Contents

1	Intr	oduction to Fractional Calculus	1
	1.1	Introduction	
	1.2	Birth of Fractional Calculus	
	1.3	Fractional Calculus a Generalization of Integer Order Calculus	3
	1.4	· · · · · · · · · · · · · · · · · · ·	
		1.4.1 The Popular Definitions of Fractional Derivatives/Integrals in	
		Fractional Calculus	10
		1.4.1.1 Riemann-Liouville	
		1.4.1.2 Grunwald-Letnikov: (Differintegrals)	11
		1.4.1.3 M. Caputo (1967)	11
		1.4.1.4 Oldham and Spanier (1974)	11
		1.4.1.5 K.S. Miller and B. Ross (1993)	11
		1.4.1.6 Kolwankar and Gangal (1994)	11
	1.5	About Fractional Integration Derivatives and Differintegration	12
		1.5.1 Fractional Integration Riemann-Liouville (RL)	12
		1.5.2 Fractional Integration Weyl's (W)	
		1.5.3 Nature of Kernel for Fractional Integration	14
		1.5.4 Fractional Derivatives Riemann-Liouville (RL) Left Hand	
		Definition (LHD)	15
		1.5.5 Fractional Derivatives Caputo Right Hand Definition (RHD)	17
		1.5.6 Fractional Derivatives of Same Order but Different	
		Types RL-Caputo	19
		1.5.7 Fractional Differintegrals Grunwald Letnikov (GL)	20
		1.5.8 Fractional Derivative Weyl's	21
		1.5.9 Scale Invariance and Power Law	
		1.5.10 Fourier Transform of Fractional Derivative	
		1.5.11 Composition and Property	26
		1.5.12 Fractional Derivative for Some Standard Function	
	1.6	Solution of Fractional Differential Equations	30
		1.6.1 Abel's Fractional Integral Equation of Tautochrone	31
		1.6.2 Fractional Damped Motion	34
		1.6.3 Formal Definition of Fractional Differential and Fractional	
		Integral Equation	35
	1.7	Fractional Calculus and Law of Irreversibility Non-locality	37
	1.8	Stable Random Variables and Generalization of Normal	
		Probability Density Function	38
	1.9	Conservation of Probability	40

	1.10	Half Order Fractional Differentiation Embedded in Standard	
		Fick's Law and Its Extension to Describe Anamolous Diffusion	44
	1.11	Fractional Brownian Motion	46
	1.12	2 A Thought Experiment	48
	1.13	Quotable Quotes about Fractional Calculus	50
	1.14	Concluding Comments	50
2	F	actions Used in Fractional Calculus	51
2	2.1		
		Introduction	31 51
	2.2	2.2.1 Gamma Function	
		2.2.1.1 Representation of Gamma Function	
		2.2.1.2 Basic Properties of Gamma Function	
		2.2.2 Hypergeometric Functions	
		2.2.3 Mittag-Leffler Function	
		2.2.3.1 One-Parameter Mittag-Leffler Function	
		2.2.3.2 Two Parameter Mittag-Leffler Functions	63
		2.2.3.3 Variants of Mittag-Leffler Function	
		2.2.3.4 Laplace Transforms of Mittag-Leffler Function	
		2.2.4 Agarwal Function	
		2.2.5 Erdelyi's Function	
		2.2.6 Robotnov-Hartley Function	
		2.2.7 Miller Ross Function	
		2.2.8 Generalized Cosine and Sine Function	
		2.2.9 Generalized R Function and G Function	
		2.2.9.1 Relation to Elementary Functions	74
		2.2.9.2 Relationship of R Function to Other Generalized	
		Function	
		2.2.9.3 Further Generalized Function (G Function)	
		2.2.10 Bessel Function	75
	2.3	List of Laplace and Inverse Laplace Transforms Related to	
		Fractional Calculus	77
	2.4	Paradoxial Conditions for Using Generalized Differentiation and	
		Integration Expressions and Cautions	81
	2.5	Non-exponential Relaxation Power Law and Memory Integrals	83
		Boltzmann's Superposition Principle	86
	2.7	Motivation to Use Higher Transcendental Functions to Solve	
		Fractional Differential Equations	87
	2.8	Fractional Derivatives and Integrals of Important Functions with	
		Use of Higher Transcendental Functions	89
	2.9	Irregular Functions and Measure of Irregularity (Roughness) with	
		Box Dimmension, Holder and Hurst's Exponents	92
		2.9.1 Measure of Roughness of Graph	93
		2.9.2 Generation of Irregular Graph	94
		2.9.3 Determination of Box-Dimension of an Irregular Graph	95

