CONTENTS

PREFACE		iii
CONTENTS		v
CHAPTER 0.	INTRODUCTION	1
CHAPTER 1.	A PRIORI BOUNDS	22
	 Introduction Geometric Preliminaries The Basic Inequality 	22 24 27
	4. A lower Bound for $(\nabla u \Omega) \cdot \nabla u$ 5. Far-field Behavior of Coefficients of the $ Lu ^2$ and	32
	u ² -terms 6. The Radiation Integral	37 39
	7. A Priori Estimates in Weighted L_2 -norms 8. An A Priori Estimate for $ u(x,\lambda) $	41 45
CHAPTER 2.	GLOBAL EXISTENCE, SMOOTHNESS, AND NONFOCUSSING OF OPTICAL PATHS IN A REFRACTIVE MEDIUM	48
	1. Introduction	48
	2. Ray Coordinate Systems and Convexity Relative to $n^2(x)$	52
	3. An Existence Theorem	59
	4. Solution of the Ray Equations	62
	 Existence of Ray Fields on Unbounded Domains First Derivatives of X and the Jacobian 	66 77
	7. Higher Derivatives of X	78
	8. The Main Theorem	82
CHAPTER 3.	A UNIFORM APPROXIMATION TO THE SOLUTION OF URSELL'S RADIATING	
	BODY PROBLEM	84
	1. Introduction	84
	2. The Ansatz i i-2	87
	3. Analysis of the A ^j and B ^{j-2}	87
	4. The Radiation Condition	92
	5. General Obstacles	92
	6. An Ansatz for More General Boundary Conditions	92
CHAPTER 4.	EXISTENCE OF SOLUTIONS	98
INDEX		103