Contents

	About the Authors xi
1	Introduction 1
1.1	Chemical Product Engineering 1
1.2	Chemical Product Design 2
1.3	Product Design and Computer-Aided Product Design 4
	References 6
2	Some Typical Applications of Chemical Product Design and
	Intellectual Property 7
2.1	Natural Fiber Plastic Composites 7
2.2	Wheat Straw Polypropylene Composites 10
2.3	Modeling Natural Fiber Polymer Composites 12
2.4	Graphene Composites 14
2.5	Corrosion Protection Using Polymer Composites 15
2.6	Intellectual Property 17
	References 19
3	Mathematical Principles for Chemical Product Design 23
3.1	Factorial and Fractional Factorial Design 23
3.2	Response Surface Methods and Designs 25
3.3	D-Optimal Designs 26
3.4	Bayesian Design of Fractional Factorial Experiments 27
3.5	Regression Analysis 27
3.6	Artificial Neural Networks 28
3.7	Mixture Design of Experiments 31
3.8	Multiway Principal Component Analysis 35
3.8.1	Model-based Principal Component Analysis (MB-PCA) 37
3.8.2	MPLS Analysis Using NIPALS 38
	References 39
Ļ	Disinfectant Formulation Design 41
1.1	Introduction 41
1.2	Disinfectants Characteristics 42

4.2

I	Contents	
	4.2.1	Antimicrobial Tests 42
	4.2.2	Stability Tests 43
	4.2.3	Corrosion Tests 43
	4.3	Toxicity of Disinfectants 44
	4.3.1	Harmful (Xn) 45
	4.3.2	Severe Eye Damage, Xi (R41) 45
	4.3.3	Eye Irritant, Xi (R36) 46
	4.3.4	Skin Irritant, Xi (R38) 46
	4.3.5	Respiratory Irritant, Xi (R37) 47
	4.4	Experimental Design for Antimicrobial Activity 47
	4.4.1	Prior Knowledge 48
	4.4.2	Historical Data Augmentation 49
	4.4.3	Linear Least Squares Regression Analysis 49
	4.4.4	Artificial Neural Networks 51
	4.5	Experimental Design for Stability of Hydrogen Peroxide 54
	4.5.1	Historical Data Analysis 54
	4.5.2	Historical Data Analysis 54 Historical Data Augmentation Using Bayesian D-optimality
	7.5.2	Approach 55
	4.6	Experimental Design for Corrosion 61
	4.6.1	Preliminary Experimental Design 62
	4.6.2	Response Surface Methodology 63
	4.6.3	Artificial Neural Networks 64
	4.0.3	
	4.7.1	Final Formulation Optimization 66 Optimization 67
	4.7.1	Optimized Formulation Verification 69
	4.7.2	Comparing the Optimized Formulations to an Available Product 70
	4.7.3	Conclusion 70
	7.0	References 71
		References /1
	5	Streptomyces Lividans 66 for developing a Minimal Defined
		Medium for Recombinant Human Interleukin-3 73
	5.1	Introduction 73
	5.2	Materials and Methods 74
	5.2.1	Microorganism and Medium 74
	5.2.2	Analytical Methods 74
	5.2.3	Experimental Design and Data Analysis 76
	5.3	Results and Discussion 78
	5.3.1	Starvation Trails 78
	5.3.2	Screening Mixture Experiments 80
	5.3.3	Defined Medium Optimization by Mixture Design Method 82
	5.4	Conclusion 87
		References 87
		Multipolitica Madalina of a Chamic 170 at 140 at 150
	6	Multivariate Modeling of a Chemical Toner Manufacturing
		Process 91
	6.1	Process 91 Introduction 91
		Process 91

6.2	Results and Discussion 97
6.3	Conclusion 101
	References 102
7	Wheat Straw Fiber Size Effects on the Mechanical Properties of Polypropylene Composites 105
7.1	Introduction 105
7.2	Materials and Methods 108
7.2.1	Materials 108
7.2.2	Fiber Preparation and Size Measurement 108
7.2.3	Fiber Thermal and Chemical Analysis 109
7.2.4	Composite Sample Preparation and Properties Measurement 109
7.3	Results and Discussions 110
7.3.1	Fiber Fractionation and Size Measurement 110
7.3.2	Fiber Thermal and Chemical Analysis 113
7.3.3	Fiber Size Reduction During Compounding Process 114
7.3.4	Composite Flexural Properties 117
7.3.5	Composite Impact Properties 118
7.3.6	Composite-Specific Properties 120
7.4	Conclusion 122
	References 122
8	Framework for Product Design of Wheat Straw Polypropylene
	Composite 125
8.1	Introduction 125
8.2	Product Design Framework for WS-PP Composite 128
8.3	Response Surface Models 130
8.3.1	The Design of Mixture Experiment 131
8.3.2	Materials and Methods 133
8.3.3	Results and Discussion 134
8.3.3.1	Flexural Modulus 134
8.3.3.2	Izod Impact Strength 136
8.3.3.3	Other Properties 137
8.4	Case Study 138
8.5	Conclusion 144
	References 145
9	Product Design for Gasoline Blends to Control Environmental
	Impact Using Novel Sustainability Indices: A Case Study 147
9.1	Introduction 147
9.2	Methodology 148
9.2.1	The Impacts of Gasoline Blends on Octane Number (ON) 148
9.2.2	The Impacts of Blending Ethanol and Gasoline on Mileage 149
9.2.3	The Effects of Ethanol, Methanol, and Isooctane on the Octane Number
	of Gasoline Blends 150
9.2.4	The Impacts of E5, M5, and I5 on Heat Value, Mileage,
	and Price 150

viii	Contents	
	9.2.5	Impacts of E5, M5, and I5 on Environment in Potential Environmental Impacts (PEIs) 152
	9.2.6	The Impacts of E5, M5, and I5 on Safety Risk 154
	9.2.7	Selecting the Best Blend Through the Analytic Hierarchy
		Process (AHP) 155
	9.3	Results 158
	9.4	Conclusion 160
		References 161
	10	Corrosion Protection of Copper Using
		Polyetherimide/Graphene Composite Coatings 163
	10.1	Introduction 163
	10.2	Experimental 164
	10.2.1	Material 164
	10.2.2	Composite Preparation, Coating, and Curing 165
	10.2.3	Morphology Characterization 165
	10.2.4	Adhesion 165
	10.2.5	Electrochemical Measurement 166
	10.3	Results and Discussion 167
	10.3.1	Morphology 167
	10.3.2	Adhesion 170
	10.3.3	Potentiodynamic Measurements 170
	10.3.4	Impedance 174
	10.4	Conclusion 177
		References 177
	11	Optimization of Mechanical Properties of Polypropylene
		Montmorillonite Nanocomposites 181
	11.1	Introduction 181
	11.2	Methodology 183
	11.3	Mathematical Models 183
	11.4	Optimization Mechanism 183
	11.5	Results and Discussion 185
	11.5.1	Minimizing the Cost of PP-OMMT 185
	11.5.2	Minimizing the Variance Between Desired Properties 187
	11.6	Conclusion 192
		References 193
	12	Product Selection and Business Portfolio for Long-Range
		Financial Stability: Case Study from the Petrochemical
		Industry 195
	12.1	Introduction 195
	12.2	Manufacturing Strategy and Product Selection Tools 196
	12.3	Model Development 199
	12.4	Illustrative Case Study 201
	12.5	Conclusion 205
		References 205