		2.9.4	Difference in Persistent Anti Persistent Noise and Motion from Power law of Power Spectral Density	97
	2.10	Conc	luding Comments	98
			3	
3	Obs		on of Fractional Calculus in Physical System Description	
	3.1		uction	101
	3.2		erature Heat Flux Relationship for Heat Flowing in	
			infinite Conductor	102
	3.3		Thermocouple Junction Temperature in Measurement of	
			· · · · · · · · · · · · · · · · · · ·	
			Fransfer	107
	3.5		g Point Impedance of Semi-Infinite Lossy Transmission	
		Line		110
		3.5.1	Practical Application of the Semi-Infinite Line in Circuits	116
			3.5.1.1 Semi-integrator Circuit	
			3.5.1.2 Semi-differentiator Circuit	118
		3.5.2	Application of Fractional Integral and Fractional	100
			Differentiator Circuit in Control System	120
	2.0	3.3.3	Bode's Integrals	122
			Infinite Lossless Transmission Line	
	3.7	Partial	Differential Equations and Operational Calculus	130
			Diffusion Discussion	
			eo Diffusion	
			nalous Diffusioncation of Semi-Infinite System to a Finite System	
				140
	3.12	Appr	oximating the Half Order by Self Similar Structure and	142
	2 12		elation to Continued Fraction Expansion	
	3.13		mics of Chain Network mics of Charged Chain Network in Electric Field	
	3.14			
	3.13	Conc	luding Comments	130
4	Con	cent of	Fractional Divergence and Fractional Curl	157
•			uction	
			pt of Fractional Divergence for Particle Flux	
			onal Kinetic Equation	
	4.4	Discre	te Difference and Continum Limit and Differential Operator	
			idom Walk Context	162
			Integer Order Discrete Difference and Continuum Limit and	
		·	Differential Operator	162
		4.4.2	Fractional Order Discrete Difference and Continuum Limit	
			and Fractional Differential Operator	163
		4.4.3	Fourier Representation of Fractional Difference	
			and Derivative	165
		111	Stochastic Fractional Difference Fountions	

		4.4.5 Random walker with Memory Concept of Persistence and	
		Anti-persistence Walk with Long Memory and Short Term	
		Memory	
		Nuclear Reactor Neutron Flux Description	
	4.6	Classical Constitutive Neutron Diffusion Equation	. 173
		4.6.1 Discussion on Classical Constitutive Equations	. 174
		4.6.2 Graphical Explanation	
		4.6.3 About Surface Flux Curvature	. 176
		4.6.4 Statistical and Geometrical Explanation for Non-local	
		Divergence	
		4.6.5 Point Kinetic Equation in Heterogeneous Background	
		4.6.6 Revisiting the Realm of Brownian Motion	
		4.6.7 The Continuous Time Random Walk (CTRW) Model	
		Diffusion with Long Rests	
		Diffusion with Long Jumps	
	4.9	Fractional Divergence in Neutron Diffusion Equations	
		4.9.1 Solution of Classical Constitutive Neutron Diffusion Equation	
		(Integer Order)	. 192
		4.9.2 Solution of Fractional Divergence Based Neutron Diffusion	
		Equation (Fractional Order)	. 193
		4.9.3 Fractional Geometrical Buckling and Non-point	
		Reactor Kinetics	. 194
		4.9.4 Fractional Reactor Kinetic Equation	. 195
		4.9.5 Growth of Neutron Flux with Time for Different Values of	
		Fractional Orders and Fractional Criticality	. 199
	4.10	Concept of Fractional Curl in Electromagnetics	. 200
		4.10.1 Concept of Chirality	. 200
		4.10.2 Duality of Solutions	
		4.10.3 Fractional Curl Operator	
		4.10.4 Wave Propagation in Unbounded Chiral Medium	
		4.10.5 Reflection in Chiral Medium	
		4.10.6 Transverse Wave Impedance	. 205
		4.10.7 Propagation of Electromagnetic Waves in Bi-isotropic	
		Medium	. 207
•		4.10.8 Fractional Non-symmetric Transmission Line	. 208
		4.10.9 Input Impedance of Terminated Fractional	
		Non-symmetric Line	. 209
	4.11	Concluding Comments	. 210
5	Fra		. 213
		Introduction	. 213
	5.2	Calculating Fractional Integral	
		5.2.1 Existence of Fractional Differeintegration	
		5.2.2 Useful Procedure for Calculating Fractional Integral	
		5.2.3 Calculating Fractional Integral with Non-zero Lower Limit	
		5.2.4 Fractional Integral for Analytical Function	. 217

