

Contents

Preface *xii*

Acknowledgments *xiii*

1	Introduction to Biomass-Derived Carbon Materials	1
	<i>A. Sivakami, R. Sarankumar, S. Vinodha, and L. Vidhya</i>	
1.1	Introduction	1
1.2	Biomass Resources and Composition	3
1.2.1	Plant-Based Biomass	4
1.2.2	Fruit-Based Biomass	5
1.2.3	Microorganism-Based Biomass	7
1.2.4	Animal-Based Biomass	7
1.3	Condition for Precursor Selection of Biomass-Derived Carbon	8
1.4	Production Methods of Biomass-Derived Carbon	8
1.4.1	Carbonization	9
1.4.1.1	Hydrothermal Carbonization	9
1.4.1.2	Pyrolysis	10
1.5	Biomass-Derived Carbons (B-d-CMs) Activation Methods	11
1.5.1	Physical Activation	11
1.5.2	Chemical Activation	13
1.5.3	Combination of Physical and Chemical Activation	14
1.5.4	Modification and Structural Control of B-d-CMs	14
1.5.4.1	Surface Modification and Heteroatom Doping of B-d-CMs	15
1.5.4.2	B-d-CMs Surface Loading of Metal Oxides or Hydroxides	15
1.5.4.3	Surface Incorporation with Different Nanostructures	17
1.6	Production Process Description	17
1.7	Cost Analysis	19
1.8	Summary	19
	References	20
2	Introduction to Biowaste-Derived Materials	27
	<i>Thangavelu Kokulnathan, Balasubramanian Sriram, Sabarison Pandiyarajan, Subramanian Ramanathan, and Thangavelu Sakthi Priya</i>	
2.1	Introduction	27

2.2	Synthesis	28
2.2.1	Activation Mechanism of BW-AC by Physical Activation	28
2.2.2	Activation Mechanism of BW-ACs by Chemical Activation	29
2.2.2.1	Influence of Alkaline Activating Agents	30
2.2.2.2	Influence of Acidic Activating Agents	31
2.2.2.3	Influence of Neutral Activating Agents	31
2.2.2.4	Influence of Self-Activating Agents	32
2.3	Characterization	32
2.3.1	Electron Microscopes	32
2.3.2	HR-TEM Analysis	34
2.3.3	FTIR Spectroscopy	35
2.3.4	Raman Spectroscopy	36
2.3.5	XPS Analysis	38
2.3.6	XRD Patterns	39
2.3.7	BET Analysis	41
2.4	Properties	43
2.4.1	Surface Defects in BW-AC	43
2.4.2	Characterizations of Carbon Defects	46
2.4.3	Intrinsic Carbon Defects Activity	47
2.4.4	Heteroatom Doping Defects (or) Extrinsic Carbon Defects Activity	48
2.4.5	Electronic Band Structure Properties	48
2.5	Summary	50
	References	50

3 Biomass-derived Carbon-based Materials for Microbicidal Applications 63

Selvamuthu Preethi, Arunachalam Arulraj, Ramalinga Viswanathan Mangalaraja, Velayutham Ravichandran, and Natesan Subramanian

3.1	Introduction	63
3.2	Biomass Materials	64
3.2.1	Carbon and Its Derivatives	65
3.3	Microbicidal	66
3.3.1	Mechanism of Action	67
3.3.2	Microbicidal Resistance	68
3.3.3	Factors Affecting Microbicidal Resistance	68
3.4	Microbicidal Performance of Biomass-Derived Carbonaceous Materials	69
3.4.1	Role of Material Physicochemical Properties	70
3.4.1.1	Structural Destruction	70
3.4.1.2	Oxidative Stress	73
3.4.1.3	Wrapping Effect	76
3.4.1.4	Photothermal Effect	77
3.4.1.5	Extraction of Lipid	78
3.4.1.6	Metabolic Inhibitory Effect	79
3.5	Bioengineering Prospective Toward Carbonaceous Materials	79

