## Content

| 1              | Introduction                                                                                             | 1          |
|----------------|----------------------------------------------------------------------------------------------------------|------------|
| 1.1            | Verification Methods                                                                                     | ]          |
| 1.2            | Methods to Determine the Internal Forces and Moments                                                     | 2          |
| 1.3            | Element Types and Fields of Application                                                                  | 2          |
| 1.4            | Linear and Nonlinear Calculations                                                                        | 6          |
| 1.5            | Designations and Assumptions                                                                             | 7          |
| 1.6            | Fundamental Relationships                                                                                | 13         |
| 1.7            | Limit States and Load Combinations                                                                       | 16         |
| 1.8            | Introductory Example                                                                                     | 19         |
| 1.9            | Content and Outline                                                                                      | 23         |
| 1.10           | Computer Programs                                                                                        | 24         |
| 2              | Cross Section Properties                                                                                 | 25         |
| 2.1            | Overview                                                                                                 | 25         |
| 2.2            | Utilisation of Symmetry Properties                                                                       | 29         |
| 2.3            | Standardisation Part I: Centre of Gravity, Principal Axes and                                            | 31         |
|                | Moments of Inertia                                                                                       |            |
| 2.4            | Calculation of Standardised Cross Section Properties Part I                                              | 40         |
| 2.4.1          | Separation of the Cross Section into Partial Areas                                                       | 40         |
| 2.4.2          | Partial Areas of Thin-Walled Rectangles                                                                  | 43         |
| 2.4.3          | Basic Cross Sections and Elementary Compound Cross Section                                               | 46         |
| 244            | Shapes Tabular Calculation of Cross Section Properties                                                   | <i>5</i> 1 |
| 2.4.4<br>2.4.5 | Tabular Calculation of Cross Section Properties                                                          | 51         |
| 2.4.3<br>2.5   | Numeric Integration / Fibre and Stripe Model Standardigation Part II. Shoot Control Warning Ordinate and | 53         |
| 2.3            | Standardisation Part II: Shear Centre, Warping Ordinate and Warping Constant                             | 58         |
| 2.6            | Warping Ordinate                                                                                         | 63         |
| 2.7            | Shear Centre M                                                                                           | 67         |
|                |                                                                                                          |            |
| 3              | Principles of FEM                                                                                        | 72         |
| 3.1            | General Information                                                                                      | 72         |
| 3.2            | Basic Concepts and Methodology                                                                           | 72         |
| 3.3            | Progress of the Calculations                                                                             | 78         |
| 3.4            | Equilibrium                                                                                              | 80         |
| 3.4.1          | Preliminary Remarks                                                                                      | 80         |
| 3.4.2          | Virtual Work Principle                                                                                   | 81         |
| 3.4.3          | Principle of Minimum of Potential Energy                                                                 | 83         |