Contents XXI

5.3	Fractional Differentegration of Product of Two Functions	218
5.4	Symbol Standardization and Description for Differintegration	221
5.5	Riemann-Liouville Fractional Differintegral	222
	5.5.1 Scale Transformation	
	5.5.2 Changing Shape of Curve While Obtaining Fractional	
	Integration and Differentiation	225
	5.5.3 Homogeneous and Heterogeneous Scales in Fractional	
	Integration/Differentiation	226
	5.5.4 Convolution Example	
	5.5.5 Practical Example of RL Differitegration in Electrical	
	Circuit Element Description	231
56	Grunwald-Letnikov Fractional Differinteration	
	Unification of Differintegration through Binomial Coefficients	
	Short Memory Principle- A Moving Start Point Approximation	201
5.0	and Its Error	240
5.9	Matrix Approach to Discretize Fractional Differintegration and	240
3.5	Weights	242
5 10	Use of Discrete Fractional Order Differintegration in Fractional	242
5.10	Order Signal Processing	244
5 1 1		244
5.11	Fractional Differintegrations	247
	Fractional Different Egrations	241 247
	5.11.1 Integration	
E 10		
5.12	Local Fractional Derivatives (LFD)	
	5.12.1 KG-LFD for Order Less Than Unity	
	5.12.2 KG- LFD for Order Greater Than Unity	252
	5.12.3 Critical Order of a Function and Its Relation to the	252
	Box Dimension	
	5.12.4 Information Content in LFD	
	5.12.5 Finding Holder Exponent for Singularity at a Point	259
5.13	Numerical Solution of Fractional Order Differential Equation by	
	Use of Grunwald-Letnikov Technique	
	5.13.1 The Algorithm	
	5.13.2 Obtaining the Step Response	261
	5.13.3 Fractional Order System and Integer Order System	
	Comparision	
	5.13.3.1 Order of the FOS- <i>n</i>	
	5.13.3.2 Significance of Parameters a and b	
	5.13.3.3 Effect of Initial Conditions	
	Line, Surface and Volume Integration of Fractal Distributions	
	Fractional Generalization of Gauss's Law and Stroke's Law	
5.16	Concluding Comments	269
	alized Differintegrals and Generalized Calculus	
6.1	Introduction	271
6.2	Notations of Differintegrals	272
6.3	Requirement of Initialization	273

6

XXII Contents

	6.4		ization Fractional Integration (Riemann-Liouville Approach)					
			Terminal Initialization					
			Side-Initialization					
	6.5		izing Fractional Derivative (Riemann-Liouvelle Approach)					
		6.5.1	Terminal Initialization	278				
			Side-Initialization					
	6.6	Initializing Fractional Differintegrals						
		(Grunwald-Letnikov Approach)						
	6.7	Proper	rties and Criteria for Generalized Differintegrals	282				
		6.7.1	Terminal Charging	285				
		6.7.2	Side-Charging	286				
	6.8	Initial	ization with Caputo Derivative and Its Difficulties	286				
		6.8.1	Relation between Caputo and Rieman-Liouvelli (RL)					
			Fractional Derivative and Issues Relating to Initialization	287				
		6.8.2	Un-Initialized Derivatives RL and Caputo	288				
		6.8.3	Evaluation of RL and Caputo Derivative from the Start					
			Point of the Function	291				
		6.8.4	Initialization of Caputo Derivative	292				
		6.8.5	Generalization of RL and Caputo Formulations	298				
		6.8.6	Observations Regarding Difficulties in Caputo Initialization					
	and Demanding Physical Conditions vis-à-vis RL Initialization							
	Conditions and Relation to Physics in Solving Fractional Order							
			Differential Equations					
	6.9	Fraction	onal Differintegrations for Periodic Signals	301				
		6.9.1	Fractional Derivative/Integral of Generalized Periodic					
			Function	301				
		6.9.2	Fractional Derivative of Periodic Function with					
			Lower Terminal Not at Minus Infinity					
		Fract	tional Advection Dispersion Equation and Its Solution	305				
	6.11	Ident	ification of Random Delays	307				
			1 Random Delay a Stochastic Behavior					
			2 About Levy Distribution					
			3 Fractional Stochastic Dynamic Model					
			4 Fractional Delay Dynamics					
			5 The Random Dynamics of Computer Control System					
	6.12	Conc	cluding Comments	321				
7	Con	oraliza	ed Laplace Transform for Fractional Differintegrals	323				
•	7.1	Introc	luction	323				
			ling Laplace Transform Fundamentals					
			ce Transform of Fractional Integrals					
	,	7.3.1	Decomposition of Fractional Integral in Integer Order	330				
			Decomposition of Fractional Order Integral in Fractional					
			Order	334				
	7.4	Lanla	ce Transformation of Fractional Derivatives					