3.5.1	Wound Dressing	80
3.5.2	Surface Modifications (Coating) on Medical Devices	81
3.5.3	Nanoantibiotic Formulations	82
3.6	Biosafety	83
3.7	Conclusion and Future Perspectives	84
	Acknowledgment	85
	References	85
4	Carbon-Based Nanomaterials Prepared from Biomass for Catalysis	93
	<i>A. Rajeswari, E. Jackcina Stobel Christy, and Anitha Pius</i>	
4.1	Introduction	93
4.2	Preparation of Biomass-Derived Carbon-Based Nanomaterials	94
4.3	Graphene	95
4.3.1	Preparation of Graphene	95
4.3.2	Graphene from Different Sources	95
4.4	Carbon Nanotubes (CNTs)	99
4.4.1	Synthesis of CNTs	99
4.4.2	Synthesis of CNTs Using Biomass Materials	99
4.5	Carbon Quantum Dots (CQDs)	102
4.5.1	CQDs from Biomass	102
4.6	Catalytic Applications of Carbon-Based Nanomaterials	104
4.6.1	Potential Advantages in Using Carbon-Based Nanomaterials for Advanced Catalysts	104
4.6.2	Photocatalysts	105
4.6.3	Electro Catalysts	107
4.7	Conclusions, Future Outlook, and Challenges	107
	Acknowledgments	107
	References	108
5	Biomass-Derived Carbon Quantum Dots for Fluorescence Sensors	113
	<i>Somasundaram Anbu Anjugam Vandarkuzhali, Jeyabalan Shanmugapriya, Chinna Ayya Swamy P, Subramanian Singaravel, and Gandhi Sivaraman</i>	
5.1	Introduction	113
5.2	Characterization of CDs	114
5.3	Optical Properties	115
5.3.1	Absorbance	115
5.3.2	Fluorescence	115
5.4	Methods for the Synthesis of CDs	115
5.4.1	Hydrothermal Carbonization Method	116
5.4.2	Microwave Method	116
5.4.3	Chemical Oxidation Method	116
5.4.4	Pyrolysis	117
5.5	Application of CDs	117

5.5.1	Metal Ion Sensing	117
5.5.1.1	Mercury (Hg^{2+}) Sensor	118
5.5.1.2	Iron (Fe^{3+}) Sensor	119
5.5.1.3	Lead (Pb^{2+}) Sensor	120
5.5.1.4	Copper (Cu^{2+}) Sensor	120
5.5.1.5	Miscellaneous Metal Ions	122
5.5.2	Anion Sensors	122
5.5.3	Miscellaneous Molecules	123
5.6	Conclusion and Future Perspectives	123
	References	124

6 Biomass-Derived Mesoporous Carbon Nanomaterials for Drug Delivery and Imaging Applications 129

Balaji Maddiboyina, Ramya Krishna Nakkala, and Gandhi Sivaraman

6.1	Introduction	129
6.2	Drug Delivery Systems Based on MCNs	130
6.2.1	Immediate-release DDS	130
6.2.2	Sustained-release DDS	130
6.2.3	Controlled/Targeted DDS	131
6.3	Photothermal Therapy	131
6.3.1	Synergistic Therapy	135
6.3.2	Cell Labeling	135
6.3.3	Removal of Toxic Substances	139
6.3.4	Transmembrane Delivery	139
6.3.5	Photoacoustic Imaging	139
6.3.6	Therapeutic Biomolecule Delivery	140
6.3.7	Biosensing	140
6.3.8	Magnetic Resonance (MR) Imaging	142
6.4	Conclusion and Future Perspectives	143
	References	143

7 Mesoporous Carbon Synthesized from Biomass as Adsorbent for Toxic Chemical Removal 147

Babu Cadiam Mohan, Srinivasan Vinju Vasudevan, Ramkumar Vanaraj, Sundaravel Balachandran, and Selvamani Arumugam

7.1	Introduction	147
7.2	Synthesized Methods of Mesoporous Carbons from Biowaste or Biomass	148
7.3	Application of Mesoporous Activated Carbons	149
7.3.1	Removal of Dyes	149
7.3.1.1	GWAC as an Adsorbent for Methylene Blue and Metanil Yellow	150
7.3.1.2	Rice Husk (RH)-Derived Mesoporous Activated Carbon (AC) for Methylene Blue (MB) Dye Removal	151
7.3.1.3	Activated Carbon from Rattan Waste for Methylene Blue (MB) Removal	152

