CONTENTS

PREFACE	• •	······································
CHAPTER 1:	EXIST	ENCE AND FIRST PROPERTIES OF TRANSCENDENTAL NUMBERS
	1.	The distinction between algebraic and transcendental numbers. The algebraic numbers are dense on the real line and in the complex plane
	2.	Height, length, and degree of a polynomial
	3.	Conjugates and minimal polynomial of an algebraic number
	4.	Cantor's proof that the algebraic numbers are countable
	5.	Cantor's proof that the real numbers are not countable, hence that there exist transcendental numbers
	6.	The measure of a polynomial and its multiplicative property
	7.	The measure of a polynomial expressed in terms of the roots
	8.	A basic inequality for the length of a product of polynomials
	9.	Guting's lower bound for a polynomial at an algebraic point
	10.	Application to the rational approximations of an algebraic number. Liouville's sufficient condition for transcendency. Liouville numbers
	11.	More recent theorems on the rational approximations of algebraic numbers
	12.	Another class of transcendental numbers 1
	13.	A first remark on the algebraic approximations of transcendental numbers 1
	14.	An upper bound for positive definite quadratic forms at integral points le
	15.	Evaluation of the discriminant of a special quadratic form 1
	16.	Application to the algebraic approximations of numbers, real or complex
	17.	The general theorem 2
	18.	A necessary and sufficient condition for the transcendency of a number
CHAPTER 2:	CONVE	RGENT LAURENT SERIES AND FORMAL LAURENT SERIES 2
	19.	Numbers as values of analytic functions at algebraic points. Convergent Laurent series
	20.	Notations on fields, rings of polynomials, and the ring of formal Laurent series
	21.	The ring of formal Laurent series is a field 3
	22.	Properties of the order of a formal Laurent series
	23.	Differentiation of a formal Laurent series
	24.	The subfield of convergent Laurent series

	25.	Series with coefficients in a field K_0 which satisfy an
		algebraic differential equation with coefficients in a larger field, also satisfy an algebraic differential equation with coefficients in K_0
	26.	The distinction between formal Laurent series that are algebraic or transcendental over the field of rational functions
	27.	Notations
	28.	A necessary condition for a formal Laurent series to be algebraic
	29.	A strongly lacunary formal Laurent series is transcendental 39
	30.	Algebraic approximations of transcendental formal Laurent series
	31.	A necessary and sufficient condition for transcendency of formal Laurent series. A stronger result by Osgood 4
	32.	Eisenstein's theorem on algebraic functions quoted 44
CHAPTER 3:	FIRST POINT	RESULTS ON THE VALUES OF ANALYTIC FUNCTIONS AT ALGEBRAIC S
	33.	The general problem on function values 45
	34.	The algebraic points at which an algebraic function is algebraic 48
	35.	Historical remarks
	36.	Examples of transcendental functions which with all their derivatives are algebraic at all algebraic points 4
	37.	Both a transcendental function and its inverse may with all their derivatives be algebraic in all algebraic points of a certain disk
	38.	Sequences which may be the zeros of an entire function with rational coefficients
	39.	The analogue for series with finite radius of convergence 5
	40.	Lekkerker's theorem 5
	41.	An unsolved problem
CHAPTER 4:	LINEA	R DIFFERENTIAL EQUATIONS: THE LEMMAS OF SHIDLOVSKI 6
	42.	Historical remarks 6
	43.	Notations on linear differential equations and their solutions in formal Laurent series
	44.	Shidlovski's lemma on the order of linear forms in finitely many series
	45.	The vector space V_Q of the solutions ${f w}$ of a system Q of
		homogeneous linear differential equations with coefficients in a field $K(z)$
	46.	Linear forms $\lambda(w)$ with rational coefficients in these solutions. The derived form $D\lambda(w)$ 6
	47.	Linear spaces of forms λ which are closed under derivation and their bases
	48.	Regular systems Q and their vector spaces V_Q $$ 6