Contents XXIII

		7.4.1 Decomposition of Fractional Order Derivative in Integer	
		Order 3	338
		7.4.2 Decomposition of Fractional Derivative in Fractional Order 3	342
		7.4.3 Effect of Terminal Charging on Laplace Transforms	343
	7.5	Start Point Shift Effect	344
		7.5.1 Fractional Integral	
		7.5.2 Fractional Derivative	345
	7.6	Laplace Transform of Initialization Function	345
		7.6.1 Fractional Integral	345
		7.6.2 Fractional Derivative	
	7.7	Examples of Initialization in Fractional Differential Equations	
	7.8	The Fundamental Fractional Order Differential Equation	350
		7.8.1 The Generalized Impulse Response Function	
	7.9	Problem of Scalar Initialization	355
	7.10	Problem of Vector Initialization	357
	7.11	Laplace Transform $s \rightarrow w$ Plane for Fractional Controls Stability 3	360
	7.12	Rational Approximations of Fractional Laplace Operator	362
		7.12.1 Finding Arbitrary Root of Polynomial Approximation	
		for Fractional Laplace Operator	363
		7.12.2 Fractional Power Pole and Fractional Power Zero	
		to Approximate Fractional Laplace Operator	364
		7.12.2.1 Singularity Structure for a Single Fractional	
		Power Pole (FPP)	365
		7.12.2.2 Geometrical Derivation of Recurring	
		Relationship of Fractional Power Pole for	
		Fractional Integration3	366
		7.12.2.3 Recursive Algorithm for Fractional Power Pole 3	368
		7.12.2.4 Singularity Structure for a Single Fractional	
		Power Zero (FPZ)3	
	7.13	Realization of Constant Phase Element	371
		7.13.1 Asymptotic Bode Phase plot	372
		7.13.2 Pole Zero Calculation for Constant Phase	373
		7.13.3 Calculation for Pole-Zero Position of Fractional Order	
		Impedance	376
		7.13.4 Algorithm	376
		7.13.5 Design and Performance of Fractional Order Impedance 3	378
	7.14	Laplace Transform and Charaterization of Type of Fractional	
		Derivative	
	7.15	Generalized Stationary Conditions	385
	7.16	Concluding Comments	386
8	App	cation of Generalized Fractional Calculus in Electrical Circuit	
		ysis and Electromagnetics 3	
		ntroduction	
	8.2	Electronics Operational Amplifier Circuits	387