7.3.1.4	Activated Carbon from Cattail Biomass (CAC) for Malachite Green (MG) Removal	152
7.3.1.5	Wood Sawdust Waste Activated Carbon (WACF-P) for Xylenol Orange (XO) Removal	152
7.3.1.6	Mesoporous Activated Carbon from Agricultural Waste for Methylene Blue Removal	153
7.3.1.7	Mesoporous Activated Carbon from Edible Fungi Residue (EFR-AC) for Reactive Black 5 Removal	153
7.3.1.8	Mesoporous Activated Carbon from Plant Wastes for Methylene Blue (MB) Removal	153
7.3.1.9	Mesoporous Activated Carbon from <i>Corozo oleifera</i> Shell for Methylene Blue (MB) Removal	154
7.3.1.10	Mesoporous Activated Carbon from Coconut Coir Dust for Methylene Blue (MB) and Remazol Yellow (RY) Removal	154
7.3.1.11	Mesoporous Activated Carbon from Macadamia Nut Shell (MNS) Waste for Methylene Blue (MB) Removal	155
7.3.1.12	Mesoporous Activated Carbon from <i>Neobalanocarpus Heimii</i> Wood Sawdust (WSAC) for Methylene Blue (MB) Removal	155
7.3.2	Removal of Metal Ions	155
7.3.2.1	Use of Chicken Feather and Eggshell to Synthesize a Novel Magnetized Activated Carbon for Sorption of Heavy Metal Ions	157
7.3.2.2	Meso/micropore-Controlled Hierarchical Porous Carbon Derived from Activated Biochar as a High-Performance Adsorbent for Copper Removal	158
7.3.3	Removal of Phenolic Compounds	158
7.4	Conclusion and Future Outlooks	165
	References	165

8 Biomass-derived Carbon as Electrode Materials for Batteries 171

P. Vengatesh, C. Karthik Kumar, T.S. Shyju, and M. Paulraj

8.1	Introduction	171
8.1.1	Batteries	172
8.1.2	Classification of Batteries	172
8.1.3	Characteristics of Batteries	172
8.2	Role of Carbon with Mechanism of Rechargeable Batteries (RBs)	174
8.2.1	Li-Ion Batteries (LIBs)	174
8.2.2	Li-S Batteries (Li-S)	175
8.2.3	Na-Ion Batteries (SIBs)	176
8.2.4	Zn-Air Batteries (ZABs)	178
8.3	Biomass-derived Carbonaceous Materials	179
8.4	Electrochemical Performances of RBs using Biomass-derived Carbon Electrodes	181
8.4.1	Li-Ion Batteries (LIBs)	181
8.4.1.1	Biomass-derived Undoped Carbon Electrodes	181

8.4.1.2	Metal Oxides @ Biomass-derived Carbon Nanocomposite Electrodes	186
8.4.1.3	Metal Sulfides @ Biomass-derived Carbon Nanocomposite Electrodes	188
8.4.2	Na-Ion Batteries (SIBs)	189
8.4.2.1	Biomass-derived Undoped Carbon Electrodes	190
8.4.3	Li-S batteries	195
8.4.3.1	Biomass-derived Carbon Hosts	198
8.4.4	Zn-Air Batteries	199
8.5	Biomass-derived Heteroatom-Doped Carbon Electrodes for RBs	201
8.5.1	Single-Heteroatom-Doped Carbon Electrodes	202
8.5.2	Dual-Heteroatom-Doped Carbon Electrodes	204
8.6	Summary and Future Prospectives	206
	References	207
9	Recent Advances in Bio-derived Nanostructured Carbon-based Materials for Electrochemical Sensor Applications	215
	<i>Akshat Mathur, Jayashankar Das, and Sushma Dave</i>	
9.1	Introduction	215
9.2	Conclusion and Future Perspectives	224
	References	225
10	Porous Carbon Derived From Biomass for Fuel Cells	229
	<i>A. Sivakami, Aristatil Ganesan, P. Sakthivel, Kishore Sridharan, Sabarinathan Venkatachalam, and Sudhagar Pitchaimuthu</i>	
10.1	Introduction	229
10.2	Fuel Cells – Theory and Fundamentals	233
10.3	Catalyst Support Materials	234
10.3.1	As a Catalyst	236
10.3.2	Synthesis Methods of Porous Carbon from Biomass	236
10.4	Porous Carbon Synthesis from Different Biomass	237
10.4.1	Oxygen Reduction Reaction (ORR)	237
10.5	Synthesis of Biomass-Derived ORR Catalyst for Fuel Cell	238
10.6	Future Outlook	245
10.7	Summary	245
	References	246
11	Biomass-Derived Carbon-Based Materials for Supercapacitor Applications	253
	<i>G. Murugadoss, M. Rajaboopathi, M. Rajesh Kumar, and A. M. Kamalan Kirubaharan</i>	
11.1	Introduction	253
11.1.1	Capacitor	253
11.1.2	Battery	254
11.2	Supercapacitor	255

