Contents

1	Introduction to Permutations, Markov Chains,				
	and I	Partitions	1		
	1.1	Permutations and Their Matrix Representations	1		
	1.2	Permutation Orbits and Fixed Points	3		
	1.3	Fixed Points and the Inclusion-Exclusion Principle	5		
	1.4	Finite Markov Chains	8		
	1.5	Birkhoff-von Neumann Theorem	9		
	1.6	Generating Functions	10		
	1.7	Partitions	13		
		1.7.1 Compositions	13		
		1.7.2 Multi-set Permutations	14		
		1.7.3 Weak Partitions	15		
		1.7.4 Integer Partitions	16		
	1.8	Concluding Remarks and Further Reading	17		
2	Wort	th Another Binary Relation: Graphs	19		
	2.1	Binary Relations and Their Graphs	19		
	2.2	Representation of Graphs by Matrices	20		
	2.3	Algebraic Properties of Adjacency Operators	23		
	2.4	Perron-Frobenius Theory for Adjacency Matrices	24		
	2.5	Spectral Decomposition of Adjacency Operators	26		
	2.6	Adjacency and Walks on a Graph	28		
	2.7	Principal Invariants of the Graph Adjacency Matrix	30		
	2.8	Euler Characteristic and Genus of a Graph	33		
	2.9	Euler Characteristics and Genus of Complex Networks	35		
	2.10	Coloring a Graph	36		
	2.11	Shortest Paths in a Graph	38		
	2.12	Concluding Remarks and Further Reading	41		

digitalisiert durch DEUTSCHE NATIONAL BIBLIOTHEK

x Contents

3	Pern	Permutations Sieved Through Adjacency: Graph					
	Auto	omorphisms	43				
	3.1	Graph Automorphisms	43				
	3.2	Nontrivial Graph Automorphisms and the Structure					
		of Eigenvectors of the Adjacency Matrix	45				
	3.3	Automorphism Invariant Linear Functions of a Graph	47				
		3.3.1 Automorphism Invariant Stochastic Processes	48				
		3.3.2 Automorphism Invariant Harmonic Functions	49				
	3.4	Relations Between Eigenvalues of Automorphism					
		Invariant Linear Functions	51				
	3.5	Summary	54				
4	Expl	Exploring Undirected Graphs by Random Walks					
	4.1	Graphs as Discrete Time Dynamical Systems	56				
	4.2	Generating Functions of the Transition Probabilities	57				
	4.3	Cayley-Hamilton's Theorem for Random Walks	58				
	4.4	Stationary Distribution and Recurrence Time of Random Walks	59				
	4.5	Entropy of Random Walks Defined on a Graph	61				
	4.6	Hyperbolic Embeddings of Graphs by Transition Eigenvectors	64				
	4.7	Exploring the Shape of a Graph by Random Currents	68				
	4.8	Summary	72				
5	Embedding of Graphs in Probabilistic Euclidean Space						
	5.1	Methods of Generalized Inverses in the Study of Graphs	73				
	5.2	Affine Probabilistic Geometry of Pseudo-inverses	75				
	5.3	Reduction to Euclidean Metric Geometry	76				
	5.4	Probabilistic Interpretation of Euclidean Geometry	77				
	5.5	Probabilistic Embedding of Simple Graphs	79				
	5.6	Group Generalized Inverse of the Laplace Operator					
		for Directed Graphs	81				
	5.7	Summary	83				
6	Ran	dom Walks and Electric Resistance Networks	85				
	6.1	Electric Resistance Network and its Probabilistic Interpretation	85				
	6.2	Dissipation and Effective Resistance					
		in Electric Resistance Networks	87				
	6.3	Effective Resistance is Bounded Above					
		by the Shortest Path Distance	89				
	6.4	Kirchhoff and Wiener Indexes of a Graph	90				
	6.5	Relation Between Effective Resistances					
		and Commute Times	90				
	6.6	Summary	91				