| VIII  |                                                          | Content |
|-------|----------------------------------------------------------|---------|
| 3.4.4 | Differential Equations                                   | 84      |
| 3.5   | Basis Functions for the Deformations                     | 87      |
| 3.5.1 | General                                                  | 87      |
| 3.5.2 | Polynomial Functions for Beam Elements                   | 87      |
| 3.5.3 | Trigonometric and Hyperbolic Functions for Beam Elements | 91      |
| 3.5.4 | Basis Functions for Plate Buckling                       | 95      |
| 3.5.5 | One-Dimensional Functions for Cross Sections             | 99      |
| 3.5.6 | Two-Dimensional Functions for Cross Sections             | 103     |
| 4     | FEM for Linear Calculations of Beam Structures           | 108     |
| 4.1   | Introduction                                             | 108     |
| 4.2   | Beam Elements for Linear Calculations                    | 108     |
| 4.2.1 | Linking Deformations to Internal Forces and Moments      | 108     |
| 4.2.2 | Axial Force                                              | 110     |
| 4.2.3 | Bending                                                  | 113     |
| 4.2.4 | Torsion                                                  | 116     |
| 4.2.5 | Arbitrary Stresses                                       | 120     |
| 4.3   | Nodal Equilibrium in the Global Coordinate System        | 123     |
| 4.4   | Reference Systems and Transformations                    | 126     |
| 4.4.1 | Problem                                                  | 126     |
| 4.4.2 | Beam Elements in the X-Z Plane                           | 131     |
| 4.4.3 | Beam Elements in a Three-Dimensional X-Y-Z COS           | 134     |
| 4.4.4 | Loads                                                    | 138     |
| 4.4.5 | Warping Moment and Derivative of the Angle of Twist      | 139     |
| 4.4.6 | Finite Elements for Arbitrary Reference Points           | 146     |
| 4.5   | Systems of Equations                                     | 147     |
| 4.5.1 | Aim                                                      | 147     |
| 4.5.2 | Total Stiffness Matrix                                   | 147     |
| 4.5.3 | Total Load Vector                                        | 149     |
| 4.5.4 | Geometric Boundary Conditions                            | 151     |
| 4.6   | Calculation of the Deformations                          | 153     |
| 4.7   | Determination of the Internal Forces and Moments         | 154     |
| 4.8   | Determination of Support Reactions                       | 156     |
| 4.9   | Loadings                                                 | 157     |
| 4.9.1 | Concentrated Loads                                       | 157     |
| 4.9.2 | Distributed Loads                                        | 157     |
| 4.9.3 | Settlements                                              | 158     |
| 4.9.4 | Influences of Temperature                                | 159     |
| 4.10  | Springs and Shear Diaphragms                             | 159     |
| 4.11  | Hinges                                                   | 164     |

| Content | IX |
|---------|----|
|---------|----|

| 5      | FEM for Nonlinear Calculations of Beam Structures                 | 168 |
|--------|-------------------------------------------------------------------|-----|
| 5.1    | General                                                           | 168 |
| 5.2    | Equilibrium at the Deformed System                                | 168 |
| 5.3    | Extension of the Virtual Work                                     | 171 |
| 5.4    | Nodal Equilibrium with Consideration of the Deformations          | 178 |
| 5.5    | Geometric Stiffness Matrix                                        | 180 |
| 5.6    | Special Case: Bending with Compression or Tension Force           | 185 |
| 5.7    | Initial Deformations and Equivalent Geometric Imperfections       | 189 |
| 5.8    | Second Order Theory Calculations and Verification Internal Forces | 193 |
| 5.9    | Stability Analysis / Critical Loads                               | 201 |
| 5.10   | Eigenmodes / Buckling Shapes                                      | 203 |
| 5.11   | Plastic Hinge Theory                                              | 206 |
| 5.12   | Plastic Zone Theory                                               | 210 |
| 5.12.1 | Application Areas                                                 | 210 |
| 5.12.2 | Realistic Calculation Assumptions                                 | 210 |
| 5.12.3 | Influence of Imperfections                                        | 213 |
| 5.12.4 | Calculation Example                                               | 214 |
| 6      | Solution of Equation Systems and Eigenvalue Problems              | 217 |
| 6.1    | Equation Systems                                                  | 217 |
| 6.1.1  | Problem                                                           | 217 |
| 6.1.2  | Solution Methods                                                  | 218 |
| 6.1.3  | Gaussian Algorithm                                                | 219 |
| 6.1.4  | Cholesky Method                                                   | 220 |
| 6.1.5  | Gaucho Method                                                     | 220 |
| 6.1.6  | Calculation Example                                               | 222 |
| 6.1.7  | Additional Notes                                                  | 224 |
| 6.2    | Eigenvalue Problems                                               | 224 |
| 6.2.1  | Problem                                                           | 224 |
| 6.2.2  | Explanations for Understanding                                    | 225 |
| 6.2.3  | Matrix Decomposition Method                                       | 230 |
| 6.2.4  | Inverse Vector Iteration                                          | 236 |
| 6.2.5  | Combination of the Solution Methods                               | 241 |
| 7      | Stresses According to the Theory of Elasticity                    | 245 |
| 7.1    | Preliminary Remarks                                               | 245 |
| 7.2    | Axial Stresses due to Biaxial Bending and Axial Force             | 247 |
| 7.3    | Shear Stresses due to Shear Forces                                | 250 |
| 7.3.1  | Basics                                                            | 250 |
| 7.3.2  | Calculation Formula for τ                                         | 254 |