11.2.1	Types of Supercapacitors	255
11.2.2	Electrical Double-Layer Capacitors (EDLC)	256
11.2.3	Pseudocapacitor	257
11.2.4	Hybrid Capacitors	258
11.3	Activated Carbon Obtained from Biomass for Supercapacitor Application	259
11.3.1	Essential for Carbon-based Electrodes	259
11.4	Electrochemical Measurements	262
11.5	Structural Diversities of Biomass-Derived Carbon for Supercapacitor Applications	262
11.5.1	Spherical Structure	263
11.5.2	Fibrous Structure	263
11.5.3	Tubular Structure	263
11.5.4	Sheet Structure	263
11.5.5	Porous Structure	265
11.5.6	Mesocrystal Structure	268
11.6	Conclusion and Future Perspectives	269
	References	269
12	Biomass-Derived Carbon for Dye-Sensitized and Perovskite Solar Cells	275
	<i>N. Santhosh, P. Vijayakumar, M. Senthil Pandian, and P. Ramasamy</i>	
12.1	Introduction	275
12.2	DSSC Working Principle	276
12.3	DSSC Components	277
12.3.1	Transparent Conducting Substrate (TCO)	277
12.3.2	Photoanode	277
12.3.3	Dye Sensitizer	277
12.3.4	Electrolyte	278
12.3.5	Counter Electrode	278
12.4	Perovskite Solar Cells	278
12.5	Tunability of Bandgap Energy	280
12.6	Development of Perovskite Solar Cells from Dye-Sensitized Solar Cells	280
12.6.1	Working Principle of PSC	281
12.6.2	Perovskite Solar Cells Architecture	281
12.6.3	Hole Transport Material	282
12.7	Biomass-Derived Carbon Counter Electrode for DSSC	283
12.7.1	Performance of DSSC with Counter Electrode via Bio-derived Carbon	284
12.7.2	Biomass-Derived Carbon as a Counter Electrode for Perovskite Solar Cells	285
12.8	Conclusion and Future Perspectives	287
	References	287

13	Recent Advances of Biomass-Derived Porous Carbon Materials in Catalytic Conversion of Organic Compounds	<i>293</i>
	<i>N. Mahendar Reddy, D. Saritha, Naveen K. Dandu, Ch.G. Chandaluri, and Gubbala V. Ramesh</i>	
13.1	Introduction	293
13.2	Synthesis Procedures	295
13.2.1	Carbonization	295
13.2.1.1	Hydrothermal Carbonization (HTC)	296
13.2.1.2	Pyrolysis	297
13.2.2	Activation	297
13.2.2.1	Physical Activation	297
13.2.2.2	Chemical Activation	298
13.2.3	Physicochemical Activation	299
13.2.4	Microwave-based synthesis	299
13.2.5	Functionalization/Doping/Composites of ACs	300
13.3	Applications	302
13.3.1	Heterogeneous Catalysis	302
13.4	Conclusion and Future Challenges	308
	References	309
14	Summary on Properties of Bio-Derived Carbon Materials and their Relation with Applications	<i>317</i>
	<i>S. Vinodha, L. Vidhya, and T. Ramya</i>	
14.1	Removal of Toxic Chemicals	321
14.2	Electrode Materials for Batteries	322
14.3	Electrochemical Sensor Applications	323
14.4	Fuel Cell Applications	324
	References	329
	Index	<i>331</i>