TABLE OF CONTENTS

PART	I Karl Wilhelm Bauer	
	Differential Operators for Partial Differential Equations	5 1
INTROD	DUCTION	2
CHAPTE	R I Representation of solutions by differential operators	
1)	Polynomial operators for the differential equation	_
	$\frac{\mathbf{w}_{\mathbf{z}} + \mathbf{A}\mathbf{w}_{\mathbf{z}}}{\mathbf{z}} + \mathbf{B}\mathbf{w} = 0$	5
	a) Holomorphic generators	5
	b) Antiholomorphic generators	16
2)	The differential equation $\omega^2 w + (n-m)\phi' \omega w - n(m+1)\phi' \overline{\psi'} w=0$	23
	a) A general representation theorem for the solutions	
	defined in simply connected domains	23
	b) General expansion theorems for the solutions in the	
	neighbourhood of isolated singularities	25
	c) The special cases $w = -n(n+1)Gw = 0$ and $z\overline{z}$	
	$(1+\varepsilon z\overline{z})^2 w + \varepsilon n(n+1)w = 0$	29
3)	Differential operators on solutions of differential	
	equations of the form $w = + Aw + Bw = 0$	43
4)	Linear Backlund transformations for differential equations	
	of the type $w + Bw = 0$ $z\overline{z}$	56
5)	A generalized Darboux equation	61
6)	The differential equation $\omega^2 w + C \varphi' \overline{\psi}^T w = 0$, $C \in \mathbb{C}$	68
7)	Differential operators for a class of elliptic differential	
	equations of even order	75
8)	Differential equations in several independent complex	
	variables	84
	Differential operators on solutions of the heat equation	95
10)	Bergman operators with polynomials as generating functions	104
11)	Vekua operators	114
CHAPTE:	R II Applications	117
1)	Spherical surface harmonics and harmonics	117
	A representation of the surface harmonics of degree n in	. , ,
	n dimensione	123

3) Pseudo-analytic functions and complex potentials	128
a) Representation of the solutions of the differential	
equation $w = c\overline{w}$ with $m^2(\log c) = c\overline{c}$, $m \in \mathbb{N}$	128
b) Representation of pseudo-analytic functions by means	
of solutions of the generalized Darboux equation	140
c) Representation of pseudo-analytic functions by integro-	
differential-operators	141
4) A generalized Tricomi equation	144
a) Representation of the solutions in the elliptic	
respectively hyperbolic half-plane	144
b) Fundamental solutions in the large	149
5) Generalized Stokes-Beltrami systems	155
6) The iterated equation of generalized axially symmetric	
potential theory	170
	178
REFERENCES	•
SUBJECT INDEX	188
D0D0101 1110011	
PART II Stephan Ruscheweyh	401
On the Function Theory of the Bauer-Peschl Equation	191
	193
INTRODUCTION	
CHAPTER 1	195
Structure of solutions	
CHAPTER 2	205
Dirichlet problems for circles	
CHAPTER 3	211
Functions with restricted range, Schwarz Lemma	
CHAPTER 4 Univalent solutions, Riemann Mapping Theorem	219
CHAPTER 5	227
Spaces of Hardy type	
CHAPTER 6 Summability, Abel's Theorem	230
CHAPTER 7	
Range problems	236
CHAPTER 8	
Uniqueness theorems	240
Altifacticas circorema	

CHAPTER 9		
Isolated singularities, Picard's Theorem	243	
CHAPTER 10		
Analytic continuation	246	
CHAPTER 11		
Automorphic functions	248	
REFERENCES		
SUBJECT INDEX	254	
GLOSSARY	257	