| X     |                                                                                                 | Content |
|-------|-------------------------------------------------------------------------------------------------|---------|
| 7.3.3 | Open Cross Sections                                                                             | 255     |
| 7.3.4 | Closed Cross Sections                                                                           | 260     |
| 7.4   | Stresses due to Torsion                                                                         | 261     |
| 7.4.1 | General                                                                                         | 261     |
| 7.4.2 | Arbitrary Open Cross Sections                                                                   | 264     |
| 7.4.3 | Closed Sections                                                                                 | 270     |
| 7.5   | Interaction of All Internal Forces and Verifications                                            | 270     |
| 7.6   | Limit Internal Forces and Moments on the Basis of the Theory of Elasticity                      | 272     |
| 8     | Plastic Cross Section Bearing Capacity                                                          | 273     |
| 8.1   | Effect of Single Internal Forces                                                                | 273     |
| 8.2   | Limit Load-Bearing Capacity of Cross Sections                                                   | 275     |
| 8.2.1 | Preliminary Remarks                                                                             | 275     |
| 8.2.2 | Plastic Cross Section Reserves                                                                  | 277     |
| 8.2.3 | Calculation Methods and Overview                                                                | 281     |
| 8.3   | Limit Load-Bearing Capacity of Doubly-Symmetric I-Cross Sections                                | 288     |
| 8.3.1 | Description of the Cross Section                                                                | 288     |
| 8.3.2 | Perfectly Plastic Internal Forces S <sub>pl</sub>                                               | 289     |
| 8.3.3 | Equilibrium between Internal Forces and Partial Internal Forces                                 | 291     |
| 8.3.4 | Combined Internal Forces N, M <sub>y</sub> , M <sub>z</sub> , V <sub>y</sub> and V <sub>z</sub> | 293     |
| 8.3.5 | Interaction Conditions of DIN 18800 and Comparison with the PIF-Method                          | 296     |
| 8.4   | Computer-Oriented Methods                                                                       | 303     |
| 8.4.1 | Problem Definition                                                                              | 303     |
| 8.4.2 | Strain Iteration for a Simple Example                                                           | 304     |
| 8.4.3 | Strain Iteration for σ Internal Forces                                                          | 307     |
| 8.4.4 | Consideration of the τ Internal Forces                                                          | 314     |
| 8.4.5 | Examples / Benchmarks                                                                           | 317     |
| 9     | Verifications for Stability and according to Second Order<br>Theory                             | 319     |
| 9.1   | Introduction                                                                                    | 319     |
| 9.2   | Definition of Stability Cases                                                                   | 321     |
| 9.3   | Verification according to Second Order Theory                                                   | 323     |
| 9.4   | Verifications for Flexural Buckling with Reduction Factors                                      | 329     |
| 9.4.1 | Preliminary Remarks                                                                             | 329     |
| 9.4.2 | Axial Compression                                                                               | 330     |
| 9.4.3 | Uniaxial Bending with Compression Force                                                         | 338     |
| 9.4.4 | Modified Reduction Factors K                                                                    | 340     |