Contents xi

7	Random Walks and Diffusions on Directed Graphs						
	and l	Interacti	ing Networks	93			
	7.1	Rando	m Walks on Directed Graphs	93			
		7.1.1	A Time Forward Random Walk	94			
		7.1.2	Backward Time Random Walks	94			
		7.1.3	Stationary Distributions of Random Walks				
			on Directed Graphs	95			
	7.2	Laplac	e Operator Defined on Aperiodic Strongly				
		Conne	cted Directed Graphs	96			
		7.2.1	Bi-orthogonal Decomposition of Random				
			Walks Defined on Strongly Connected				
			Directed Graphs	98			
	7.3	Spectra	al Analysis of Self-adjoint Operators Defined				
		on Dire	ected Graphs	101			
	7.4	Self-ad	ljoint Operators Defined on Interacting Networks	103			
	7.5	Summa	ary	105			
8	Stru	ctural A	nalysis of Networks and Databases	107			
	8.1		re and Function in Complex Networks and Databases	108			
	8.2	Graph	Cut Problems	109			
		8.2.1	Weakly Connected Graph Components	110			
		8.2.2	Graph Partitioning Objectives as Trace				
			Optimization Problems	112			
	8.3	Marko	v Chains Estimate Land Value in Cities	116			
		8.3.1	Spatial Networks of Urban Environments	117			
		8.3.2	Spectra of Cities	118			
		8.3.3	First-passage Times to Ghettos	120			
		8.3.4	Random Walks Estimate Land Value in Manhattan	121			
	8.4	eling the Tangles of Language Evolution	123				
		8.4.1	Applying Phylogenetic Methods to Language				
			Taxonomies	124			
		8.4.2	The Data Set We Have Used	125			
		8.4.3	The Relations Among Languages Encoded				
			in the Matrix of Lexical Distances	126			
		8.4.4	The Structural Component Analysis on Language Data	128			
		8.4.5	Principal Structural Components				
			of the Lexical Distance Data	131			
		8.4.6	Geometric Representation				
			of the Indo-European Family	132			
		8.4.7	In Search of Lost Time	135			
		8.4.8	Evidence for Proto-Indo-Europeans	137			
		8.4.9	In Search of Polynesian Origins	140			
		8.4.10	Geometric Representation of Malagasy Dialects	144			
		8.4.11	Austronesian Languages Riding an Express Train	148			

xii Contents

	8.5	Marko	v Chain Analysis of Musical Dice Games	152
		8.5.1	Musical Dice Game as a Markov Chain	153
		8.5.2	Encoding of a Discrete Model of Music	
			(MIDI) into a Transition Matrix	156
		8.5.3	Musical Dice Game as a Generalized	
			Communication Process	160
		8.5.4	First Passage Times to Notes Resolve Tonality	
			of Musical Dice Games	164
		8.5.5	First Passage Times to Notes Feature a Composer	167
	8.6	Summ	ary	170
9	When	n Feedb	acks Matter: Epidemics, Synchronization,	
			ılation in Complex Networks	171
	9.1		otible-Infected-Susceptible Models in Epidemics	172
		9.1.1	Dynamical Equation of the Epidemic	
			Spreading in Scale Free Networks	172
		9.1.2	Simplified Equation for Low Infection Rates	174
		9.1.3	Stationary Solution of the Epidemic Equation	
			for Low Infection Rates	175
		9.1.4	Dynamical Solution of the Evolution Equation	
			for Low Infection Rates	178
	9.2	Epider	nic Spreading in Evolutionary Scale Free Networks	180
	9.3 Transitions to Intermittency and Collective Behavior			
			domly Coupled Map Networks	183
		9.3.1	The Model of Random Networks of Coupled Maps	185
		9.3.2	Spatiotemporal Intermittency and Collective Behavior	186
		9.3.3	The Evolution of $\mathbb{G}(N, k)$ with k	193
	9.4		odynamics of Random Networks of Coupled	
		-		196
	9.5	_	Gene Expression Regulatory Networks	202
		9.5.1	A Model of a Large Gene Expression	
			Regulatory Networks	203
		9.5.2	Numerical Analysis of Large Gene Expression	
		3.7	Regulatory Networks	206
	9.6		Field Approach to the Large Transcription	212
	0.7		tory Networks	213
	9.7	Summ	ary	217
10			nomena on Large Graphs with Regular	
	10.1		ption of the Model and the Results	
	10.2		egular Subgraphs Viewed as Riemann Surfaces	
	10.3	Nonlin	ear Diffusions Through Complex Networks	224

Х	xiii
	,

10.4	Diffusion as a Generalized Brownian Motion	229
10.5	Scaling of a Scalar Field Coupled to a Complex Network	233
10.6	Summary	235
Reference	s	237
Glossary o	of Graph Theory	258
Indev		250
muca	***************************************	237