RRsyst ~ 90 mmHg, altersadaptiert bei Kindern (AWMF 2016)
 - bei SHT (GCS < 9) u./o. spinalen Trauma mit Neurologie → MAP 85-90 mmHg (AWMF 2016) bzw. CPP 60–70 mmHg (Richards et al. 2021)
 - aber: individuell idealer Blutdruck weiterhin unklar
 - frühe und wiederholte Messung (Spahn et al. 2019) der (systemischen) Perfusion: BE > -6 mEq/l; Laktat < 4 mmol/l; "pCO₂ gap" < 6 mmHg (Lier et al. 2018)
- (Wieder-)Erwärmung:
 - Ziel: Kerntemperatur \geq 34 °C, besser Normothermie (AWMF 2016)
- Azidoseausgleich:
 - Ziel: pH \geq 7,2 (AWMF 2016)
 - endgültige Korrektur nur durch Wiederherstellung der (Mikro-)Perfusion,

- und nicht durch Gabe von Puffern, Puffern aber sinnvoll vor Gabe von Gerinnungspräparaten
- Gerinnungstherapie → "restriktive Strategie" (Hayes u. Uhl 2018) aber individuell gesteuert (AWMF 2016)
 - EK (AB0-identisch (Bundesärztekammer 2017, 2020)):
 - bei aktiv blutendem Patienten Hb-Bereich 7–9 g/dl [4,4–5,6 mmol/l], möglichst zu keinem Zeitpunkt diesen Bereich verlassen (AWMF 2016)
 - ungekreuzt "0 Rh neg." nur bei vitaler Indikation
 - GFP (AB0-identisch (Bundesärztekammer 2017, 2020)):
 - nur bei (erwarteten) Massivtransfusionen (d. h., beim Erwachsenen ab 4-6 EK), dann aber frühzeitig, viel, d. h. mindestens 6 GFP für Erwachsene bzw. ≥ 30 ml/kg und schnell. d. h. 50 ml/min (3 000 ml/h) (Bundesärztekammer 2020, Lier et al. 2018)
 - TK: Bei massiven, transfusionspflichtigen Blutungen Thrombozyten-Ziel ≥ 100 000/µl (Cave: Zahl ↔ Funktion)
 - Verhältnis: nach jedem 4. bis 6. Paar EK+GFP ein TK (Bundesärztekammer 2020, Lier et al. 2018)
 - **TxA** (Lier et al. 2019):
 - Tranexamsäure ersetzt nicht die chirurgische Blutstillung!
 - Tranexamsäure ist ein Antifibrinolytikum (d. h., es verhindert die vorzeitige und verstärkte Auflösung eines bereits gebildeten Gerinnsels), es ist kein Antihämorrhagikum (d. h., es bildet keine Gerinnsel).
 - Dosierung: 1 gr (15 mg/kg) über 10 Min., wenn noch nicht präklinisch oder in Notaufnahme; innerklinisch bei (zumindest V. a.) Hyperfibrinolyse

 $\textbf{Tab. 1:} \ \, \textbf{Eskalierende Therapie chirurgisch nicht beherrschbarer, koagulopathischer Blutungen (mod. nach AWMF 2016)}$