	49.	When Q is regular, then V_Q has the dimension m over K 69
	50.	The rank ρ of a special solution f of Q . A basis of the linear forms λ satisfying $\lambda(f)=0$ when $1\leq \rho \leq m-1$ 70
	51.	Properties of this basis 71
	52.	Proof of Shidlovski's Reduction Theorem 72
	53.	The sequence of linear forms $\lambda_1 = \lambda$ and $\lambda_{h+1} = D\lambda_h$. The
		linear vector space spanned by these forms is closed under derivation. Its dimension μ
	54.	The corresponding basis $\mathbf{w}_1, \ldots, \mathbf{w}_m$ of $\mathbf{v}_{\mathcal{Q}}$ and the
		rational functions e_{ij}
	55.	Proof that the matrix $\underline{\underline{w}}^{(0)}$ is regular77
	56.	An upper bound for the degrees of the rational functions e_{ij} 78
	57.	The case when the linear forms $\lambda_h^{}$ have polynomial
		coefficients 80
	58.	Conclusion of the proof of Shidlovski's Determinant Theorem 81
	59.	Specialisation of the polynomial coefficients of $\;\lambda\;$ 84
	60.	Proof of Shidlovski's generalisation of Siegel's Determinant
		Theorem 86
CHAPTER 5:	LINEA VALUE	R DIFFERENTIAL EQUATIONS: A LOWER BOUND FOR THE RANK OF THE S OF FINITELY MANY SIEGEL $\it E$ -FUNCTIONS AT ALGEBRAIC POINTS 90
	61.	Introductory remarks 90
	62.	Algebraic numbers and their conjugates. Algebraic integers 90
	63.	A theorem on linear diophantine equations 92
	64.	E-functions relative to an algebraic number field. Siegel E-functions
	65.	General properties of (Siegel) E-functions 96
	66.	Solution vectors $\mathbf{f}(z)$ of systems Q of linear differential equations the components of which are Siegel E -functions. The ranks ρ and $\rho(\alpha)$
	67.	First properties of $f(z)$
	68.	Construction of a linear form $\lambda\{f(z)\}$ which vanishes to a high order at $z=0$, but has small coefficients 99
	69.	Estimates for the derived linear forms $\lambda_{\hat{h}}\{f(z)\}$ and their
	•••	coefficients
	70.	Estimate for $\lambda_h^{\{f(\alpha)\}}$
	71.	Exclusion of a trivial case. The general case 106
	72.	The determinant S
	73.	Estimates for S and its conjugates, and lower bounds for $\rho(\alpha)$ when $\rho = m$
	74.	The general lower bound for $\rho(\alpha)/\rho$ for systems of homogeneous linear differential equations
	75.	Extension to inhomogeneous systems of linear differential
	75.	equations

CHAPTER 6:	TRANS	AR DIFFERENTIAL EQUATIONS: SHIDLOVSKI'S THEOREMS ON THE SCENDENCY AND ALGEBRAIC INDEPENDENCE OF VALUES OF SIEGEL NCTIONS	115
	76.	At algebraic points general <i>E</i> -functions can be algebraic or transcendental	115
	77.	Finite (algebraic or transcendental) extensions of fields. Notations	116
	78.	The extension fields U and V	118
	79.	The products $Z_{h_1 \cdots h_{n-1}}$ and their basis representations	120
	80.	An upper estimate for the degrees of their coefficients	
		$E_{hh_1\cdots h_{n-1}}$	121
	81.	The relation to Hilbert's function $h(t)$	122
	82.	Elementary proof of the lower and upper estimates for $h(t)$	123
	83.	Application to the solutions of a homogeneous system \mathcal{Q} of linear differential equations	127
	84.	The derived set $\mathcal{Q}(t)$ of differential equations	128
	85.	Proof of a weak form of Shidlovski's First Main Theorem	129
	86.	Remarks on finite algebraic extensions of the algebraic number field K	131
	87.	First reduction	132
	88.	Second reduction	133
	89.	Conclusion of the proofs of the two Main Results of Shidlovski	135
	90.	Further study of the components of $f(z)$ assumed to be Siegel E -functions	136
	91.	Proof that every transcendental Siegel E-function is algebraic at no more than finitely many algebraic points	138
	92.	Application to the E -functions which satisfy a linear differential equation of order m	140
	93.	The zeros of such an E -function	141
	94.	The values at algebraic points of a system of finitely many algebraically independent Siegel <i>E</i> -functions are in general algebraically independent	141
CHAPTER 7:	APPT.T	CATIONS OF SHIDLOVSKI'S MAIN THEOREMS TO SPECIAL FUNCTIONS	145
	95.	Introductory remarks	145
	96.	An arithmetic lemma	145
	97.	Two further lemmas	147
	98.	The generalised hypergeometric function $f(z)$	148
	99.		1.0
	301	It is a Siegel <i>E</i> -function for rational parameters α_i , β_j distinct from the integers 0, -1, -2,	149
	100.	The problem of algebraic independence of Siegel E-functions	150
	101.	The algebraic independence of finitely many exponential	
		functions, and the general theorem of Hermite-Lindemann	151
	102.	The function $f(z;\beta)$	153
	103.	A general independence theorem on the solutions of linear differential equations	154

