

Contents

de Haas-van Alphen Studies of the Electronic Structure of the Noble Metals and Their Dilute Alloys

By *B. Lengeler*. With 26 Figures

1. Introduction	1
2. The de Haas-van Alphen (dHvA) Effect	3
2.1 Lifshitz-Kosevich Expression for the dHvA Effect	3
2.1.1 Conduction Electrons in a Homogeneous Magnetic Field	5
2.1.2 Density of States of the Electrons in the Magnetic Field	9
2.1.3 Origin of the dHvA Oscillations	9
2.1.4 Frequency of the dHvA Oscillations	10
2.1.5 Amplitude of the dHvA Oscillations	12
Damping of the dHvA Oscillations by Finite Temperature	12
Damping of the dHvA Oscillations by Electron Scattering	12
Influence of the Electron Spin on the dHvA Effect	13
2.1.6 Lifshitz-Kosevich Expression for the dHvA Effect	13
2.2 Influence of Electron-Phonon Interaction on the dHvA Effect	14
2.3 Information Derivable from the dHvA Effect	17
2.3.1 Geometry of the Fermi Surface	18
2.3.2 Cyclotron Masses and Fermi Velocities	18
2.3.3 Dingle Temperatures and Scattering Rates of the Conduction Electrons	19
2.3.4 g-Factor of the Conduction Electrons	19
3. Experimental Setup for dHvA Measurements in Cu, Ag, and Au	20
3.1 Field Modulation Technique	20
3.2 Magnet and Cryostat	22
3.3 Sample Holder	22
3.4 Single Crystals of the Noble Metals	22
3.5 Pitfalls in dHvA Measurements	24
3.5.1 Skin Effect	24
3.5.2 Harmonic dHvA Components	24

3.5.3	Magnetic Interaction	25
3.5.4	Phase Smearing	25
4.	The Fermi Surface of the Noble Metals	25
5.	Cyclotron Masses and Fermi Velocities of the Noble Metals	30
5.1	Cyclotron Masses of Cu, Ag, and Au	30
5.2	Determination of Energy Surfaces Adjacent to the Fermi Surface	33
5.3	Angular Dependence of the Cyclotron Masses in Cu, Ag, and Au	34
5.4	Fermi Velocities in the Noble Metals	37
5.5	Electron-Phonon Coupling Constant $\lambda(k)$ in Cu	42
5.6	Coefficient of Electronic Specific Heat for Cu, Ag, and Au	43
6.	Dingle Temperatures and Scattering Rates of Conduction Electrons in the Noble Metals	45
6.1	Dingle Temperatures and the Lifetime of Electron States	45
6.2	Anisotropy of the Scattering Rates in the Noble Metals	47
6.3	Phase Shift Analysis of the Scattering of Conduction Electrons at Defects in the Noble Metals	51
6.3.1	Substitutional Defect	53
6.3.2	Defects on Octahedral Interstices	58
6.3.3	Scattering of the Conduction Electrons by Hydrogen in Cu Occupying Octahedral Interstices and Lattice Sites	60
6.4	Phase Shift Analysis of Defect-Induced Fermi Surface Changes	60
	List of Symbols	63
	References	65

Polariton Theory of Resonance Raman Scattering in Solids

By *B. Bendow*. With 16 Figures

1.	Introduction	69
1.1	Purpose and Scope	69
1.2	Review of Perturbation Theory	71
2.	Polaritons and Their Scattering	75
2.1	Fundamentals of Polaritons	75
2.2	Formalism of Polariton-Mediated Scattering	81
3.	Polariton Theory of the Resonance Raman Effect	89
3.1	General Properties of the Scattering Rate	89
3.2	Calculations for Model Systems	92
3.3	Spatial Dispersion and Finite-Crystal Effects	101
3.4	Scattering by Polaritons	108
4.	Concluding Remarks	111
	References	112