| Content | XI |
|---------|----|
| Jonton  | Al |

| 9.5     | Calculation of Critical Forces                                 | 342  |
|---------|----------------------------------------------------------------|------|
| 9.5.1   | Details for the Determination                                  | 342  |
| 9.5.2   | Replacement of Structural Parts by Springs                     | 348  |
| 9.5.3   | Compression Members with Springs                               | 352  |
| 9.6     | Verifications for Lateral Torsional Buckling with Reduction    | 360  |
| 0.61    | Factors                                                        | 2.50 |
| 9.6.1   | Preliminary Remarks                                            | 360  |
| 9.6.2   | Beams Not Susceptible to Lateral Torsional Buckling            | 360  |
| 9.6.3   | Scheduled Centric Compression                                  | 362  |
| 9.6.4   | Uniaxial Bending without Compression Force                     | 364  |
| 9.6.5   | Uniaxial Bending with Axial Compression Force                  | 368  |
| 9.6.6   | Reduction Factors according to Eurocode 3                      | 369  |
| 9.6.7   | Accuracy of Reduction Factors                                  | 373  |
| 9.7     | Calculation of Critical Moments                                | 375  |
| 9.8     | Verifications with Equivalent Imperfections                    | 381  |
| 9.8.1   | Verification Guidance                                          | 381  |
| 9.8.2   | Equivalent Geometric Imperfections                             | 381  |
| 9.9     | Calculation Examples                                           | 393  |
| 9.9.1   | Single-Span Beam with Cantilever                               | 393  |
| 9.9.2   | Beam with Scheduled Torsion                                    | 396  |
| 9.9.3   | Two Hinged Frame – Calculation in the Frame Plane              | 399  |
| 9.9.4   | Two Hinged Frame – Stability Perpendicular to the Frame Plane  | 404  |
| 9.9.5   | Frame Considering Joint Stiffness                              | 413  |
| 10      | FEM for Plate Buckling                                         | 420  |
|         | _                                                              |      |
| 10.1    | Plates with Lateral and In-Plane Loading                       | 420  |
| 10.2    | Stresses and Internal Forces                                   | 420  |
| 10.3    | Displacements                                                  | 422  |
| 10.4    | Constitutive Relationships                                     | 423  |
| 10.5    | Principle of Virtual Work                                      | 425  |
| 10.6    | Plates in Steel Structures                                     | 428  |
| 10.7    | Stiffness Matrix for a Plate Element                           | 429  |
| 10.8    | Geometric Stiffness Matrix for Plate Buckling                  | 432  |
| 10.9    | Plates with Longitudinal and Transverse Stiffeners             | 434  |
| 10.10   | Verifications for Plate Buckling                               | 438  |
| 10.11   | Determination of Buckling Values and Eigenmodes with FEM       | 448  |
| 10.12   | Calculation Examples                                           | 451  |
| 10.12.1 | Single Panel with Constant $\sigma_x$ and $\alpha \approx 1.5$ | 451  |
| 10.12.2 | Beam Web with Longitudinal Stiffeners                          | 454  |
| 10.12.3 | Web Plate of a Composite Bridge with Shear Stresses            | 457  |
| 10.12.4 | Web Plate with High Bending Stresses                           | 459  |

| XII        |                                                          | Content |
|------------|----------------------------------------------------------|---------|
| 11         | FEM for Cross Sections                                   | 461     |
| 11.1       | Tasks                                                    | 461     |
| 11.2       | Principle of Virtual Work                                | 464     |
| 11.3       | One-Dimensional Elements for Thin-Walled Cross Sections  | 469     |
| 11.3.1     | Virtual work                                             | 469     |
| 11.3.2     | Element Stiffness Relationships                          | 472     |
| 11.3.3     | Equation Systems                                         | 474     |
| 11.3.4     | Calculation of Cross Section Properties and Stresses     | 476     |
| 11.3.5     | Compilation                                              | 479     |
| 11.4       | Two-Dimensional Elements for Thick-Walled Cross Sections | 480     |
| 11.4.1     | Preliminary Remarks                                      | 480     |
| 11.4.2     | Virtual Work for Thick-Walled Cross Section Elements     | 482     |
| 11.4.3     | Element Geometry                                         | 484     |
| 11.4.4     | Transformation Relationships                             | 486     |
| 11.4.5     | Stiffness Relationships                                  | 488     |
| 11.4.6     | Numerical Integration                                    | 490     |
| 11.4.7     | Cross Section Properties and Stresses                    | 493     |
| 11.4.8     | Performance of the Approximate Solutions                 | 495     |
| 11.4.9     | Special Case: Rectangular Elements                       | 497     |
| 11.5       | Calculation Procedure                                    | 501     |
| 11.6       | Calculation Examples                                     | 503     |
| 11.6.1     | Preliminary Remarks                                      | 503     |
| 11.6.2     | Single-Celled Box Girder Cross Section                   | 503     |
| 11.6.3     | Bridge Cross Section with Trapezium Stiffeners           | 508     |
| 11.6.4     | Rectangular Solid Cross Section                          | 511     |
| 11.6.5     | Doubly Symmetric I-Profile                               | 518     |
| 11.6.6     | Crane Rail                                               | 525     |
| References |                                                          | 528     |
| Index      |                                                          | 534     |