XXIV Contents

	8.2.1	Operational Amplifier Circuit with Lumped Components	
	8.2.2	Operational Amplifier Integrator with Lumped Element	
	8.2.3		390
	8.2.4	Operational Amplifier Differential Circuit with Lumped	
		Elements	392
	8.2.5	Operational Amplifier Differentiator with Distributed	
		Element	393
	8.2.6	Operational Amplifier as Zero Order Gain with	
		Lumped Components	394
	8.2.7	Operational Amplifier as Zero Order Gain with	
		Distributed Elements	395
	8.2.8	Operational Amplifier Circuit for Semi-differintegration	
		by Semi-infinite Lossy Line	396
	8.2.9		397
	8.2.10	Operational Amplifier Circuit for Semi-differentiator	
		Cascaded Semi-integrators	
	8.2.12	2 Semi-integrator Series with Semi-differentiator Circuit	400
8.3		ry Dynamics	
	8.3.1	· ·	
	8.3.2	Battery Charging Phase	
		Battery Discharge Phase	
8.4		ing Filter	
8.5		onal Order State Vector Representation in Circuit Theory	
8.6		zation of Fractional Order Transfer Function for $PI^{\alpha}D^{\beta}$	
0.0	8.6.1		413
	0.0.1	FPP and FPZ	415
	8.6.2		
	0.0.2	8.6.2.1 Rational Approximation	
	8.6.3	Fractional Order Differentiator	415
	0.0.3		
	061	8.6.3.1 Rational Approximation	410
	8.6.4	Fractional Pl ^{\(\D\D\D\)} Controller	419
	065	8.6.4.1 Rational Approximation	
	8.6.5	Realization of Fractional Order Element by Circuit Network	
		8.6.5.1 Impedance Functions of a Single Port Network	
		8.6.5.2 Impedance Functions of a Two Port Network	
0.7	. 1	8.6.5.3 Improved Two Port Network	
8.7		nce Digital Algorithms Realization for Fractional Controls	
		Concept of Generating Function	425
	8.7.2		407
	072	Approximation for Fractional Operator	426
0.0	8.1.3	Filter Stability Consideration	428
8.8	Charg	e Conservation for Fractal Distribution	429
8.9		ic Field of Fractal Distribution	
		Electric Field and Coulomb's Law for Fractal Distribution	
	8.9.2	Gauss's Law for Fractal Distribution	430

Contents XXV

	8.10	Mag	netic Fiel	ld of Fractal Distribution	431
		8.10.	1 Biot-	Savart Law for Fractal Distribution	431
		8.10.	2 Ampe	ere's Law for Fractal Distribution	432
	8.11			ation for Fractal Distribution	
	8.12	Elect	ric Dipo	le Moments for Fractal Distribution	434
	8.13	Conc	luding C	Comments	436
9	App	licatio	n of Ger	neralized Fractional Calculus in Other Science	
	and	Engin	eering F	ields	437
				el in Electrochemistry	
				trolyte Interface Impedance	
				Diffusion in a Finite Boundary System	
				ous Diffusion in Finite Boundary System	
				Diffusion with Fractional Continuity Equation	
				Diffusion with Fractional Differential	
				Constitutive Equation	442
			9.3.2.3	Diffusion with Fractional Integral Constitutive	
				Equation	443
	9.4	Capac	itor The	ory	
	9.5	Fracta	nce Circ	uit	446
	9.6	Feedb	ack Cont	trol System	448
				t of Iso-damping	
		9.6.2	Frequen	cy Domain Design for Fractional Order Plant	
			and Fra	ctional Order Controller Tuning	459
		9.6.3	Family	of Fractional Order Controllers	462
				nal Vector Feedback Controller	
				er in Fractional Vector System	
				Aspects of Fractional Control	
	9.7			mpensator	
				lized Compensator	
				ncy Characteristics of the Lead Compensator	
		9.7.3	Compe	nsation Using a Fractional Lead Compensator	469
	9.8			with Fractional Order Differ-Integrator	
				tion of Bode's Phase Integral	473
		9.8.2		ith Tuned with Integer Order PID Made	
				nped with Additional Fractional Differ-integrator	
				(Stress-Strain)	
				mping System	
	9.11			tonian Fluid Anamolous Behavior with Memory	
	9.12	Conc	luding C	Comments	492
				•	
10	Sys	tem O	rder Ide	entification and Control	493
				order Systems	
	10.3	3 Cor	itinuous	Order Distribution	495