1.	Stabilisierung der Rahmenbedingungen (Prophylaxe <u>und</u> Therapie!)	Kerntemperatur ≥ 34 °C (möglichst Normothermie) pH-Wert ≥ 7,2 ionisierte Ca ⁺⁺ -Konzentration > 0,9 mmol/l (möglichst Normo- kalzämie)
2.	<u>frühestmögliche</u> Hemmung einer potenziellen (Hyper-) Fibrinolyse (immer <u>VOR</u> Gabe von Fibrinogen!)	Tranexamsäure initial 1 g (15 mg/kg KG)
3.	Substitution von Sauerstoffträgern	EK: nach Stabilisierung: Hb auf mindestens 7–9 g/dl (4,4–5,6 mmol/l) anheben
4.	Substitution von Gerinnungsfaktoren (bei fort- bestehender schwerer Blutungsneigung)	FFP ≥ 30 ml/kg KG (bei (erwarteter) Massivtransfusion)
	(Bei Patienten, die Massivtransfusionen benötigen (werden) oder einen blutungsbedingten, lebensbedrohlichen Schock haben und die Gerin-	und Fibrinogen 30–60 mg/kg KG; Ziel: ≥ 1,5–2 g/l; ggf. z. B. peripartal höher)
	nungstherapie bei Massivtransfusionen durch die Gabe von FFP durchgeführt wird, sollte ein	und ggf. PPSB initial 25 IE/kg KG)
	Verhältnis von FFP:EK:TK im Bereich von	ggf. FXIII 20 IE/kg KG
	4:4:1 angestrebt werden. GoR B) und (bei V. a. Thrombozytopathie) verstärkte Thrombozyten-Adhäsion an das Endothel + Freisetzung von "von-Willebrand-Faktor" und FVIII aus Lebersinusoiden (→ Agonist für Vasopressin-Rezeptor-Typ 2)	DDAVP = Desmopressin (Mini- rin®) 0,3 μg/kg KG über 30 Minu- ten ("1 Ampulle pro 10 kg KG über 30 Min.)
5.	Substitution von Thrombozyten für die primäre Hämostase	Thrombozytenkonzentrate (Apherese-/Pool-TK): Ziel bei transfusionspflichtigen Blutungen u./o. SHT: ≥ 100 000/μl
6.	ggf. Thrombinburst mit Thrombozyten- und Gerinnungsaktivierung ("Rahmenbedingun- gen" beachten!! "off label use")	im Einzelfall und bei Erfolglosigkeit aller anderen Therapieoptionen ggf. rFVIIa (NovoSeven®)
		initial 90 μg/kg KG
	innerhalb von 24 Stunden nach Blutungsstopp	über Art und Beginn der Thrombo- seprophylaxe entscheiden

Tab. 2: Antagonisierung moderner Antithrombotika (mod. nach AWMF 2016)

	Zeit bis zur regulären Hämostase nach thera- peutischer Dosis (3-5 × t1/2)	Antidot	Bemerkung
Vitamin-K-Antagonisten	Phenprocoumon = Mar- cumar [®] : 8–10 d Warfarin = Coumadin [®] : 60–80 h	Vitamin K = Konakion® 20 mg i.v. (max. 40 mg/d, Geschwindigkeit etwa 1 mg/min) oder 2–3 mg p. o.	Vitamin $K = Konakion^{\otimes} i.v.:$ verzögert wirksam in 12–16 h (Beginn bereits in 2 h) Vitamin $K = Konakion^{\otimes} p. o.:$ verzögert wirksam in 24 h
		PPSB* (initial 25 IE/kg bzw. (Quick _{Ist} –Quick _{Soll}) × kg KG)	PPSB i.v. sofort wirksam
Heparin	3–4 h	Protamin (25–30 mg): sofort wirksam	1 mg (=100 E) pro 100 anti- Xa-Einheiten, die in den letzten 2–3 h gegeben wurden
LMW Heparine (Certoparin = Mono-Embolex®, Dalteparin = Fragmin®, Enoxaparin = Clexane®, Nadoprarin = Fraxiparin®, Reviparin = Clivarin®, Tinzaparin = Innohep®)	12–24 h	Protamin (25–30 mg): sofort partial wirksam	nur partial; 1 mg (=100 E) pro 100 anti-Xa-Einheiten, die in den letzten 8 h gegeben wurden (ggf. 2. Dosis mit 0,5 mg)
Pentasaccharide/s.c.Xa-Inhibi- toren	Fondaparinux = Arixtra® 24–30 h	probatorisch: rFVIIa = NovoSeven [®] (90 µg/kg)	experimentell
Orale Xa-Inhibitoren (Rivaroxaban = Xarelto®, Apixaban = Eliquis®)	meist innerhalb von 36 h (→ dann Throm- boplastinzeit [TPZ, Quick] normal bzw. feh- lender Anti-Xa-Effekt [NMH-Testung])	spezifisches Antidot: Andexanet alfa = Ondexxya® (Zulassung nur bei fulminanter Blutung, nicht zur Durchführung einer OP; Bolus: 400–800 mg [30 mg/min] plus Perfusor: 4–8 mg/min für 120 min; sehr teuer)	Aktivkohle (30–50 g) bei Einnahme des Xa-Inhib. < 2 h

Tab. 2: Antagonisierung moderner Antithrombotika (mod. nach AWMF 2016) (Forts.)