	104.	The Siegel E-functions $f_{k}(z;\beta)$	157
	105.	The algebraic independence of the solutions of a special system of homogeneous linear differential equations	158
	106.	Application to the functions $f_k(z;\beta)$	162
	107.	Arithmetical consequences	165
	108.	Oleinikov's method for the study of the algebraic independence of solutions of linear differential equations	167
	109.	The Siegel E-function $f(z; \beta_1, \beta_2)$, and the derived function	
		$K(\lambda,\mu)$	168
	110.	Cases when it is an algebraic function	169
	111.	The case when it satisfies a first order algebraic differential equation	171
	112.	Application to Siegel's theorem on Bessel functions \hdots	174
	113.	Siegel's more general theorem	175
	114.	His proof	176
	115.	The proof continued	178
	116.	The arithmetic consequences	181
	117.	The functions $K_{k}(z)$ and statement of some of their	
		properties	182
CHAPTER 8:	FORMA	L POWER SERIES AS SOLUTIONS OF ALGEBRAIC DIFFERENTIAL EQUATIONS	185
	118.	Introductory remark	185
	119.	Notations	185
	120.	The problem	186
	121.	The differential operator $F((w))$	187
	122.	The higher derivatives of a product: a general formula	187
	123.	Its application to $F^{(h)}(w)$	188
	124.	The expression $F^{(h,k)}((w))$	189
	125.	Kakeya's formula for $F^{(h,k)}(w)$	189
	126.	Application of the preceding results to $F^{(h)}(f)$ when f is a formal power series satisfying $F(f) = 0$	191
	127.	Recursive formulae for the Taylor coefficients $\ f_h$ of $\ f$	193
	128.	An identity and an inequality	194
	129.	A recursive inequality for f_k	195
	130.	The numbers u_k \cdots	197
	131.	The numbers v_k	198
	132.	Maillet's inequality for f_h	199
	133.	The case when the coefficients $f_h^{}$ are algebraic numbers $$	200
	134.	Study of their denominators	201
	135.	Simplification of this problem	202

	136.	Estimate of the denominators	. 204
	137.	The Theorem of Popken	. 206
	138.	Weierstrass's σ -function	207
	139.	The function $s(u)$. 208
	140.	The function $f(z)$. 209
	141.	An application of Popken's theorem to transcendency	. 210
APPENDIX:	CLASS	ICAL PROOFS OF THE TRANSCENDENCY OF e AND π	. 213
	1.	Historical remarks	. 213
	2.	Statement of the General Lindemann Theorem	. 213
	3.	Reduction to the Special Lindemann Theorem	. 214
	ı.	HERMITE'S APPROXIMATION FUNCTIONS	. 215
	4.	The functions $A_{\vec{k}}$ and $R_{\vec{k}\vec{l}}$. 215
	5.	Properties of the A_k	. 215
	6.	Properties of the R_{kl} . Integral-free proofs by Hurwitz an	ıd
			. 216
	II.	APPLICATION OF THE LAST FORMULAE TO PROOFS OF TRANSCENDENCY .	. 218
	7.	The sums S and T	. 218
	8.	Hypothesis 1 and its consequence	. 219
	9.	Hypothesis 2 and its consequence	. 221
	10.	Hypothesis 3 and its consequence	. 223
	11.	The three kinds of proof	. 226
	III.	PROOFS DEPENDING ON THE NON-VANISHING OF A DETERMINANT	. 227
	12.	The determinant D	. 227
	13.	A transformation of D	. 227
	14.	The asymptotic evaluation of ${\it D}$, and Hermite's first proof	228
	15.	Hermite's second proof: Recursive evaluation of ${\it D}$. 229
	16.	A simpler proof of Hermite's formula for D	. 232
	17.	Venske's proof that D does not vanish \dots	. 233
	18.	Weierstrass's proof	. 235
	19.	A remark	. 237
	IV.	PROOFS DEPENDING ON DIVISIBILITY PROPERTIES	. 237
	20.	Arithmetic properties of the ${}^{A}{}_{k}$. 237
	21.	Hilbert's proof of the transcendency of $e \ldots \ldots \ldots$. 238
	22.	Hilbert's proof of the transcendency of $\ \pi$. 239
	23.	A remark	. 241
	24.	An arithmetic proof using determinants	. 241
	25.	Weber's method	. 242
	26.	The disadvantages of choosing a prime for the parameter .	. 243

	٧.	PROOFS DEPE	NDING C	N ANALY	TIC ES'	TAMIT	ES .			 • •	• •	244
	27.	Remarks .				• •				 • •		244
	28.	The method	by Sti	eltjes.		• •			• •	 • •		244
	29.	Späth's pr	oof of	the tra	nscend	ency	of e		• •	 	• •	245
	30.	Späth's pr	oof of	the Gen	eral T	heore	m of	Linde	mann	 		246
	31.	Final rema	rks							 		248
BIBLIOGRAPHY										 		249