XXVI Contents

				der Distribution from Frequency	
		Domain I	Experimenta	al Data	499
	10.5	Analysis	of Continuo	ous Order Distribution	501
	10.6	Variable (Order Syste	:m	513
	1	0.6.1 R	L Definition	n for Variable Order	513
	1	10.6.2 La	aplace Tran	sforms and Transfer Function of	
		V.	ariable Ord	er System	515
	1	10.6.3 G	L Definition	n for Variable Order	517
	10.7	Generaliz	ed PID-Co	ntrols	518
	10.8	Continuu	m Order Fe	ed Back Control System	520
	10.9	Time Doi	main Respo	nse of Sinusoidal Inputs for	
		Fractiona	l Order Ope	erator	522
	10.10	Frequer	ncy Domain	Response of Sinusoidal Inputs for	
		Fraction	nal Order O	perator	523
	10.11	Ultra-Da	amped Syst	em Response	524
	10.12	Hyper-D	Damped Sys	tem Response	525
				ferintegrations	
	10.14	Ordering	g the Disorc	ler of System	531
		10.14.1	Disordere	d Relaxation with Multiple States	
			and Relax	ation Constants	531
		10.14.2		ce of Fractional Derivative in Disordered	
				1	
		10.14.3		ation of Disordered Relaxation	
			10.14.3.1	Intermittency Disorder	534
			10.14.3.2	Strong Intense Relaxation	536
				Weak Intermittent Relaxation	
			10.14.3.4	Oscillating Relaxation	537
			10.14.3.5	Generalized Dynamic Critical Index of	
				Relaxation with intermittency	538
				Spatial Disorder	540
			10.14.3.7	Hybrid Disorder with Intermittency and	
				Spatial Heterogeneity	541
	10.15		ation of Fra	actional Stochastic Processes	543
		10.15.1	Fitting Sto	ochastic Data into Parameters of	
				le Distribution	543
		10.15.2	Estimation	of Hurst Index by Rescaled Range	
			(R/S Meth	od) for Stochastic Data	545
	10.16	The Con	scept of Sys	tem Order and Disadvantage of	
				stem	
	10.17	Conclud	ing Commo	ents	548
11	Soluti	on of Gei	neralized D	Pifferential Equation Systems	549
	11.1	Introducti	ion	······································	549
	11.2	Generaliz	ed Dynami	c System and Evolution of It's Solution	
		by Princi _l	ple of Actio	n Reaction	550

Contents XXVII

11.3	Physical I	Reasoning to Solve First Order System and	
	Its Mode	Decomposition	551
11.4		Reasoning to Solve Second Order System and	
	Its Mode-	-Decomposition	555
11.5	Adomian	Decomposition Fundamentals and Adomian	
		als	558
11.6	Generaliz	cation of Physical Law of Nature Vis-À-Vis ADM	. 564
11.7		plied to First Order Linear Differential Equation and	
		composition Solution	565
11.8		plied to Second Order Linear Differential Equation	
		nd Mode-Decomposition	. 567
11.9		First Order Linear Differential Equation System	
		Order Element and Mode-Decomposition	. 569
11.10		or Second Order System, with Half Order Element and	
		sics	. 570
		Forcing Function as Delta Function	
		Forcing Function as Step Function	
		Explanation Physical Action Reaction Process	
		Vis-À-Vis ADM	. 573
11.11	Applicat	tion of Decomposition Method in RL-formulated	
		Fractional Differential Equations Linear Diffusion	
		puation and Solution to Impulse Forcing Function	. 575
11.12		ization of Fractional Order Leading Terms in	
		tial Equations Formulated with Riemann-Liouvelli	
		uto Definitions-and Use of Integer Order Initial/Boundary	,
		ons-with Decomposition Method	
		Decomposition of Caputo Derivative in	
		Fractional Differential Equations	. 578
	11.12.2		
		Decomposition for Solving Fractional Differential	
		Equation-with Integer Order Initial Condition	. 579
11.13	Applicat	tion of Decomposition Method in RL Formulated	
		al Differential Equations (Non-linear) and Its Solution	. 581
11.14		tion of Decomposition Method in RL-Formulated	
		Fractional Differential Equations Non-linear	
		n-Wave Equation and Solution	. 583
11.15		osition Method for Generalized Equation of Motion	
11.16		osition Method for Delay Differential Equation System	
11.17		ion	
	11.17.1	Fractional Initial States-Classical Solution to FDE	. 587
	11.17.2		
		and its Classical Solution	. 590
	11.17.3	Classical Solution to Fractional Fokker-Plank	
	,	Kolmogorov Equation (FFPK) by Fourier-Laplace	
		Technique	. 591

XXVIII Contents

592
596
597
598
599